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Abstract  
Query recommendation is now an inseparable part of web search engines. The goal of query recommendation is to help 

users find their intended information by suggesting similar queries that better reflect their information needs. The existing 

approaches often consider the similarity between queries from one aspect (e.g., similarity with respect to query text or 

search result) and do not take into account different lexical, syntactic and semantic templates exist in relevant queries. In 

this paper, we propose a novel query recommendation method that uses a comprehensive set of features to find similar 

queries. We combine query text and search result features with bipartite graph modeling of user clicks to measure the 

similarity between queries. Our method is composed of two separate offline (training) and online (test) phases. In the 

offline phase, it employs an efficient k-medoids algorithm to cluster queries with a tolerable processing and memory 

overhead. In the online phase, we devise a randomized nearest neighbor algorithm for identifying most similar queries with 

a low response-time. Our evaluation results on two separate datasets from AOL and Parsijoo search engines show the 

superiority of the proposed method in improving the precision of query recommendation, e.g., by more than 20% in terms 

of p@10, compared with some well-known algorithms. 
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1- Introduction 

Nowadays, search engines play a critical role in giving 

users access to their needed information over the Internet. 

The user starts the search process via submitting a query to 

the search engine. The search engine processes the query 

and returns a result page containing an ordered list of 

URLs. The user reviews the excerpt of each URL and 

chooses some of them for further examination. If the user 

is satisfied with the returned information, the search 

process will be finished; otherwise, he/she submits another 

query. This process may include several cycles from 

submitting query to browsing results to be finished [1]. 

One of the most important challenges of search engines is 

to reduce the response time of queries, while returning the 

most relevant results. Both issues have a straight impact on 

users’ satisfaction and also the efficiency of search engines. 

Most of the time, it is hard for users to precisely and 

clearly express their needs through submitted queries [2]. 

Therefore, search engines should smartly recommend 

queries that could lead users faster to the information they 

want, while keeping the semantic relevant to the original, 

submitted query [3, 4, 5]. In such cases, it is helpful to use 

the historical data collected from interactions of users with 

the search engine (e.g., past queries and clicks) [6]. 

There are several factors that make the problem of 

identifying users’ intention from search challenging for 

information retrieval systems. One factor is the existence 

of polysemous words in queries [7]. For example, the term 

“jaguar” could refer either to a feline from the same genus 

as cheetahs, or to the vehicle brand of Jaguar car. There 

are hundreds of similar examples in other languages as 

well. For example, the term “ یرش ” in Persian means milk, 

lion, and faucet. On the other hand, there are many words 

that are synonym (e.g., crash, accident, and collision) and 

different users may use different queries for the exactly 

same topic. 

In the past 15 years, three major approaches have been 

proposed for query recommendation. In the most popular 

approach, queries are clustered based on their similarity 

(e.g., with respect to content or result) and then most 

similar queries are recommended from closest clusters. 

There is also another approach that constructs a profile for 

each user via storing his/her past interactions with the 

search engine and then recommends queries according to 

the constructed profile. The final approach employs graph 

modeling in which a graph structure is built between 
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queries using either subsequent queries in a session or 

common URL clicks made after queries. This graph is then 

used to find most similar queries. 

The current approaches usually define the notion of 

similarity between queries from one aspect (e.g., text, 

result or click similarity), while neglecting other important 

features shared between similar queries. This can 

negatively affect the precision of query recommendation. 

In addition, the high processing and memory overhead of 

running recommendation algorithms is prohibitive in many 

cases. The aim of this research is to overcome the 

shortcoming of existing algorithms while taking their 

advantages, such that a high precision is attained while 

preserving the system efficiency in terms of CPU and 

RAM usages. 

In this paper, we propose a new query recommendation 

method that combines the benefits of two well-known 

approaches, i.e., query clustering and graph modeling, 

together. Our method is composed of two separate offline 

and online phases. In the offline phase, we cluster our 

training queries based on three kinds of features, i.e., query 

n-grams, bipartite query-click graph and search results. 

The combination of these features can accurately identify 

relevant queries. Then, we use an efficient version of k-

medoids algorithm to cluster queries. In the online phase, a 

fast randomized algorithm is proposed to approximate the 

most similar queries from the closest cluster. Our 

evaluations on the search log of two real search engines, 

Parsijoo (the first Persian web search engine) and AOL [8], 

show that the proposed method can achieve at least 7% 

better precision and 23% higher p@10 in comparison with 

three well-known query recommendation algorithms. 

