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Abstract 
Spanning Tree Protocol (STP) is a link management standard that provides loop free paths in Ethernet networks. 

Deploying STP in metro area networks is inadequate because it does not meet the requirements of these networks. STP 

blocks redundant links, causing the risk of congestion close to the root. As a result, STP provides poor support for load 

balancing in metro Ethernet networks. A solution for this problem is using multi-criteria spanning tree by considering 

criterions related to load balancing over links and switches. In our previous work, an algorithm named Best Spanning Tree 

(BST) is proposed to find the best spanning tree in a metro Ethernet network. BST is based on the computation of total 

cost for each possible spanning tree; therefore, it is very time consuming especially when the network is large. In this 

paper, two heuristic algorithms named Load Balanced Spanning Tree (LBST) and Modified LBST (MLBST) will be 

proposed to find the near-optimal balanced spanning tree in metro Ethernet networks. The computational complexity of 

the proposed algorithms is much less than BST algorithm. Furthermore, simulation results show that the spanning tree 

obtained by proposed algorithms is the same or similar to the spanning tree obtained by BST algorithm. 
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1. Introduction 

Ethernet technology is widely accepted in enterprise 

deployments and it is said that today more than ninety 

percent of data traffic is Ethernet encapsulated. Currently, 

the Ethernet technology is applicable in all levels from 

local area to metropolitan and wide area network 

environments [1].  

In an Ethernet network, only one active path can exist 

between two nodes, because multiple active paths create 

loops in the network. Existence of the loops in the 

network topology confuses the forwarding and learning 

algorithms. Current Ethernet networks rely on IEEE STP 

[2] or IEEE Rapid Spanning Tree Protocol (RSTP) [3]. 

These are link management protocols that provide path 

redundancy while preventing undesirable loops in the 

network.  

In both STP and RSTP, all of the traffic will be routed 

on the same spanning tree. Furthermore there isn’t any 

mechanism for load balancing. These result in unbalanced 

load distribution and bottlenecks, especially close to the 

root and therefore, cause inefficient utilization of 

resources in metropolitan area networks [4]. 

Traffic engineering in metro Ethernet networks is a 

widely researched topic and some improvements have 

been proposed in the literature in order to solve this 

problem [5-8]. 

SmartBridge [5] is a bridged network architecture that 

addresses the problems associated with spanning trees in 

Ethernet networks. In SmartBridge architecture, packets 

will be forwarded along the shortest paths. Although 

shortest path provides low latency, it does not solve the 

problem of load balancing in the network. Furthermore, in 

this architecture, all of the bridges must be SmartBridge 

compliant.  

K. Lui et. al [6] propose an approach named STAR 

(Spanning Tree Alternate Routing). STAR finds paths 

that are shorter than their corresponding tree paths; 

therefore it reduces latency between source and 

destination pairs. However, STAR is complex and it risks 

overloading of critical links. 

Tree-Based Turn-Prohibition (TBTP) [7] is another 

approach to load balancing in Ethernet networks. TBTP 

constructs a spanning tree by blocking some pairs of links 

around nodes, such that all cycles in the network will be 

broken. However, TBTP does not consider the best 

spanning tree and switch load balancing. 

Multiple Spanning Tree Protocol (MSTP) [8] is 

another related standard that is defined in IEEE 802.1s. 

MSTP improves the load balancing and failure recovery 

capabilities. However, maintaining multiple spanning 

trees adds a large complexity to network management and 

causes high control overheads. 

In our previous works, some solutions to the problem 

of load balancing in metro Ethernet networks have been 

proposed. In [9], a novel algorithm is introduced to select 

the Best Spanning Tree (BST) for a given network 

topology based on the load balancing criterions. BST 

algorithm finds the best spanning tree by calculating the 

defined score for each possible tree and by selecting the 

spanning tree with highest score as the Best Spanning 
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Tree. The defined score is a function of shortest path 

criterion and load balancing on links and switches. In 

summary, BST algorithm is an exhaustive search 

algorithm that finds the Best (Optimal) spanning tree. 

