

Journal of Information Systems and Telecommunication, Vol. 2, No. 2, April-June 2014

* Corresponding Author

119

Load Balanced Spanning Tree in Metro Ethernet Networks

Ghasem Mirjalily*
Department of Electrical and Computer Engineering, Yazd University, Yazd, Iran

mirjalily@yazd.ac.ir

Samira Samadi
Department of Electrical and Computer Engineering, Yazd University, Yazd, Iran

s.samadi@stu.yazd.ac.ir

Received: 28/Sep/2013 Accepted: 12/Apr/2014

Abstract
Spanning Tree Protocol (STP) is a link management standard that provides loop free paths in Ethernet networks.

Deploying STP in metro area networks is inadequate because it does not meet the requirements of these networks. STP

blocks redundant links, causing the risk of congestion close to the root. As a result, STP provides poor support for load

balancing in metro Ethernet networks. A solution for this problem is using multi-criteria spanning tree by considering

criterions related to load balancing over links and switches. In our previous work, an algorithm named Best Spanning Tree

(BST) is proposed to find the best spanning tree in a metro Ethernet network. BST is based on the computation of total

cost for each possible spanning tree; therefore, it is very time consuming especially when the network is large. In this

paper, two heuristic algorithms named Load Balanced Spanning Tree (LBST) and Modified LBST (MLBST) will be

proposed to find the near-optimal balanced spanning tree in metro Ethernet networks. The computational complexity of

the proposed algorithms is much less than BST algorithm. Furthermore, simulation results show that the spanning tree

obtained by proposed algorithms is the same or similar to the spanning tree obtained by BST algorithm.

Keywords: Metro Ethernet Network, Spanning Tree, Load Balancing, Shortest Path Selection.

1. Introduction

Ethernet technology is widely accepted in enterprise

deployments and it is said that today more than ninety

percent of data traffic is Ethernet encapsulated. Currently,

the Ethernet technology is applicable in all levels from

local area to metropolitan and wide area network

environments [1].

In an Ethernet network, only one active path can exist

between two nodes, because multiple active paths create

loops in the network. Existence of the loops in the

network topology confuses the forwarding and learning

algorithms. Current Ethernet networks rely on IEEE STP

[2] or IEEE Rapid Spanning Tree Protocol (RSTP) [3].

These are link management protocols that provide path

redundancy while preventing undesirable loops in the

network.

In both STP and RSTP, all of the traffic will be routed

on the same spanning tree. Furthermore there isn’t any

mechanism for load balancing. These result in unbalanced

load distribution and bottlenecks, especially close to the

root and therefore, cause inefficient utilization of

resources in metropolitan area networks [4].

Traffic engineering in metro Ethernet networks is a

widely researched topic and some improvements have

been proposed in the literature in order to solve this

problem [5-8].

SmartBridge [5] is a bridged network architecture that

addresses the problems associated with spanning trees in

Ethernet networks. In SmartBridge architecture, packets

will be forwarded along the shortest paths. Although

shortest path provides low latency, it does not solve the

problem of load balancing in the network. Furthermore, in

this architecture, all of the bridges must be SmartBridge

compliant.

K. Lui et. al [6] propose an approach named STAR

(Spanning Tree Alternate Routing). STAR finds paths

that are shorter than their corresponding tree paths;

therefore it reduces latency between source and

destination pairs. However, STAR is complex and it risks

overloading of critical links.

Tree-Based Turn-Prohibition (TBTP) [7] is another

approach to load balancing in Ethernet networks. TBTP

constructs a spanning tree by blocking some pairs of links

around nodes, such that all cycles in the network will be

broken. However, TBTP does not consider the best

spanning tree and switch load balancing.

Multiple Spanning Tree Protocol (MSTP) [8] is

another related standard that is defined in IEEE 802.1s.

MSTP improves the load balancing and failure recovery

capabilities. However, maintaining multiple spanning

trees adds a large complexity to network management and

causes high control overheads.

In our previous works, some solutions to the problem

of load balancing in metro Ethernet networks have been

proposed. In [9], a novel algorithm is introduced to select

the Best Spanning Tree (BST) for a given network

topology based on the load balancing criterions. BST

algorithm finds the best spanning tree by calculating the

defined score for each possible tree and by selecting the

spanning tree with highest score as the Best Spanning

Mirjalily & Samadi, Load Balanced Spanning Tree in Metro Ethernet Networks

120

Tree. The defined score is a function of shortest path

criterion and load balancing on links and switches. In

summary, BST algorithm is an exhaustive search

algorithm that finds the Best (Optimal) spanning tree.

