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Abstract 
This paper develops a new robust cyclostationary detection technique for spectrum sensing of OFDM-

based primary users (PUs). To do so, an asymptotically constant false alarm rate (CFAR) multi-cycle 

detector is proposed and its statistical behavior under null hypothesis is investigated. Furthermore, to 

achieve higher detection capability, a soft decision fusion rule for performing cooperative spectrum 

sensing (CSS) in secondary networks is established. The proposed CSS scheme aims to maximize the 

deflection criterion at the fusion center (FC), while the reporting channels are under Rayleigh fading. In 

order to be able to evaluate the performance of the cooperative detector, some analytic threshold 

approximation methods are provided for the cases where the FC has direct sensing capability or not. 

Through numerical simulations, the proposed local and CSS schemes are shown to significantly enhance 

CR network performance in terms of detection probability metric. 
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1. Introduction 

Cooperative spectrum sensing (CSS) methods 

were proposed in literature to improve the 

detection performance of secondary networks [1, 

2]. However, most existing scenarios assume that 

all the cooperating users use the commonly 

adopted energy detection (ED) technique for 

their local sensing. But, despite the simplicity, 

quickness and no requirements of pre-knowledge 

about the PU's signal, the ED method has some 

challenging issues. For example, it cannot 

differentiate primary users (PUs) from secondary 

users (SUs), and requires knowing the noise 

variance to ensure proper detection performance 

[3]. Therefore, ED-based CSS methods are prone 

to false detections [2, 4]. 

In addition, ED-based soft decision fusion 

rules that has been recently introduced in literature, 

such as [5-7], assume that the perfect knowledge 

about the noise variances of sensing channels are 

available at fusion center (FC). However, in 

practice, this assumption may be unrealistic. 

Therefore, the cooperative sensing methods based 

on local ED may be very susceptible to noise 

uncertainties of sensing channels and therefore 

their performance can be dictated by the accuracy 

of the noise power estimations at SUs. 

Cyclostationary detection (CD)-based 

sensing methods are proposed in literature to 

address the above issues [2,4,8-11]. These 

detectors exploit inherent cyclostationary 

properties of digitally-modulated signals and 

have acceptable performance in very low SNRs 

[2,12]. However, despite the advantages of CD 

over ED-based spectrum sensing, there are rather 

limited researches on CD-based CSS, mostly 

because of its complicated analytic expressions 

and also complexities that may arise in 

implementation of the CD algorithms.  

Some recent works were addressed the 

complexity issue of CD methods. For example, a 

new CD-based CSS method is proposed in [13]. 

But, there are two drawbacks with this method. 

Firstly, its performance can be dictated by the 

uncertainties in estimating the noise variances of 

sensing channels at the SUs since the thresholds 

for the single-cycle and multi-cycle detectors are 

functions of the noise variance. Secondly, 

because the proposed detectors are constructed 

based on the cyclic autocorrelation function 

(CAF) estimates at zero time-lags, the 

performance for detecting OFDM-based primary 

or secondary users may be very poor. It is well-

known that the strong cyclic frequencies of 

OFDM-based transmissions are located at time-

lags equal to     , where    is the useful 

symbol length of the OFDM symbol [11]. 

In this paper, we propose a simplified cyclic 

correlation-based detection algorithm for the 
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local spectrum sensing which does not require 

any specific assumption about the distribution of 

PU signals. In other words, to combat the above-

mentioned spectrum sensing problems (that exist 

in conventional ED and some CD methods), we 

propose a CD detector that does not: 

 require any specific assumption about the 

statistical distribution of PU signal, 

 need any prior knowledge about the noise 

variance of the sensing channel, 

 know the statistics of fading channel. 

In this context, we derive a Generalized 

Likelihood Ratio Test (GLRT) based on 

asymptotic distribution of second-order cyclic 

correlation vector. Then, we analytically 

characterize the asymptotic distributions of the 

test statistic under null and alternative 

hypotheses. In order to evaluate the performance 

of the test, we derive closed-form expressions for 

the false alarm and detection probabilities, and 

verify them through numerical simulations. 