This is done by finding all spanning trees of the network, 

evaluating them based on the defined criteria and then 

selecting one with greatest score. In [10], a Multiple BST 

(MBST) approach is proposed that is the application of 

BST algorithm in a multiple spanning tree scheme. MBST 

considers all of the possible edge-disjoint spanning trees 

and all of the possible VLANs grouping and finds the best 

solution. Note that a set of spanning trees are edge-

disjoint if they have not any common edges (links). Using 

edge-disjoint spanning trees enhances load balancing and 

resiliency, because in the case of a link failure, only one 

spanning tree will be failed and the failure has no impact 

on the spanning trees not including the failed link.  

Although, BST and MBST algorithms can find the 

best answer for small networks, but their complexity is 

too large in large-scale networks.  

In [11], in order to reduce the complexity of BST 

algorithm, a simple approach that finds the sub-optimal 

spanning tree in small metro Ethernet networks is 

introduced. In [12], the algorithm is improved by 

introducing Shortest Path Selection criterion. The new 

algorithm is applicable in realistic large-scale metro 

Ethernet topologies. In this paper, that is an extended 

version of [12], we introduce Load Balanced Spanning 

Tree (LBST) algorithm. LBST is a simple algorithm that 

finds the load balanced spanning tree by using the same 

criterions used in BST algorithm. The computational 

complexity of LBST algorithm is much less than BST. 

LBST simplifies the process of finding spanning tree by 

using an iterative algorithm with zero initial values for 

link loads. Although setting zero is the simplest way for 

specifying the initial values, but it is very far from the real 

values and this can degrades the performance of the 

LBST algorithm. In order to improve the performance of 

the algorithm, a modified version of the algorithm called 

Modified LBST (MLBST) will be introduced. In MLBST, 

more accurate estimation of the initial values of link loads 

will be used.  

In fact, LBST and its modified version MLBST find a 

near-optimal spanning tree for a given metro Ethernet 

network in a simple manner based on shortest path criterion 

and load balancing on links and switches. In this way, three 

major criterions are introduced: load balancing over links, 

load balancing on switches and shortest path selection. 

Also, three coefficients α, β and γ corresponding to above 

criterions are defined. This allows the network managers to 

weight the importance of each criterion based on their 

defined goal. These criterions and corresponding 

coefficients will be used to assign weights to the links and 

then algorithm finds the shortest path between each node 

pair by using Dijkstra’s algorithm [13]. During this process, 

the link weights must be updated to reflect the effects of 

adding new traffic demands at each step.  

Although the constructed spanning tree may be not the 

best, but it is minimum weight and is a good 

approximation to the BST result. 

The rest of the paper is organized as follows: Section 

2 introduces some definitions and notations. In section 3, 

the LBST algorithm is explained in detail. In Section 4, 

some numerical simulation results are presented. Section 

5 proposes a modified version of LBST algorithm, and 

finally, some conclusions are drawn in section 6. 

2. Definitions and Notations 

In this paper, a metro Ethernet network is modeled by a 

graph with N nodes representing switches and a set of M 

links connecting nodes. Here, for simplicity assume 

symmetric links and symmetric traffic demands. The traffic 

demands between nodes are represented by a N-by-N 

matrix D, that its component di,j (i ,j =1, 2, …N ,i ≠ j) 

represents the mean traffic rate between nodes i and j. 

Also bi,j (i ,j =1, 2, …N ,i ≠ j)  represents the bandwidth of 

the link between nodes i and j and cj (i =1, 2,… N) 

represents the switching capacity of ith node. 

The goal of this paper is finding the best spanning tree 

based on three defined criterions. These criterions are 

links load balancing (LLB), switches load balancing (SLB) 

and shortest path selection (SPS). Here, the shortest path 

between two nodes is defined as a path with maximum 

aggregated bandwidth and minimum hop counts. 

In this work, three coefficients α, β and γ, are defined to 

indicate the importance of each criterion. Note that 0≤α, β, 

γ ≤ 1 and α+β+γ=1. For example, if the main criterion is 

LLB, assign α=1, β=γ=0, but if the goal is to find the best 

tree based on LLB and SPS criterions but not SLB, assign 

α=0.5, γ= 0.5, β=0. 

In the proposed algorithm, the link weight is a major 

component in finding the best spanning tree. Here, the 

link weight is defined as a linear function of three 

components: the utilization of the link, the average 

utilization of switches that the link is between them, and 

the inverse of normalized bandwidth of the link. 