This is done by finding all spanning trees of the network,

evaluating them based on the defined criteria and then

selecting one with greatest score. In [10], a Multiple BST

(MBST) approach is proposed that is the application of

BST algorithm in a multiple spanning tree scheme. MBST

considers all of the possible edge-disjoint spanning trees

and all of the possible VLANs grouping and finds the best

solution. Note that a set of spanning trees are edge-

disjoint if they have not any common edges (links). Using

edge-disjoint spanning trees enhances load balancing and

resiliency, because in the case of a link failure, only one

spanning tree will be failed and the failure has no impact

on the spanning trees not including the failed link.

Although, BST and MBST algorithms can find the

best answer for small networks, but their complexity is

too large in large-scale networks.

In [11], in order to reduce the complexity of BST

algorithm, a simple approach that finds the sub-optimal

spanning tree in small metro Ethernet networks is

introduced. In [12], the algorithm is improved by

introducing Shortest Path Selection criterion. The new

algorithm is applicable in realistic large-scale metro

Ethernet topologies. In this paper, that is an extended

version of [12], we introduce Load Balanced Spanning

Tree (LBST) algorithm. LBST is a simple algorithm that

finds the load balanced spanning tree by using the same

criterions used in BST algorithm. The computational

complexity of LBST algorithm is much less than BST.

LBST simplifies the process of finding spanning tree by

using an iterative algorithm with zero initial values for

link loads. Although setting zero is the simplest way for

specifying the initial values, but it is very far from the real

values and this can degrades the performance of the

LBST algorithm. In order to improve the performance of

the algorithm, a modified version of the algorithm called

Modified LBST (MLBST) will be introduced. In MLBST,

more accurate estimation of the initial values of link loads

will be used.

In fact, LBST and its modified version MLBST find a

near-optimal spanning tree for a given metro Ethernet

network in a simple manner based on shortest path criterion

and load balancing on links and switches. In this way, three

major criterions are introduced: load balancing over links,

load balancing on switches and shortest path selection.

Also, three coefficients α, β and γ corresponding to above

criterions are defined. This allows the network managers to

weight the importance of each criterion based on their

defined goal. These criterions and corresponding

coefficients will be used to assign weights to the links and

then algorithm finds the shortest path between each node

pair by using Dijkstra’s algorithm [13]. During this process,

the link weights must be updated to reflect the effects of

adding new traffic demands at each step.

Although the constructed spanning tree may be not the

best, but it is minimum weight and is a good

approximation to the BST result.

The rest of the paper is organized as follows: Section

2 introduces some definitions and notations. In section 3,

the LBST algorithm is explained in detail. In Section 4,

some numerical simulation results are presented. Section

5 proposes a modified version of LBST algorithm, and

finally, some conclusions are drawn in section 6.

2. Definitions and Notations

In this paper, a metro Ethernet network is modeled by a

graph with N nodes representing switches and a set of M

links connecting nodes. Here, for simplicity assume

symmetric links and symmetric traffic demands. The traffic

demands between nodes are represented by a N-by-N

matrix D, that its component di,j (i ,j =1, 2, …N ,i ≠ j)

represents the mean traffic rate between nodes i and j.

Also bi,j (i ,j =1, 2, …N ,i ≠ j) represents the bandwidth of

the link between nodes i and j and cj (i =1, 2,… N)

represents the switching capacity of ith node.

The goal of this paper is finding the best spanning tree

based on three defined criterions. These criterions are

links load balancing (LLB), switches load balancing (SLB)

and shortest path selection (SPS). Here, the shortest path

between two nodes is defined as a path with maximum

aggregated bandwidth and minimum hop counts.

In this work, three coefficients α, β and γ, are defined to

indicate the importance of each criterion. Note that 0≤α, β,

γ ≤ 1 and α+β+γ=1. For example, if the main criterion is

LLB, assign α=1, β=γ=0, but if the goal is to find the best

tree based on LLB and SPS criterions but not SLB, assign

α=0.5, γ= 0.5, β=0.