It is widely-known that using multiple cycle 

frequencies at cyclostationary detectors does 

improve the detection performance. Thus, we 

also propose a new multi-cycle detector. 

Based on the proposed local sensing method, 

we then develop a weighted soft combination 

method for the CSS. This method is based on the 

deflection criterion maximization at the FC and 

achieves better detection performance compared 

to the conventional cooperative detectors. 

Furthermore, it provides reliable detection 

performance when both the reporting and sensing 

channels are under fading impairments. 

In this paper, a threshold estimation method 

for CSS is provided in order to perform decision 

making at the fusion center. Simulation results 

confirm that the proposed analytical threshold 

setting procedures have adequate accuracy for 

performance analysis purposes. It should be 

noted that our proposed method does not need 

any prior knowledge about the noise variances of 

sensing channels or their fading statistics. 

The remainder of this paper is organized as 

follows. System model is presented in Section 2. 

The local sensing strategy is described in Section 

3. The cooperative detection algorithm is 

developed in Section 4. Performances of 

proposed schemes are investigated in Section 5. 

Finally, the conclusions are drawn in Section 6. 

2. System Model 

It is assumed that the base-band discrete-time 

received signal for  th SU,                , 

at a time instance   is given by: 
            ̃                      (1) 

where   refers to the number of secondary 

users existing in the network,    denotes the 

channel fading coefficient between PU to  th SU, 

and             
   with   

  as the variance of 

the complex additive Gaussian noise. Note that 

  
  and    are generally unknown. 

Moreover,     and     correspond to 

null (inactive PU) and alternative (active PU) 

hypotheses, respectively. We assume that the PU 

is either active or inactive during the sensing 

duration. The signal transmitted by PU is 

denoted by  ̃   . Without loss of generality,  ̃   , 

   and       are assumed to be independent of 

each other. Furthermore, conditional 

independence of spatially distributed SUs is 

assumed [2]. 

After the decision statistic    at the  th SU is 

computed, it is transmitted to the FC through an 

independent reporting channel that experiences 

fading. Hence, 

 ̃                      (2) 

where          
   and    is a real-valued 

fading envelope with     . We assume that 

{  }   
  are constant during the detection interval. 

Without loss of generality, we assume that the 

Rayleigh fading channels have unit powers (i.e. 

    
    ). In addition, the above model 

assumes the well-known phase-coherent 

reception at FC. Note that  ̃  represents the 

received signal from  th SU. 

Since in many cognitive radio scenarios the 

envelope of the fading channel and the noise 

variance can be estimated in advance, we assume 

that the quantities {  }   
  and {  

 }   
  are 

perfectly known to the FC [5-7, 14, 15].  

3. Proposed Cyclostationarity-based 

Detection Method 

Assume that we want to test for the presence 

of the cyclostationarity at a candidate cycle 

frequency   (known prior or can be estimated 

[12]) in the received signal     . 

For a given time lag   and a cycle frequency 

 , the estimated cyclic autocorrelation function 

(CAF) is defined to be [12]: 

 ̂         ̂ {                  }  (3) 

where  ̂ {    }   
 

 
  ∑      

    denotes the 

 -sample average. It has been proven in [16] 

that subject to certain mixing conditions,  

 ̂        is a consistent and asymptotically (i.e. 

as    ) normal estimator of the cyclic 

moment         . In essence, the expression 

√   ̂                  asymptotically 

converges in distribution to a complex normal 
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variable [16]. Therefore, the real and imaginary 

parts of  ̂        are jointly Gaussian. 

In this paper, we propose to only consider the 

real part of  ̂       . This causes the resulting 

test statistic to have a reduced complexity, as 

compared to the case where the whole structure 

is considered for deriving the decision statistic. 