Therefore, one can write the link weight between nodes i 

and j (Wi, j ) as:  

                                                                      ( ) 

In above Equation, 

       
    

    
                                                                              ( ) 

is the utilization of the link between nodes i and j and 

     is the traffic flowing through it. Also, 

       
 

 
(        )                                                           ( ) 

is the average utilization of switches i and j, where: 

    
  
  
      

  

  
                                                                 ( ) 

Here    and    are the traffics flowing through 

switches i and j respectively. Also, 
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                                                                            ( ) 

is the inverse of normalized bandwidth of the link 

between nodes i and j, where      is bandwidth of the 

link with minimum bandwidth in the network. Note that 

the      must be selected over all active links of the 

network. 

For a network graph with N nodes, each spanning tree 

has N-1 links. For each spanning tree, the variance of link 

utilizations (  
 ) can be defined as [9]: 
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is the average of link utilizations,    is traffic load on 

kth link and    denotes the bandwidth of kth link. For 

each spanning tree,   
  indicates the degree of link load 

balancing, therefore in LLB criterion, the main goal is to 

find a spanning tree with minimum   
 . 

Similar to (6), for each spanning tree, the variance of 

switch utilizations (  
 ) can be defined as [9]: 
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is the average of switch utilizations,    is traffic load 

cross ith switch and    denotes the switching capacity of 

ith switch. For each spanning tree,   
  indicates the degree 

of switch load balancing, therefore in SLB criterion, the 

goal is to find a spanning tree with minimum   
 . 

In SPS criterion, the goal is to find a spanning tree 

with maximum bandwidth links and minimum hop count 

paths. In this way, the parameter L is defined as: 
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The goal is to select the spanning tree with minimum 

L. To clarify the definition of parameter L, note that 
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indicates the aggregated 

load on links. Where     is the number of hops from node 

i to node j and     is the traffic demand between these two 

nodes that is a fixed known value. It is clear that if traffic 

demands pass on shortest (minimum hop count) paths, 
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indicates the aggregated bandwidth of links. Therefore, 

minimizing L guarantees each traffic demand travels on 

shortest path with maximum bandwidth and minimum 

hop count.  

The proposed algorithm also uses a parameter named 

Minimum Function (MF) to break loops. This parameter 

is defined for a given spanning tree as: 

      
     

                                                         (  ) 
In next section, the details of the new algorithm are 

explained. 

3. LBST Algorithm 

In previous section, some definitions that will be used 

here are described. This section describes the proposed 

algorithm named LBST in detail. This algorithm is simple 

and easy to implement in comparison to BST that is a 

computationally complex algorithm. 

LBST algorithm first sorts node pairs based on their 

traffic demand and builds shortest path for each pair 

sequentially. 

Here the highest-demand-first technique will be used 

because inserting lower traffic demand into the network 

can be done without loss of much performance [4]. After 

finding the best path for each node pair, the algorithm 

loads the traffic on this path and then updates the weights 

of links on the path. This process will be continued for 

other node pairs in descending order of their traffic 

demands.  

The LBST algorithm is implemented in two different 

methods. In first version named LBST I, loops will be 

broken step by step. The steps of this algorithm are 

described as follows: 

1. Assign the initial value of link weights using 

Equations (1)-(5). The initial spanning tree is a null 

graph. Note that in the first step, there is no load on 

links and switches, therefore        is zero for all links, 

but about the switches, algorithm uses the demand 

matrix to find the initial load on switches. To do this, 

add the traffic demands that the ith switch is their 

origination and assign the result to calculate the 

initial value of       by using Equation (4). 

2.  Sort the node pairs based on the traffic demands in 

descending order and set k=1. 

3. Select the kth node pair and find the shortest path 

between them. 

4. Check whether or not the links and switches of this 

path have enough capacity. If yes then load the 

corresponding traffic demand on path. If not, select 

next shortest path, then go back to step 4. 

5. Concatenate the discovered path to the spanning tree. 

6. Update the link loads and switch loads by adding the 

corresponding traffic demand to the loads of the 

links and switches located on the path. Then, update 

the link weights according to the Equations (1)-(5). 