Moreover, it incurs a low response time with an affordable 

memory overhead. 

The rest of the paper is organized as follows: In the next 

section, we review the related works. Section 3 is devoted 

to the explanation of the proposed method. The results of 

our evaluations are presented in Section 4. Finally, we 

conclude the paper in Section 5. 

2- Related Works 

Query recommendation can be done in different forms, 

from spelling correction to query auto-completion and 

query expansion. As an early attempt, Zhang et al. propose 

to model users’ sequential search behavior for 

recommending queries [9]. Since then, different 

techniques have been suggested for query recommendation 

which can be generally divided into query clustering [10, 

11, 12, 13], constructing user profile [14, 15, 16] and 

graph modeling [17-22] categories.  

In clustering-based techniques, queries are clustered and 

then recommended according to their similarity with 

respect to various factors. For example, Baeza-Yates et al., 

represent each query with a term-weight vector [11]. Their 

idea is that queries that have the same meaning may not 

have common terms, but they may have similar terms in 

documents selected by users. The term-weight vector of 

each query is calculated by aggregating the term-weight 

vectors of documents clicked as a result of query. Each 

term is weighted based on the number of its occurrences in 

the clicked documents as well as the number of clicks on 

documents containing that term. After that, clustering 

methods are used to find out similar queries. Chaudhary et 

al., propose to cluster queries based on query content and 

also the history of users’ clicks [13]. In their paper, two 

principles are used: 1) if two submitted queries contain the 

same or similar terms, they probably convey the same 

information needs and therefore they can be located in the 

same cluster; 2) if two submitted queries lead to clicks on 

the same URLs, they are similar. 

Some other works on query recommendation construct a 

profile for each user which includes all important 

interactions of user with the search engine (e.g., submitted 

queries and clicked URLs). The main idea is to use the 

users’ search history to better understand their intention of 

search and resolve ambiguities for recommending queries 

[15]. In early works, there were three ways to construct 

user profiles: (1) utilizing user relevance feedback: the 

user is asked to specify whether the visited documents are 

relevant to his/her needs or not. If the document is relevant, 

it will be used to identify user’s real needs [14]; (2) 

utilizing user preference: at the time of signing up, the user 

is asked to submit his preferences and personal 

information, such as interests, age and education 

background; (3) utilizing user ranking: the user is asked to 

rank each of the specified documents from 5 (very bad) to 

1 (very good), based on its relevance to his information 

needs. 

The above methods are costly from the viewpoint of users; 

they often prefer easier and faster methods. In [15], the 

user profile is constructed using the frequency of each 

term in user’s visited documents. In other words, a user 

profile consists of a set of vectors where each vector 

represents a user session in which keywords of the 

documents clicked during the session along with their 

frequencies in these documents are stored. The 

aggregation of these vectors is then used for query 

recommendation. Since the current session denotes users’ 

recent preferences, the weight of current session is set to a 

larger value than past sessions. Recently, in [16], the 

authors propose to construct user profiles for re-ranking 

search results. They first classify user’s clicked URLs into 

hierarchical categories and then constructs user’s profile 

with respect to these categories. 

The third approach for query recommendation is based on 

graph modeling. Zhang et al. introduce a graph structure 

where vertices indicate queries and edges between vertices 

represent the textual similarity between corresponding 
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queries [9]. An edge is weighted by a damping factor, 

which denotes the similarity of two consecutive queries in 

the same session. The similarity of two queries that are not 

neighbors is obtained by multiplying the weight of edges 

over the path joining them. In [17], the “Query-URL” 

bipartite graph is used for query recommendation. In this 

graph, vertices are queries and URLs, and each edge 

          exists in the graph, if and only if, URL    is 

clicked by a user as a result of query   . The weight of 

edge   denotes the number of times users have access to 

URL    via query   . After constructing the graph, the 

similarity between queries is computed using a random 

walk technique. 

Another graph modeling method is to use query-flow 

graph within sessions [18]. The idea is to utilize the 

sequence of queries and the modifications that users make 

to their queries until they reach their intended results. The 

query-flow graph is constructed based on queries that 

users submit in different sessions. Here, vertices are 

distinct queries and each edge          indicates that at 

least in one session query    has been submitted right after 

query   . The weight of edge         is assigned based on 

two factors: 1) the probability that two queries    and    

belong to the same search mission and 2) the relative 

frequency of         pair and query   . The drawback of 

this method is that almost half of query pairs occur only 

once in users’ searches, and therefore this graph is sparse. 