Let, 

 ̂         { ̂       }    { ̂       } (4) 

where   and   denote the real and imaginary 

parts, respectively. Consequently, the following 

convergence holds true for the asymptotic case: 

√   { ̂       }   {        } 
 
         (5) 

Our aim is to devise a cyclic feature detector 

based on the above property. To this end, let us 

define 

  √   {        }  (6) 

and its estimation: 

 ̂  √   { ̂       }  (7) 

Following the discussions in [16], it can be 

shown that: 

 ̂
 
 {

                  

      
             

     (8) 

where     , which is unknown but is non-

random. Based on above discussions we can 

constitute the following generalized likelihood 

ratio test (GLRT): 

 
 

 
     ̂  ̂   ̂

     

     ̂  ̂     
 

 

√   ̂ 
      

  ̂  ̂  

  ̂  

 

√   ̂ 
      

 ̂ 

  ̂  
  (9) 

In the above equation, the numerator is 

obtained by substituting    with its estimation. 

Thus, the decision statistic can be computed from 

the generalized log-likelihood ratio (GLLR) 

function: 

         
 ̂ 

 ̂ {
                  

                 
 (10) 

where   is the threshold value. Since 

 ̂        is mean-square sense consistent [16], 

we can obtain that 

   
   

 ̂       
      
→            (11) 

where denotes the mean-square sense 

convergence. Therefore, under null hypothesis, 

   
   

 ̂       
 
           (12) 

Furthermore,  ̂  converges in the m.s.s. to    

[12, 16]. Since convergence in m.s.s. implies 

convergence in probability [p. 234][17], we can 

conclude that        ̂  
 
   . Therefore, based 

on Slutsky's theorem [Th.3.3][18], we deduce 

that 

   
   

 ̂ 

 ̂ 

 
 

 

      (13) 

Consequently, under    the following result 

can be obtained: 

   
   

  

 
   

   (14) 

and under    we have 

   
   

  

 
  ́ 

 (
  

   )  (15) 

Hence, once the threshold is fixed for a given 

   , the obtained    will depend naturally on the 

unknown parameter  ̂ . Therefore, in practice, 

we propose to use the following approximate 

distribution for large values of  : 

    ́ 
 (

 ̂ 

 ̂ )  (16) 

The variance   can be computed by the 

following expression: 

      { ̂}

     { { ̂       }  { ̂       }} 

 
 

 
 {    { ̂       }

     { ̂  
      }}  

(17) 

where          denotes the cumulant 

operator. Therefore, if we define two asymptotic 

covariance: 

       { ̂         ̂       }  (18) 

and 

       { ̂         ̂  
      }  (19) 

then, the asymptotic variance of  ̂  can be 

expressed as: 

   
 

 
 {   }  (20) 

In practice, these elements can be estimated 

respectively by: 

 ̂   
 

 
∑       ̂  (  

 

 
  )  ̂  (  

 

 
  )

   

 

   
   

 

  

(21) 

and 

 ̂   
 

 
∑      | ̂  (  

 

 
  )|

 

   

 

   
   

 

  (22) 

In the above equation,   is a normalized 

smoothing window with an odd length  , 
     

  

{
 

 
  ( √  

   

  )   
   

 
   

   

 

                                                          

  
(23) 

where       is the modified Bessel function 

of first-kind and zero-order. It should be noted 

that the values of   and   should be pre-set in the 

detection algorithm. 

Using the above results, the estimated 

variance can be expressed as  ̂  
 

 
  { ̂}   ̂ . 

However, in the low-SNR regimes, which is of 

interest in spectrum sensing scenarios as well as 

cyclostationarity-based detection applications, 

we have  ̂   { ̂} . Thus, in practice, we 

propose the following expression for the variance 

estimation: 
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 ̂   
 

  
∑      | ̂  (  

 

 
  )|

 

   

 

   
   

 

  (24) 

Since this expression is derived for low-SNR 

conditions, it may not provide enough accuracy 

for moderate- and high-SNR regimes. However, 

we will show in Section II through simulation 

results that (24) results in an acceptable 

performance for all SNR values. 