In the proposed algorithm, the link weight is a major

component in finding the best spanning tree. Here, the

link weight is defined as a linear function of three

components: the utilization of the link, the average

utilization of switches that the link is between them, and

the inverse of normalized bandwidth of the link.

Therefore, one can write the link weight between nodes i

and j (Wi, j) as:

 ()

In above Equation,

 ()

is the utilization of the link between nodes i and j and

 is the traffic flowing through it. Also,

() ()

is the average utilization of switches i and j, where:

 ()

Here and are the traffics flowing through

switches i and j respectively. Also,

Journal of Information Systems and Telecommunication, Vol. 2, No. 2, April-June 2014 121

 ()

is the inverse of normalized bandwidth of the link

between nodes i and j, where is bandwidth of the

link with minimum bandwidth in the network. Note that

the must be selected over all active links of the

network.

For a network graph with N nodes, each spanning tree

has N-1 links. For each spanning tree, the variance of link

utilizations (
) can be defined as [9]:

∑ (

)̅

 ()

where

 ̅

∑

 ()

is the average of link utilizations, is traffic load on

kth link and denotes the bandwidth of kth link. For

each spanning tree,
 indicates the degree of link load

balancing, therefore in LLB criterion, the main goal is to

find a spanning tree with minimum
 .

Similar to (6), for each spanning tree, the variance of

switch utilizations (
) can be defined as [9]:

∑(

 ̅)

 ()

where

 ̅

∑

 ()

is the average of switch utilizations, is traffic load

cross ith switch and denotes the switching capacity of

ith switch. For each spanning tree,
 indicates the degree

of switch load balancing, therefore in SLB criterion, the

goal is to find a spanning tree with minimum
 .

In SPS criterion, the goal is to find a spanning tree

with maximum bandwidth links and minimum hop count

paths. In this way, the parameter L is defined as:

∑

∑

 ()

The goal is to select the spanning tree with minimum

L. To clarify the definition of parameter L, note that

N

i

N

ijj ijij

N

k k hdl
1 ,1

1

1
indicates the aggregated

load on links. Where is the number of hops from node

i to node j and is the traffic demand between these two

nodes that is a fixed known value. It is clear that if traffic

demands pass on shortest (minimum hop count) paths,

1

1

N

k kl will be minimum. On the other hand,

1

1

N

k kb

indicates the aggregated bandwidth of links. Therefore,

minimizing L guarantees each traffic demand travels on

shortest path with maximum bandwidth and minimum

hop count.

The proposed algorithm also uses a parameter named

Minimum Function (MF) to break loops. This parameter

is defined for a given spanning tree as:

 ()
In next section, the details of the new algorithm are

explained.

3. LBST Algorithm

In previous section, some definitions that will be used

here are described. This section describes the proposed

algorithm named LBST in detail. This algorithm is simple

and easy to implement in comparison to BST that is a

computationally complex algorithm.

LBST algorithm first sorts node pairs based on their

traffic demand and builds shortest path for each pair

sequentially.

Here the highest-demand-first technique will be used

because inserting lower traffic demand into the network

can be done without loss of much performance [4]. After

finding the best path for each node pair, the algorithm

loads the traffic on this path and then updates the weights

of links on the path. This process will be continued for

other node pairs in descending order of their traffic

demands.

The LBST algorithm is implemented in two different

methods. In first version named LBST I, loops will be

broken step by step. The steps of this algorithm are

described as follows:

1. Assign the initial value of link weights using

Equations (1)-(5). The initial spanning tree is a null

graph. Note that in the first step, there is no load on

links and switches, therefore is zero for all links,

but about the switches, algorithm uses the demand

matrix to find the initial load on switches. To do this,

add the traffic demands that the ith switch is their

origination and assign the result to calculate the

initial value of by using Equation (4).

2. Sort the node pairs based on the traffic demands in

descending order and set k=1.

3. Select the kth node pair and find the shortest path

between them.

4. Check whether or not the links and switches of this

path have enough capacity. If yes then load the

corresponding traffic demand on path. If not, select

next shortest path, then go back to step 4.

5. Concatenate the discovered path to the spanning tree.

6. Update the link loads and switch loads by adding the

corresponding traffic demand to the loads of the

links and switches located on the path. Then, update

the link weights according to the Equations (1)-(5).