On the other hand, the query-flow graph is asymmetric, 

because more than 90% of the edges are not reciprocal. 

Hence, it is not certain that two neighbor queries are 

equivalent [18]. 

In order to improve the query-flow graph, a framework is 

proposed in [19], in which users’ querying behaviors are 

modeled as a Markov-chain process. Furthermore, Bai et 

al. propose a new approach using an intent-biased random 

walk algorithm to reduce the sparsity problem in query-

flow graphs [20]. The main disadvantage of two latter 

works is that their accuracy is fairly low, since they do not 

use click information during graph construction. 

Some recent works have adopted different approaches for 

query recommendation. In [23], the authors propose a 

context-aware query recommendation which uses a 

sequence of sequence models (seq2seq) along with a 

version of Hierarchical Neural Networks for encoding 

submitted queries in a session and producing the best 

possible sequence of terms as the next query. This 

approach considers each query merely as a sequence of 

terms and hence, it takes into account neither click nor 

result level information. 

In [24], a Knowledge Base (KB) technique is introduced to 

generate query recommendations based on named entities 

existing in queries. In order to improve the precision for 

short queries or queries that their entities are not 

identifiable, two hybrid methods (named as KB-QREC 

and D-QREC) are suggested in [25] where KBs and click 

information are used to retrieve entity relationship 

information.  

To devise a practical recommendation method, we should 

make a trade-off between the precision and the 

computational performance of recommendation algorithm. 

In this paper, we suggest to use a complete set of features 

along with efficient clustering and nearest neighbor 

algorithms to improve both parameters at the same time. 

3- The Proposed Method 

The general workflow of our method is illustrated in Fig. 1. 

Our method comprises two separate offline and online 

phases (or equivalently, train and test phases). In the 

offline phase, we preprocess our training data, obtained 

from data logs of search engines, via performing spell 

checking, writing unification, stemming, synonym labeling 

and stop word removal tasks. Then, we cluster training 

queries using three kinds of extracted features: “N-grams 

feature”, “Bipartite graph feature” and “Top-k search 

results and their ranks feature”. We employ a simple and 

fast k-medoids algorithm for query clustering. In the online 

phase, upon the arrival of a test query, we first preprocess 

the query (just as the offline phase) and then find similar 

queries through identifying the closest cluster to that query 

and finally approximating the most similar queries inside 

that cluster.  

3-1- Data Preprocessing Step 

In the preprocessing step (which is common in both offline 

and online phases), the writing structure of queries is 

unified as much as possible. This step involves the 

following tasks:  

 

Spell checking: the spelling errors in queries are 

corrected. For example, the query “TOFL exam” is 

modified to “TOEFL exam” or the Persian query “Tarneh 

Alidoosi” [as an Iranian actress] is modified to “Taraneh 

Alidoosti”. 

 

Writing unification: the punctuation marks (? : ! . - ,) are 

removed, since these marks result in different forms of 

writing a word. On the other hand, some of the letters in 

Persian and Arabic alphabets have different shapes, but are 

used interchangeably (for example, ی and ئ). Therefore, 

such letters are normalized and replaced with the same 

Unicode. Furthermore, plural signs are removed. For 

example, the query “programs” is modified to “program”. 

Also, all English letters are converted to lower case. For 

instance, both queries “JAVA” and “Java” are converted to 

“java”. 
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Stemming: All words are replaced with their stems. In this 

way, the diversity of words in queries is reduced which 

increases the chance of detecting similar queries. For 

example, if a user submits a query containing the word 

“analyze”, then queries containing the words “analysis”, 

“analyzing”, “analyzer”, “analyzes” and “analyzed” could 

also be related to the user’s search needs. Previous studies 

have shown that stemming reduces the size of bag-of-

words by about 50% [26]. 

 

Synonym labeling: All words with the same meaning are 

labeled with the same label such that the distance between 

similar queries are reduced. As a result of this task, each 

word is replaced with its most frequently used synonym. 

For example, the words “battle”, “clash”, “attack” and 

“fight” are synonyms and therefore the word “fight” is 

used as their label. 

 

Stop word removal: The stop words are identified and 

removed from the submitted queries by using a fixed list 

of stop words. The stop words are words that appear 

frequently in queries and documents, but do not imply any 

particular meaning. Such words consist of articles, 

prepositions, conjunctions, pronouns and some specific 

nouns and verbs. As an example, terms like “however” are 

removed from queries. This task improves both the 

precision and the computational performance of 

recommendation system. 