7. Check whether is any loop in the constructed tree 

or not. If not go to step 8, else break the loop: 

a. For selected loop, determine the links which 

formed the loop. 

b.  For each link check if this link is removed, do 

other links and switches in the loop have 

enough capacity to handle the excess traffic? If 

yes, then this link is a candidate, otherwise this 

link cannot be removed. 
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c. If there is not any candidate link, ignore this 

path and select next shortest path, then go back 

to step 4. Otherwise, by having the list of 

candidate links for removal, remove the link 

which contributes the lowest MF to the tree. In 

other words, after removing each link in the 

loop, you get a different tree. Now keep the tree 

with the lowest Minimum Function defined in 

Equation (11).  

d. Update parameters and go back to step 7. 

8. Set k=k+1 and go back to step 3. Continue this 

process for all node pairs. 

Note that if during the process, some links or switches 

are fully used; in the rest, ignore them in selecting the 

best paths.  

As the first issue, breaking loops step by step in LBST 

I is a time consuming process that decreases the speed of 

the algorithm considerably. One approach to speed up the 

algorithm is breaking all the loops at the end of the 

algorithm instead of breaking them step by step. The new 

approach is named LBST II algorithm. It is clear that the 

speed of the LBST II is much more in comparison to the 

LBST I. The steps of the LBST II algorithm are described 

as follows: 

1. Assign the initial value of link weights using 

Equations (1)-(5) as described in LBST I 

algorithm. The initial spanning tree is a null graph. 

2.  Sort the node pairs based on the traffic demands 

in descending order and set k=1. 

3. Select the kth node pair and find the shortest path 

between them. 

4. Check whether or not the links and switches of this 

path have enough capacity. If yes then load the 

corresponding traffic demand on path. If not, select 

next shortest path, the go back to step 4. 

5. Concatenate the discovered path to the spanning tree. 

6. Update the link loads and switch loads by adding 

the corresponding traffic demand to the loads of the 

links and switches located on the path. Then, update 

the link weights according to the Equations (1)-(5). 

7. Set k=k+1 and go back to step 3. Continue this 

process for all node pairs. 

8. Check whether is any loop in the constructed tree 

or not. If not go to step 9, else break the loop: 

a. For selected loop, determine the links which 

formed the loop. 

b. For each link in the selected loop, check if this 

link is removed, do other links and switches in 

the loop have enough capacity to handle the 

excess traffic? If yes, then this link is a candidate, 

otherwise this link cannot be removed. 

c. By having the list of candidate links for removal, 

remove the link which contributes the lowest MF 

to the tree. In other words, after removing each 

link in the loop, you get a different tree. Now 

keep the tree with the lowest MF. If there is not 

any candidate link, ignore this sub-step and go to 

sub-step d. (Note that in very rare situations, the 

algorithm may be not able to break loops. In 

these rare cases, we must use LBST I algorithm 

to find the solution).  

d. Update parameters and go back to step 8. 

9. End. 

The proposed algorithms are trying to find the shortest 

possible paths between nodes and in the same time, they are 

trying to balance the utilization of link bandwidths and 

switching capacities. 

4. Simulation Results 

In this section, the performance of the proposed 

algorithms will be compared with BST algorithm proposed 

in [9]. The algorithms are implemented in MATLAB. The 

input parameters for a network with N nodes and M links 

are network graph, bandwidth vector B which elements are 

     (i=1,2,...,N), switching capacity vector C which 

elements are   (i=1,2,...,N), traffic demands matrix D 

which elements are      (i=1,2,...,N,        ), and α , β, γ 

(0≤α,β,γ≤1, α+β+γ =1). 

For simulation, a typical popular topology for metro 

Ethernet networks [14], is considered. A metro Ethernet 

network usually consists of a core part and several 

aggregation and access regions. The task of the core part 

is to forward the traffic load of the aggregation regions 

toward the edge nodes. The shape of the core is usually 

one or more rings formed by high speed switches and 

links. The aggregation part aggregates the traffic of access 

parts to several internal switches that are connected to the 

core rings. For aggregation part, usually topologies such 

as rings or dual homing structures are used. The access 

parts are usually tree shaped, because the cost of building 

the interconnections are high.  

Figure 1 shows a typical metro Ethernet network. 

Here, the core consists of four switches with switching 

capacity of 8 Gbps interconnected to a ring formed by 2 

Gbps Ethernet links. Also, two edge nodes with switching 

capacity of 8 Gbps are connected to core switches with 2 

Gbps links and four aggregation nodes with switching 

capacity of 4 Gbps are connected to two core nodes using 

dual homing with 1 Gbps links. In this topology, there are 

eight access nodes with switching capacity of 1 Gbps are 

connected to aggregation switches with 1Gbps links.  