3.1 Threshold Selection and Analytic 

Performance Expression 

Using (14) we can obtain the false alarm 

probability as below: 
      {       }       

    

   
 (

 

 
 
 

 
)

 (
 

 
)

  
(25) 

where    
  is cumulative distribution function 

(CDF) of chi-square variable with one degrees of 

freedom. In addition,        and      denote the 

lower incomplete Gamma function and Gamma 

function, respectively [19]. It can be shown that 

 (
 

 
 
 

 
)  √     (√   )      (√ )  (26) 

where  

       
 

√ 
∫          

 

 

  (27) 

and   denotes the right-tail probability of 

standard Gaussian distribution [19]. Therefore, 

the threshold value can be determined by 

      (√ )  (28) 

Since the threshold value does not depend on 

the sensing channel parameters (e.g. SNR value, 

noise variance, fading gain, etc.), it can be 

computed directly from the     value, and 

therefore the proposed detection algorithm can 

be introduced as a constant false alarm rate 

(CFAR) test. 

Using the same line as above, the detection 

probability can be derived as follows: 
     {       }      ́ 

       

  
   ́ 

       
           

    
(29) 

where 

  
 ̂ 

 ̂   (30) 

Validity of the above asymptotic distributions 

is confirmed in our subsequent discussions in 

Section 5. 

3.2 Extension to the Multi-Cycle 

Detectors 

It is well-known that detecting multiple 

cyclic frequencies at the same time would 

enhance the detection performance [2, 13, 20]. 

Most of the current researches have simply 

proposed the summation of test statistics of 

different cyclic frequencies for multi-cycle 

detection purposes [2, 8, 13]. However, using the 

same procedure as in [20], we alternatively 

propose the following multi-cycle (MC) detector: 

    
 

√∑   
   

   

∑  
   

  

  

   

  (31) 

where 

   {
  

  
}|

  

  (32) 

and   
   denote the noncentrality parameter 

and the test statistic corresponding to a cyclic 

frequency   , respectively. In the same equation, 

   denotes the number of intended cyclic 

frequencies. It is noteworthy that the above 

detector combines different cyclic frequencies in 

a way that the deflection coefficient is 

maximized [20]. 

To perform hypothesis testing, the null 

distribution of (31) is required to be computed. 

Since CAFs of different cyclic frequencies are 

statistically independent under the null 

hypothesis [8], we can approximate the CDF by 

inversion of corresponding characteristic 

function (CF) of    . Fist, assume that the CF of 

    is defined as: 

       [         
   ]. (33) 

In this case, we can write 

    
    ∏        

  

   

 (34) 

Since   
     

 , the following equation holds 

true: 

                 . (35) 

Using the above expression, we can conclude 

that: 

    
    ∏         

    

  

   

  (36) 

Now, employing the well-known Gil-Palaez 

theorem [21], we can compute the corresponding 

CDF of     
 under    as follows: 

    
    

 

 
 

 

 
∫

 {    
        }

 
  

 

 

  (37) 

Consequently, substitution of (36) into (37) 

yields the resultant CDF expression: 
       

   

 
 

 
 

 

 
∫

 {∏          
 

 

 
  
        }

 
  

 

 

  
(38) 

which can be simply computed using the 

numerical integration techniques. Finally, since 
      {     ̌   }        

  ̌   (39) 
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we can calculate the threshold value as below: 
 ̌      

           (40) 

Accuracy of the proposed method is 

investigated in Fig. 1. We have simulated the 

distribution function of sum of five central chi-

square variables as         
          

  
        

          
          

  The weights 

are generated in a random manner. The 

simulation curve presents the real accurate 

distribution. As we can see, the estimated CDF, 

which is computed from (38), follows very 

closely the simulated distribution. Thus, the 

proposed threshold determination method can be 

reliably implemented at SUs. 

Fig. 2 provides another example. The sum of 

ten random variables is simulated. The sum 

distribution is selected to be         
  

        
          

          
  

        
          

          
  

        
          

          
   The results 

of numerical simulations confirms the superior 

performance of the proposed method. 

 

Fig. 1 Accuracy of the proposed threshold selection method. 

The simulated distribution is         
          

  

        
          

          
   (random-generated weights). 

 

Fig. 2 Accuracy of the proposed threshold selection method. 

The simulated distribution is         
          

  

        
          

          
          

          
  

        
          

          
   (random-generated weights). 