 

These tasks are all performed, using open-source tools 

available for Persian and English languages, i.e., Hunspell 

package [27] and PersianStemmer [28]. 

3-2- Query Clustering Step 

Due to its simplicity and performance gains, query 

clustering has attracted the attention of many researchers 

in the past years [12, 13]. After accomplishing the data 

preprocessing step, we cluster our training queries. We 

argued earlier that terms cannot solely represent the 

purpose of a query and as a result, it is not precise to just 

consider the terms of queries to measure their similarity. In 

this paper, we use various lexical and semantic features to 

find out similar queries. After the data preprocessing phase, 

training queries are clustered. In order to compute the 

similarity between queries, the following three features are 

extracted:  

• N-grams feature 

• Bipartite graph (bigraph) feature 

• Top-k search results feature 

3-2-1- N-grams Feature 

If two queries have the same words, they are supposed to 

indicate similar information needs. To obtain the lexical 

similarity between queries, we extract the N-grams (up to 

trigram) of each query. For example, for the sample query 

“find research council site”, we have:  

 Unigrams: “find”, “research”, “council”, “site”; 

 Bigrams: “find research”, “research council”, 

“council site”; 

 Trigrams: “find research council”, “research 

council site”. 

We construct an N-gram vector for each query. Our 

vocabulary is the set of all different 1/2/3-grams in 

submitted queries. An N-gram g exists in the vector of 

query q, if g appears in q at least once. Similar to the 

previous works such as [11], the N-gram vector is then 

Fig. 1: Workflow of the proposed method 
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used to obtain the similarity measure between queries. For 

instance, the vector for the above example includes the 

following N-grams:  

{find, research, council, sites, find research, research 

council, council sites, find research council, research 

council sites} 

We use the simple Jaccard similarity [35] to compute the 

similarity between two queries    and   : 

         (     )   
                  (  ) 

                       
       (1) 

where           represents the set of N-grams exist in 

the vector of query  . In other words, the above similarity 

indicates the ratio of common N-grams between two 

queries. The average number of terms in queries is usually 

limited to a small value, e.g., around 4 in our dataset. Thus, 

it is easy to compute the above formula. The obtained 

similarity from the N-grams feature would be more 

reliable for long queries and may fail for short queries. For 

example, consider two queries “Apple pear” as a fruit, and 

“Apple Inc.” as a company. According to this feature, the 

similarity between two queries is 20%, despite the fact that 

they convey different meanings. On the other hand, many 

queries (like “natural disasters” and “unforeseen events”) 

denote the same purpose, but they are expressed with 

different terms. We need extra features to unravel such 

problems.  

 

3-2-2- Bipartite Graph (Bigraph) Feature  

The second feature is based on this assumption that queries 

that lead to a click on the same documents are likely to 

represent the same information needs [13]. For this reason, 

the “Query-URL” bipartite graph (bigraph) is used to 

obtain the second feature. In this graph, vertices are 

queries and ULRs. Each edge       in the graph shows 

that at least one user has clicked on URL  , as the search 

result of query  . The weight of the edge shows the 

number of users’ clicks on URL   after query  . All other 

queries that lead to click on   are nominated for 

recommendation for query  . We use          to refer 

to the bipartite graph where   and   are the set of all 

queries and URLs, respectively which aggregately 

construct the set of vertices and   is the set of edges in the 

graph. We use  [   ] to denote the weight of the edge 

between query   and URL  . 

From the bipartite graph, we construct a URL vector for 

each query in which a URL   exists  in the vector of query 

  (with a weight of  [   ]), if       exists in the graph 

 . Just as the previous works [9, 17], in order to compute 

the similarity between two queries    and    from the 

bipartite graph, the following steps should be taken:  

 The set of URLs that appear in the URL vectors 

of both    and    are extracted. We use      to 

refer to this set.  

 If       , the similarity between    and    is 

assumed zero. 

 Otherwise, the similarity between    and    is 

obtained using the following equation: 

          (     )  
∑   [          ]  [          ] 

      

   

∑   [     ]
   
   

   [     ] 
    (2) 

where         is the  th
 URL in set      and    is the  th

 

URL in set  . Moreover,  [          ] denotes the weight 

of the edge between query    and URL         in the 

bigraph. 

Fig. 2 illustrates a sample “Query-URL” bipartite graph. 

The number over each link shows the weight of that link. 