In this typical network, for simplicity consider 

constant bit rate traffic demands between access nodes 

and edge nodes. These bidirectional traffic flows are 

shown in Table 1 where notation “Ac” stands for Access. 

As you can see from Figure 1, the physical structure 

of the access part is tree. Therefore, only the core, 

aggregation and edge parts of the network are considered 

in the load balancing algorithm as shown in Figure 2. In 

this figure, the labels indicated on nodes are switch names; 

where, the notation “Ed”, “Co”, and “Ag” stands for Edge, 

Core and Aggregation, respectively. 

First consider LLB criterion (α=1, β=γ=0). The 

spanning trees selected by BST, LBST I and LBST II 
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algorithms are shown in Figures 3.a, 3.b and 3.c, 

respectively. In this case, the variance of link utilizations 

(  
 ) is 0.0133 for BST tree, 0.0230 for LBST I tree and 

0.0179 for LBST II tree. The selected spanning tree by 

LBST I is ranked third best (3rd) tree by BST algorithm 

and selected spanning tree by LBST II is ranked second 

best (2nd) one. 

 

Fig. 1. A typical metro Ethernet network. 

Table 1. Traffic demands (Mbps) 

 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7 Ac8 

Edge1 50 50 100 200 200 200 200 100 

Edge2 100 100 300 300 200 100 100 200 

 

Fig. 2. Metro Ethernet network graph. 

a b 

 
c 

Fig. 3. Spanning tree selected based on LLB criterion by: a) BST 
algorithm b) LBST I algorithm c) LBST II algorithm. 

a b 

 
c 

Fig. 4. Spanning tree selected based on SLB criterion by: a) BST 

algorithm b) LBST I algorithm c) LBST II algorithm. 

 

Fig. 5. Utilization coefficient of switches for SLB criterion. 
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Now consider SLB criterion (α=0, β=1, γ=0). The 

spanning trees selected by BST, LBST I and LBST II 

algorithms are shown in Figures 4.a, 4.b and 4.c 

respectively. In this case, the variance of switch 

utilizations (  
 ) is 0.0063 for BST tree, 0.0066 for LBST 

I tree and 0.0069 for LBST II tree. The selected spanning 

tree by LBST I is ranked third best (3rd) tree by BST 

algorithm and selected spanning tree by LBST II is 

ranked fourth best (4th) one. 

a b 

Fig. 6. Spanning tree selected based on SPS criterion by:  

a) BST algorithm b) LBST I and LBST II algorithms. 

The utilization coefficients of switches for SLB 

criterion are shown in Figure 5. This Figure shows that 

the load balancing obtained by using LBST I and LBST II 

algorithms is very close to the results obtained by using 

BST algorithm. 

In last scenario, consider SPS criterion (α=β=0, γ=1). 

The selected spanning trees are shown in Figure 6. As a 

numerical comparison, the trees selected by LBST I and 

LBST II algorithms are the same and are ranked third best 

(3rd) tree by BST algorithm with L equal to 0.471 while 

this value is 0.464 for the best spanning tree selected by 

BST. These values are very close to each other. 

From above simulation results, the following 

statements can be concluded: 

Although LBST algorithms are not the best but their 

results are the same or similar to the results obtained by 

using BST algorithm. 

The computational complexity of LBST algorithms is 

much less than BST algorithm. As a roughly comparison, 

the typically run time of BST algorithm for a network with 

tens of switches and links on a new high speed computer is 

tens of minutes, while the run time of our new approaches 

for the same network is only several seconds. 

LBST II algorithm breaks all of the loops in the last 

step, while the LBST I algorithm breaks loops step by step. 

Therefore, LBST II is much faster than LBST I. 

Furthermore, simulation results show that the output of 

LBST II is the same or similar to the output of LBST I 

algorithm. 