7. Check whether is any loop in the constructed tree

or not. If not go to step 8, else break the loop:

a. For selected loop, determine the links which

formed the loop.

b. For each link check if this link is removed, do

other links and switches in the loop have

enough capacity to handle the excess traffic? If

yes, then this link is a candidate, otherwise this

link cannot be removed.

Mirjalily & Samadi, Load Balanced Spanning Tree in Metro Ethernet Networks

122

c. If there is not any candidate link, ignore this

path and select next shortest path, then go back

to step 4. Otherwise, by having the list of

candidate links for removal, remove the link

which contributes the lowest MF to the tree. In

other words, after removing each link in the

loop, you get a different tree. Now keep the tree

with the lowest Minimum Function defined in

Equation (11).

d. Update parameters and go back to step 7.

8. Set k=k+1 and go back to step 3. Continue this

process for all node pairs.

Note that if during the process, some links or switches

are fully used; in the rest, ignore them in selecting the

best paths.

As the first issue, breaking loops step by step in LBST

I is a time consuming process that decreases the speed of

the algorithm considerably. One approach to speed up the

algorithm is breaking all the loops at the end of the

algorithm instead of breaking them step by step. The new

approach is named LBST II algorithm. It is clear that the

speed of the LBST II is much more in comparison to the

LBST I. The steps of the LBST II algorithm are described

as follows:

1. Assign the initial value of link weights using

Equations (1)-(5) as described in LBST I

algorithm. The initial spanning tree is a null graph.

2. Sort the node pairs based on the traffic demands

in descending order and set k=1.

3. Select the kth node pair and find the shortest path

between them.

4. Check whether or not the links and switches of this

path have enough capacity. If yes then load the

corresponding traffic demand on path. If not, select

next shortest path, the go back to step 4.

5. Concatenate the discovered path to the spanning tree.

6. Update the link loads and switch loads by adding

the corresponding traffic demand to the loads of the

links and switches located on the path. Then, update

the link weights according to the Equations (1)-(5).

7. Set k=k+1 and go back to step 3. Continue this

process for all node pairs.

8. Check whether is any loop in the constructed tree

or not. If not go to step 9, else break the loop:

a. For selected loop, determine the links which

formed the loop.

b. For each link in the selected loop, check if this

link is removed, do other links and switches in

the loop have enough capacity to handle the

excess traffic? If yes, then this link is a candidate,

otherwise this link cannot be removed.

c. By having the list of candidate links for removal,

remove the link which contributes the lowest MF

to the tree. In other words, after removing each

link in the loop, you get a different tree. Now

keep the tree with the lowest MF. If there is not

any candidate link, ignore this sub-step and go to

sub-step d. (Note that in very rare situations, the

algorithm may be not able to break loops. In

these rare cases, we must use LBST I algorithm

to find the solution).

d. Update parameters and go back to step 8.

9. End.

The proposed algorithms are trying to find the shortest

possible paths between nodes and in the same time, they are

trying to balance the utilization of link bandwidths and

switching capacities.

4. Simulation Results

In this section, the performance of the proposed

algorithms will be compared with BST algorithm proposed

in [9]. The algorithms are implemented in MATLAB. The

input parameters for a network with N nodes and M links

are network graph, bandwidth vector B which elements are

 (i=1,2,...,N), switching capacity vector C which

elements are (i=1,2,...,N), traffic demands matrix D

which elements are (i=1,2,...,N,), and α , β, γ

(0≤α,β,γ≤1, α+β+γ =1).

For simulation, a typical popular topology for metro

Ethernet networks [14], is considered. A metro Ethernet

network usually consists of a core part and several

aggregation and access regions. The task of the core part

is to forward the traffic load of the aggregation regions

toward the edge nodes. The shape of the core is usually

one or more rings formed by high speed switches and

links. The aggregation part aggregates the traffic of access

parts to several internal switches that are connected to the

core rings. For aggregation part, usually topologies such

as rings or dual homing structures are used. The access

parts are usually tree shaped, because the cost of building

the interconnections are high.

Figure 1 shows a typical metro Ethernet network.

Here, the core consists of four switches with switching

capacity of 8 Gbps interconnected to a ring formed by 2

Gbps Ethernet links. Also, two edge nodes with switching

capacity of 8 Gbps are connected to core switches with 2

Gbps links and four aggregation nodes with switching

capacity of 4 Gbps are connected to two core nodes using

dual homing with 1 Gbps links. In this topology, there are

eight access nodes with switching capacity of 1 Gbps are

connected to aggregation switches with 1Gbps links.