4. Proposed Cooperative Spectrum 

Sensing Method 

In this paper, we only consider the soft 

combination-based cooperative spectrum sensing 

method. We propose that the fusion center has 

the capability to directly sense the radio 

frequency spectrum. As we will confirm by 

simulation results, this improves the reliability of 

the final decision. Furthermore, we propose to 

employ a weighted combination fusion rule for 

fusing the soft decisions transmitted by SUs. 

Therefore, the proposed global decision rule at 

the FC can be expressed as: 

 ̃         ∑   ̃   

 

   

   

  

 

  

 ̃  (41) 

where 
                 

                (42) 

is the weight vector used to build the 

weighted fusion rule, and 

  [      ̃     ̃       ̃   ]
 

 (43) 

denotes the vector of observations. Note that 

   corresponds to the weight that is assigned to 

the FC and the others are the corresponding 

weights of SUs. 

4.1 Weight Vector Computation 

The problem that we are encountering is how 

we should calculate the weight vector  , thereby 

the resultant detector achieves the best 

performance. To this end, we choose the deflection 

coefficient [22] as the performance metric. 

In order to compute the deflection coefficient, 

we require the first and second-order moments of 

the test statistic (41). After some manipulation, 

we obtain the following expressions: 

    ̃     ∑    

 

   

     

      ̃     
  ∑  

     
    

  

 

   

       

    ̃           ∑          

 

   

          

      ̃     
         ∑  

     
           

  

 

   

       

(44) 

where       (        ) and       (        ) 

denote the statistical expectation (variance) 

under null and alternative hypotheses, 

respectively. In the above equations, 

                 
  (45) 

denotes the vector of estimated noncentrality 

parameters at different SUs, where     ̂ 
   ̂ 

 . 
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Furthermore, the following definitions are 

supposed: 

                
   

                

       
    

      
    

                      

                               
(46) 

After some manipulation, we can obtain the 

deflection of cooperative detector as: 

     
     ̃      ̃  

 

      ̃ 
 

       

     
  (47) 

We rewrite (45) and define the optimal 

weighting vector    as the one that meets the 

following optimization problem: 

          
    ‖ ‖   

   ̃ 

     
     (48) 

where 

 ̃          (49) 

and ‖ ‖  denotes the Euclidian norm (i.e. 

‖ ‖  (∑   
  

   )
   

). In order to achieve a 

unique solution for the optimization problem, we 

have confined the weight vector to have a unit 

norm. 

If   
    

 be the square root obtained from the 

Cholesky decomposition of   , substituting 

    
    

 , we can get 

     
  (  

    
        

    
) 

   
   (50) 

which is in the Rayleigh's quotient form [23]. 

Hence,     
    

   and normalizing the result 

gives the optimal weight vector as: 

     
  

    
  

    
  

‖  
    

  
    

  ‖
 

    
(51) 

It should be note that the suboptimal linear 

sum-detector is obtained by substituting      

           √  into (41). 

4.2 Threshold Selection at Fusion Center 

4.2.1 The case that FC does not have direct 

observation 

According to the central limit theorem [24], if 

the number of SUs in network is large enough (in 

practice, greater than or equal to 10), we can 

write 

 ̃ {
      ̃        ̃                 

      ̃        ̃                 
 

(52) 

Based on above distributions, we can find the 

decision threshold in (41), or equivalently, the 

false alarm probability: 

 ̃  √                  (53) 

The accuracy of the above distribution is 

subsequently examined by Monte-Carlo 

simulations. 

4.2.2 The case that FC has direct observation 

In this section, we introduce a method to 

estimate the decision threshold in (41) for a 

given probability of false alarm. Since an 

analytical closed-form expression for the null 

distribution of the test statistic does not exist, we 

propose to approximate the distribution function 

by the numerical inversion of corresponding 

characteristic function (CF). 