 

 

 

5. Modified LBST Algorithm 

As described in section 3, the initial values of link 

weights in the first step of the LBST algorithms are 

assigned using Equations (1)-(5). In the beginning, there 

is no load on links, therefore in simulations done in 

previous section, the initial value of         was set to zero 

for all links. About the switches, algorithm uses the 

demand matrix to find the initial load on switches. To do 

this, add the traffic demands that the ith switch is their 

origination and assign the result to calculate the initial 

value of        by using Equation (4). Although this is a 

simple method for specifying the initial values, but it is 

far from the real values. In this section, we want to study 

the effects of initial values on the performance of the 

LBST algorithm. In this way, a different method for 

calculating the initial values of link loads and switch 

loads is introduced. This modification enables the 

algorithms to estimate the initial link weights with more 

accuracy. For future references, name the new algorithm, 

Modified LBST (MLBST).  

Note that MLBST is useful for LLB and SLB 

criterions. For SPS criterion, the output of LBST and 

MLBST algorithms are the same.  

In the following, the new algorithm is described, and 

then by driving some simulations, the effectiveness of 

using accurate initial values on the performance of the 

algorithm is showed. 

As mentioned in previous section, the output of LBST 

II is the same or similar to the output of LBST I algorithm, 

but its computational complexity is less. For this reason, 

in the rest, only the LBST II algorithm is considered. 

The MLBST algorithm, first sets the initial link loads 

to zero and then runs the LBST II algorithm described 

before once without loop breaking (by ignoring the 8th 

step). After that, the traffic loads on links and switches 

are known. By using this information, algorithm obtains 

the link weights using Equations (1)-(5). Now, using 

these new initial values, it runs the LBST II algorithm 

again without loop breaking. This process can be repeated 

several times. In the last run, the MLBST algorithm uses 

LBST II algorithm exactly as described before (without 

ignoring the 8th step).  

For performance evaluation of MLBST, the simulation 

scenarios described in previous section are run again by 

using MLBST. The spanning tree obtained based on LLB 

criterion with one run for obtaining initial values is ranked 

second best (2nd) tree by BST algorithm with   
  equal to 

0.0179, while the spanning tree obtained by using two runs 

for obtaining initial values is the Best Spanning Tree that is 

shown in Figure 3.a.  

By repeating the simulation for SLB criterion, the 

obtained tree for MLBST with just two runs for 

obtaining initial values, is the Best Spanning Tree. 
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The above results show that MLBST algorithm can 

find the best spanning tree by repeating the algorithm 

steps several times. 

6. Conclusions 

In this paper, first a new simple approach named 

LBST algorithm is introduced for finding the best load 

balanced spanning tree in metro Ethernet networks. LBST 

is an iterative algorithm that finds the spanning tree based 

on load balancing on links and switches. The criterions 

used are the same as criterions used in our previous 

algorithm named BST. BST algorithm is an exhaustive 

search algorithm that finds the Best Spanning Tree. 

Although, BST algorithm can find the best answer but its 

complexity is too large in large-scale networks.  

Simulation results showed that the output of LBST 

algorithm is close to the output of BST algorithm while 

its computational complexity is much less than it.  

In the first step of the LBST algorithm, the initial value 

of link loads must be assigned. In LBST, for simplicity, 

these initial values were set to zero for all links. For 

performance improvement, the Modified version of LBST 

algorithm named MLBST is introduced. MLBST calculates 

the initial values of link loads and switch loads in a more 

accurate way. Simulation results showed that the MLBST 

algorithm can find the best spanning tree by repeating the 

algorithm steps several times. In summary, the following 

conclusions can be derived from simulation results: 

1. The computational complexity of the proposed 

algorithms is much less than BST. 

2. Although LBST algorithms are not the best but 

their results are the same or similar to the results 

obtained by using BST algorithm. 

3. The performance of LBST II is very close to the 

performance of LBST I algorithm, but its 

computational complexity is much less.  

4. MLBST can find the best spanning tree for LLB 

and SLB criterions by repeating the algorithm steps 

several times. For this reasons, in practice we 

prefer to use MLBST for finding the best spanning 

tree in metro Ethernet networks. 

The proposed approaches can be used offline in the 

design process of a new metro Ethernet network or online 

during the operation of the network. In online mode, a 

central node (for example an edge node) is responsible for 

collecting the traffic and topology information and 

calculating the best spanning trees.  

Note that even though our new algorithms have a good 

performance in the considered scenarios, other popular 

realistic traffic models such as multimedia traffic in more 

realistic metro Ethernet topologies can be considered in 

future works. 
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