In this typical network, for simplicity consider

constant bit rate traffic demands between access nodes

and edge nodes. These bidirectional traffic flows are

shown in Table 1 where notation “Ac” stands for Access.

As you can see from Figure 1, the physical structure

of the access part is tree. Therefore, only the core,

aggregation and edge parts of the network are considered

in the load balancing algorithm as shown in Figure 2. In

this figure, the labels indicated on nodes are switch names;

where, the notation “Ed”, “Co”, and “Ag” stands for Edge,

Core and Aggregation, respectively.

First consider LLB criterion (α=1, β=γ=0). The

spanning trees selected by BST, LBST I and LBST II

Journal of Information Systems and Telecommunication, Vol. 2, No. 2, April-June 2014 123

algorithms are shown in Figures 3.a, 3.b and 3.c,

respectively. In this case, the variance of link utilizations

(
) is 0.0133 for BST tree, 0.0230 for LBST I tree and

0.0179 for LBST II tree. The selected spanning tree by

LBST I is ranked third best (3rd) tree by BST algorithm

and selected spanning tree by LBST II is ranked second

best (2nd) one.

Fig. 1. A typical metro Ethernet network.

Table 1. Traffic demands (Mbps)

 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7 Ac8

Edge1 50 50 100 200 200 200 200 100

Edge2 100 100 300 300 200 100 100 200

Fig. 2. Metro Ethernet network graph.

a b

c

Fig. 3. Spanning tree selected based on LLB criterion by: a) BST
algorithm b) LBST I algorithm c) LBST II algorithm.

a b

c

Fig. 4. Spanning tree selected based on SLB criterion by: a) BST

algorithm b) LBST I algorithm c) LBST II algorithm.

Fig. 5. Utilization coefficient of switches for SLB criterion.

Co

1

Co4 Co

2

Co

3

Ed1

Ed2

Ag1 Ag2
Ag3 Ag4

Ed1

Co1

Ed2

Co3

Co4

Co3

Ag1

Ag2

Ag3

Ag4

Ed1

Co1

Ed2

Co3

Co4

Co3

Ag1

Ag2

Ag3

Ag4

Ed1

Co1

Ed2

Co3

Co4

Co3

Ag1

Ag2

Ag3

Ag4

Ed1

Co1

Ed2

Co3

Co4

Co3

Ag1

Ag2

Ag3

Ag4

Ed1

Co1

Ed2

Co3

Co4

Co3

Ag1

Ag2

Ag3

Ag4

Ed1

Co1

Ed2

Co3

Co4

Co3

Ag1

Ag2

Ag3

Ag4

Mirjalily & Samadi, Load Balanced Spanning Tree in Metro Ethernet Networks

124

Now consider SLB criterion (α=0, β=1, γ=0). The

spanning trees selected by BST, LBST I and LBST II

algorithms are shown in Figures 4.a, 4.b and 4.c

respectively. In this case, the variance of switch

utilizations (
) is 0.0063 for BST tree, 0.0066 for LBST

I tree and 0.0069 for LBST II tree. The selected spanning

tree by LBST I is ranked third best (3rd) tree by BST

algorithm and selected spanning tree by LBST II is

ranked fourth best (4th) one.

a b

Fig. 6. Spanning tree selected based on SPS criterion by:

a) BST algorithm b) LBST I and LBST II algorithms.

The utilization coefficients of switches for SLB

criterion are shown in Figure 5. This Figure shows that

the load balancing obtained by using LBST I and LBST II

algorithms is very close to the results obtained by using

BST algorithm.

In last scenario, consider SPS criterion (α=β=0, γ=1).

The selected spanning trees are shown in Figure 6. As a

numerical comparison, the trees selected by LBST I and

LBST II algorithms are the same and are ranked third best

(3rd) tree by BST algorithm with L equal to 0.471 while

this value is 0.464 for the best spanning tree selected by

BST. These values are very close to each other.

From above simulation results, the following

statements can be concluded:

Although LBST algorithms are not the best but their

results are the same or similar to the results obtained by

using BST algorithm.

The computational complexity of LBST algorithms is

much less than BST algorithm. As a roughly comparison,

the typically run time of BST algorithm for a network with

tens of switches and links on a new high speed computer is

tens of minutes, while the run time of our new approaches

for the same network is only several seconds.