Under null hypothesis, the CF of a random 

variable   is      
                   . From 

(2), the CF of received statistic can be obtained 

as (       ) 

  ̃      
             

 
 

    ( 
  

   

 
)  (54) 

Applying the fact that 

  ̃   
            

      ∏  ̃      
     

 

   

  (55) 

we can write: 
  ̃   

   

 [∏           

 

   

]

 
 

 

   (
   

 
∑   

   
 

 

   

)

          
 

 

   
(56) 

Since       { ̃   ̃   }      ̃   
  ̃ , 

we numerically invert the CF of  ̃  under    

using the method introduced in [25]. This 

technique approximately calculates the 

distribution function of a standardized random 

variable, when its characteristic function is 

known. Following the strategy discussed in [25], 

we first define the standardized test statistic 

  
 ̃      ̃ 

√      ̃ 
    (57) 

so the approximate distribution function of   

can be obtained as: 

 ̂    
    

 

 
 

  

  
 ∑

     
    

    
      

   

     
   

    (58) 

where   is a constant variable which ensures 

that the full range of  ̂    
    is considered (i.e. 

it includes   and  ) and   defines the number of 

points used in the approximation of CDF. The 

values for    may be chosen as the Fourier 

frequencies, that is,                  
   for             . The summation in 

the approximation formula (58) can be computed 

using the fast Fourier transform, if the     
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term is subtracted from the FFT result. 

Furthermore, the characteristic function      
    

in (58) can be calculated as follows: 

     
     

      ∑     
 
    

          

   ̃   
(            )  

(59) 

Finally, the intended distribution function can 

be obtained as 

 ̂ ̃   
  ̃   ̂    

(        
 

   ̃     ∑    

 

   

 )    

(60) 

Therefore, the global decision threshold in 

(41) can be analytically determined as 

 ̃   ̂ ̃   

           (61) 

5. Simulation Results and Discussions 

In this section, we evaluate the performance 

of the proposed CSS method. The simulated 

primary signal is a DVB-T ((Digital video 

broadcasting, Terrestrial television) signal with 

64-QAM subcarrier modulation. Following the 

settings in DVB standard, we set the values of 

FFT length, number of occupied channels, and 

the length of guard interval as          , 

         , and        , respectively. The 

transmission mode is selected to be 8K mode and 

carrier frequency is set to 750 MHz. It is 

assumed that Pfa=0.01,  =10 and the sensing 

duration is 3 OFDM symbols. 

It is well-known that the peaks of the cyclic 

autocorrelation function of an OFDM signal 

occurs at         and               for 

integer  . 

In all single-cycle simulations, the SU 

employs               and       . 

Furthermore, the cyclostationary detectors use a 

Kaiser window with length        and 

    . The average signal-to-noise ratio (SNR) 

in the  th observation channel is defined as 

          
   

  ̃ 
    

  , where  ̃ 
  denotes the 

variance of the PU's signal. 

5.1 Local Sensing 

Fig. 3 presents the receiver operating 

characteristics (ROC) curves for the non-

cooperative spectrum sensing over frequency-flat 

Rayleigh fading channel. Analytical curves are 

obtained from (29). It is evident that, for a 

sufficiently large sample size, the numerical 

results follow very closely the theoretical curves. 

The accuracy of the analytical null distribution 

(28) is examined in Fig. 4. As it can be seen, the 

simulated CDF under null hypothesis matched well 

with the asymptotic analytical distribution. 

Therefore, analytically-computed  

 

Fig. 3  ROC curves over frequency-flat Rayleigh fading 

channels (dashed lines: simulation, solid lines: analysis). 

 

Fig. 4  Null distribution function of the proposed cyclic detector. 

threshold values for a pre-defined false alarm 

rates are almost accurate. 

In addition, performance comparisons 

between the proposed multi-cycle sensing 

method and some state-of-the-art competing 

methods are provided in Figs. 5 and 6. The 

simulated sensing methods are the conventional 

energy detector [3], well-known Lunden-

Koivunen's (LK) cyclostationary detector [2], 

Chaudhari-Koivunen's autocorrelation-based 

detector [26], and Derakhshani-Le-Ngoc's 

cyclostationary detector [13]. 

As we can see, the proposed method has 

close detection performance to the LK detector 

which employs the full correlation structure of 

the second-order cyclic moment. Since the 

proposed test statistic has lower computation 

complexity compared to the LK algorithm, it can 

be considered as a potential substitute. 
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Fig. 5 Detection performance of proposed multi-cycle 

detector over frequency-flat Rayleigh fading channel (fd=150 
Hz and Pfa=0.01). 