LBST II algorithm breaks all of the loops in the last

step, while the LBST I algorithm breaks loops step by step.

Therefore, LBST II is much faster than LBST I.

Furthermore, simulation results show that the output of

LBST II is the same or similar to the output of LBST I

algorithm.

5. Modified LBST Algorithm

As described in section 3, the initial values of link

weights in the first step of the LBST algorithms are

assigned using Equations (1)-(5). In the beginning, there

is no load on links, therefore in simulations done in

previous section, the initial value of was set to zero

for all links. About the switches, algorithm uses the

demand matrix to find the initial load on switches. To do

this, add the traffic demands that the ith switch is their

origination and assign the result to calculate the initial

value of by using Equation (4). Although this is a

simple method for specifying the initial values, but it is

far from the real values. In this section, we want to study

the effects of initial values on the performance of the

LBST algorithm. In this way, a different method for

calculating the initial values of link loads and switch

loads is introduced. This modification enables the

algorithms to estimate the initial link weights with more

accuracy. For future references, name the new algorithm,

Modified LBST (MLBST).

Note that MLBST is useful for LLB and SLB

criterions. For SPS criterion, the output of LBST and

MLBST algorithms are the same.

In the following, the new algorithm is described, and

then by driving some simulations, the effectiveness of

using accurate initial values on the performance of the

algorithm is showed.

As mentioned in previous section, the output of LBST

II is the same or similar to the output of LBST I algorithm,

but its computational complexity is less. For this reason,

in the rest, only the LBST II algorithm is considered.

The MLBST algorithm, first sets the initial link loads

to zero and then runs the LBST II algorithm described

before once without loop breaking (by ignoring the 8th

step). After that, the traffic loads on links and switches

are known. By using this information, algorithm obtains

the link weights using Equations (1)-(5). Now, using

these new initial values, it runs the LBST II algorithm

again without loop breaking. This process can be repeated

several times. In the last run, the MLBST algorithm uses

LBST II algorithm exactly as described before (without

ignoring the 8th step).

For performance evaluation of MLBST, the simulation

scenarios described in previous section are run again by

using MLBST. The spanning tree obtained based on LLB

criterion with one run for obtaining initial values is ranked

second best (2nd) tree by BST algorithm with
 equal to

0.0179, while the spanning tree obtained by using two runs

for obtaining initial values is the Best Spanning Tree that is

shown in Figure 3.a.

By repeating the simulation for SLB criterion, the

obtained tree for MLBST with just two runs for

obtaining initial values, is the Best Spanning Tree.

Ed1

Co1

Ed2

Co3

Co4

Co3

Ag1

Ag2

Ag3

Ag4

Ed1

Co1

Ed2

Co3

Co4

Co3

Ag1

Ag2

Ag3

Ag4

Journal of Information Systems and Telecommunication, Vol. 2, No. 2, April-June 2014 125

The above results show that MLBST algorithm can

find the best spanning tree by repeating the algorithm

steps several times.

6. Conclusions

In this paper, first a new simple approach named

LBST algorithm is introduced for finding the best load

balanced spanning tree in metro Ethernet networks. LBST

is an iterative algorithm that finds the spanning tree based

on load balancing on links and switches. The criterions

used are the same as criterions used in our previous

algorithm named BST. BST algorithm is an exhaustive

search algorithm that finds the Best Spanning Tree.

Although, BST algorithm can find the best answer but its

complexity is too large in large-scale networks.

Simulation results showed that the output of LBST

algorithm is close to the output of BST algorithm while

its computational complexity is much less than it.

In the first step of the LBST algorithm, the initial value

of link loads must be assigned. In LBST, for simplicity,

these initial values were set to zero for all links. For

performance improvement, the Modified version of LBST

algorithm named MLBST is introduced. MLBST calculates

the initial values of link loads and switch loads in a more

accurate way. Simulation results showed that the MLBST

algorithm can find the best spanning tree by repeating the

algorithm steps several times. In summary, the following

conclusions can be derived from simulation results:

1. The computational complexity of the proposed

algorithms is much less than BST.

2. Although LBST algorithms are not the best but

their results are the same or similar to the results

obtained by using BST algorithm.

3. The performance of LBST II is very close to the

performance of LBST I algorithm, but its

computational complexity is much less.

4. MLBST can find the best spanning tree for LLB

and SLB criterions by repeating the algorithm steps

several times. For this reasons, in practice we

prefer to use MLBST for finding the best spanning

tree in metro Ethernet networks.

The proposed approaches can be used offline in the

design process of a new metro Ethernet network or online

during the operation of the network. In online mode, a

central node (for example an edge node) is responsible for

collecting the traffic and topology information and

calculating the best spanning trees.

Note that even though our new algorithms have a good

performance in the considered scenarios, other popular

realistic traffic models such as multimedia traffic in more

realistic metro Ethernet topologies can be considered in

future works.

Acknowledgment

This work is supported by Iranian Telecommunication

Research Center (ITRC).

References
[1] M. Huynh, and P. Mohapatra, “Metropolitan Ethernet

network: A move from LAN to MAN,” Computer

Networks, Elsevier, pp. 4867-4894, 2007.

[2] CISCO SYSTEM, “Understanding spanning tree protocol,”

CISCO white paper, www.cisco.com, 1997.

[3] CISCO SYSTEM, “Understanding rapid spanning tree

protocol,” CISCO white paper, www.cisco.com, 2006.

[4] P.M.V. Nair, “Quality of service in metro Ethernet,” Ph.D.

thesis, Southern Methodist University, 2006.

[5] T. Rodeheffer, C. Thekkat, and D. Anderson,“Smartbridge:

A scalable bridge architecture”, ACM Computer

Communication Review, Vol. 30, No. 4, pp. 205-218, 2000.

[6] K. Lui, W.C. Lee, and K. Nahrstedt, ”STAR: a transparent

spanning tree bridge protocol with alternate routing”, ACM

Computer Communication Review , Vol. 32, No. 3, pp. 33-

46, 2002.

[7] F. De Pellegrini, D. Starobinski, M. G. Karpovsky, and L.

B. Levitin, "Scalable, distributed cycle-breaking algorithms

for gigabit Ethernet backbones", Optical Networking, Vol.

5, No. 2, pp. 122-144, 2006.

[8] IEEE 802.1s, Standards for local and metropolitan area

networks, 2002.

[9] G. Mirjalily, H. Karimi, and S. Rajai, “Load balancing in

metro Ethernet networks by selecting the best spanning

tree”, Journal of Information Science and Engineering, Vol.

27, No. 5, pp. 1747–1759, 2011.

[10] G. Mirjalily, F. Akhavan Sigari, and R. Saadat, “Best

multiple spanning tree in metro Ethernet networks”, Proc.

of International Conference on Computer and Electrical

Engineering, Dubai, UAE, pp. 117-121, 2009.

[11] S. Samadi, G. Mirjalily, and S.M.T. Almodarresi, “A

simple algorithm to find the proper spanning tree in metro

Ethernet networks”, Proc. of International Conference on

Software Technology and Engineering, KLL, Malaysia, pp.

185-189, 2011.

[12] S. Samadi, G. Mirjalily, “Load balanced spanning tree in

metro Ethernet networks”, Proc. of Iranian Conference on

Electrical Engineering, Mashhad, Iran, 2013.

[13] Y. W. Bang, and C. Kun-Mao, “Spanning trees and

optimization problems”, Chapman & Hall, 2004.

[14] A. Kern, “Traffic-driven optimization of resilient QoS-

aware metro Ethernet networks”, Ph.D. Thesis, Budapest

University of Technology and Economics, 2007.

Mirjalily & Samadi, Load Balanced Spanning Tree in Metro Ethernet Networks

126

Ghasem Mirjalily received his Ph.D. degree in

Telecommunication Engineering from Tarbiat Modarres

University, Iran in 2000. He has been a visiting researcher at the

Communications Research Laboratory, McMaster University,

Canada in 1998. Since 2000, he has been with Yazd University,

Iran, where he is an associate professor. Dr. Mirjalily is senior

member of IEEE. His current research interests include Traffic

Engineering, Metro Ethernet Networks, and wireless Networks.

Samira Samadi received the B.S. degree in Electrical

Engineering (Electronics) from Isfahan University of Technology

(IUT) in 2006 with honors and M.S. degree in Electrical

Engineering (Communication Systems) from Yazd University in

2011. Now, she is working on industrial Ethernet networks. Her

interest is working on Data Communication Networks, especially

on Traffic Engineering and Metro Ethernet Networks.