 

Fig. 6 ROC curves over Rayleigh fading channels with 

average SNR = -10 dB and fd=150 Hz. 

Furthermore, the single-cycle cyclostationary 

detector of [13] uses the following hypothesis 

test: 

    | ̂         |
 
  

 

  

     (62) 

where the associated threshold, which is set 

so the target Pfa is met, can be obtained as 

     
   

          (63) 

In the above equation,    denotes the 

variance of complex AWGN channel. To 

illustrate the impact of noise uncertainty, assume 

      
 , where   

  is the nominal noise power 

and     is a parameter that specifies the size of 

the uncertainty [27]. Then, for a target Pfa, the 

threshold is            , where       is the 

true nominal threshold value. This problem 

causes a loss in detection performance. As it is 

evident in Figs. 5 and 6, the performance of      

is significantly degraded in the presence of an 

uncertainty in the noise power estimation. 

Consequently, in realistic applications, our 

proposed method provides much better detection 

performance for OFDM signals as compared to 

the cyclostationary detector of [13]. 

We also study the performance of low 

complexity cyclostationary detection method of 

[4]. The decision statistic of this method is 

    |
 ̂       

 ̂         
|

  

 

  

     (64) 

where 

       {
        

 
}  (63) 

The detection performance of     is assessed 

in Fig. 6 through numerical simulation. The 

result reveals that our proposed multi-cycle 

sensing method outperforms this detector, as 

well as the other competing methods. 

5.2 Cooperative Sensing Without Direct 

Observation at FC 

In this subsection, it is assumed that there are 

14 SUs in secondary network, and the vector of 

reporting channel variances is set to   = [0.9, 1.2, 

0.6, 2.2, 0.7, 1.5, 1.0, 0.7, 1.8, 0.8, 0.9, 1.5, 1, 

2]T. In each simulation run, the fading 

coefficients of reporting channels are estimated 

for use in weight vector computation.  

The accuracy of the proposed null 

distribution (i.e. (53)) is investigated in Fig. 7. 

As we can see, the analytical CDF follows very 

carefully the empirical accurate CDF. 

Furthermore, ROC curves for the proposed 

method as well as the conventional equal-gain 

combining (EGC) method are shown in Fig. 8. 

As it is evident, the proposed method 

outperforms the well-known EGC method of [2]. 

 

 

Fig. 7 Analytical versus simulated CDF for the null 

distribution in (53). 
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Fig. 8 ROC curves over frequency-flat Rayleigh fading 
channel (fd=150 Hz). 

 

Fig. 9 ROC curves for the cases where the FC has direct 

sensing capability, as compared to the conventional case. The 
sensing channels are assumed to be under frequency-flat 

Rayleigh fading channel (fd=150 Hz). 

5.3 Cooperative Sensing With Direct 

Observation at FC 

Performance of proposed CSS with FC's 

direct sensing capability assumption is evaluated 

in Fig. 9. It is assumed that there are 10 SUs in 

the secondary network, and the vector of 

reporting channel variances is set to   = [0.9, 1.2, 

0.6, 2.2, 0.7, 1.5, 1.0, 0.7, 1.8, 2.8]T. As it is 

evident, if the FC has the ability to perform 

direct spectrum sensing, the global probability of 

detection can be improved. This capability can 

greatly increase the reliability of secondary 

network, even if the sensing channel of FC has 

very low SNR. 

6. Conclusions 

We proposed a spectrum sensing method 

based on properties of the second-order cyclic 

moment, and showed that this local sensing 

method significantly outperforms the 

conventional energy detector. In order to be able 

to perform statistical test, the null and alternative 

distributions of the proposed method are derived 

and verified through extensive numerical 

simulations. 

Based on the proposed primary user detection 

method, we then developed a cooperative 

spectrum sensing (CSS) scheme. Numerical 

simulations show the advantageous of the 

proposed CSS over the widely-accepted equal-

gain combining method of [2]. In addition, we 

proposed some local and global analytic 

threshold setting methods. Illustrative results 

confirm that the proposed methods provide 

enough accuracy. 
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