Suppose we want to obtain the similarity between    and 

other queries in this graph. As shown in the figure, users 

have clicked on URLs    ,    and    after submitting 

query   . Now, all other queries that result to a click on 

any of these URLs are identified, i.e., queries in the set 

             . The URL vector for each of these four 

queries has at least one URL in common with the URL 

vector of   . 

 
Fig. 2: A sample “Query-URL” bipartite graph 

 

The similarity between    and each query in the set 

              is computed using Equation (2), while the 

rest of queries have zero similarity with   . 

Since the average number of URLs clicked after each 

query is limited (e.g., about 3 in our dataset), computing 

the above similarity is not a difficult task. Although a click 

can be regarded as an indirect indication of a user’s 

interest to the content of the corresponding URL, yet 

clicking on a URL can not necessarily denote the 

relevancy between queries. For example, a user may click 

on a URL by mistake or face with a click bait, while 

having no interest to that content. On the other hand, there 

are many relevant queries that have no common URL 

clicks and thus their similarity becomes zero, especially 

when we know that usually users click on a few top 

results. An additional feature is required to detect similar 

queries despite differences in their texts and clicks.  



 

Esmaeeli-Gohari & Zarifzadeh, Effective Query Recommendation with Medoid-based Clustering … 

 

 

 

38 

3-2-3- Top-k Search Results and their Ranks Feature  

The third feature, for computing similarity between 

queries, is related to the top-k search results of query 

returned by the search engine. The idea is if two queries 

have several common search results, it is highly probable 

that they are relevant, even if they have no common terms 

or clicks. We only consider the results of the first search 

result page which typically contains 10 results (i.e., k=10). 

This is due to the fact that the first page usually receives 

much more traffic (click rate) than other pages: According 

to a recent research on Google search engine, the first page 

attracts 91.5%, the second page 4.8%, the third page 1.1%, 

and the forth page 0.4% of the traffic [29].  

The ranking of search results is also an important factor. 

For example, by submitting the query “apple” in Google, a 

couple of first search results are related to the Apple Inc. 

and the next results are related to the apple fruit, while for 

the query “apples”, the top results are related to the apple 

fruit. Although these two queries are lexically similar 

(after stemming), the intent of users for submitting them is 

quite different. This sample shows why the search results 

of queries and their ranks are beneficial to identify similar 

queries. In cases where users do not click on the same 

results or even do not click on any search result, this 

feature can be a proper measure to compute similarity 

between queries. We first weigh the search results of a 

query according to their ranks. The higher the rank of a 

URL is, the more its weight would be. The reason for this 

weighting is that the search engines rank the URLs based 

on their relevance to the submitted query; and a higher 

ranked URL receives more clicks from users [12, 30]. 

Therefore, the value of a URL decreases as its rank 

increases. We define the weight of a URL with rank  , 

with  [ ]  
 

   .  

As before, we construct a result vector for each query in 

which a URL   exists in the vector of query   (with 

weight of  [ ] ), if   is the   th
-ranked search result for 

query  . To compute the similarity between two queries    

and   , the following equation is used: 

(3)          (     )   
 

 
∑

 [     ]   [     ]

|           |   

 

   

 

where   is the number of common URLs in the top 10 

search results of two queries    and   ,       and       are 

the ranks of the  th
 common URL with respect to query    

and   , respectively. According to the above formula, as 

much as two queries have more common search results 

with similar ranks (especially in top ranks), they get a 

higher similarity score. For example, the presence of a 

same search result l in the first rank of both    and    

implies a much higher score, compared with the case 

where the result l appears in different ranks for two 

queries. According to the weight value we assign to a 

search result in rank i, high-ranked common results can 

significantly boost the similarity score. As we explained 

before, the rationale is that the rank of each URL indicates 

the amount of its relevance to the submitted query. 

3-2-4- Final Similarity  

To get the final similarity between two given queries    

and   , the values of the above three features are 

combined linearly as follows: 

           (     )             (     )     

          (     )             (     ) (4) 

The sum of  ,   and   parameters is equal to one (i.e., 

       ). Therefore, the result of Equation (4) is 

always between 0 and 1, as the value of all three features is 

also between 0 and 1. The setting of these hyper-

parameters is explained in Section 4. In order to reduce the 

number of incorrect recommendations, we use a minimum 

similarity threshold   such that if the final similarity 

between two queries is smaller than  , we assume they 

have a zero similarity, i.e., they are irrelevant. Based on 

our experiments, we use       .  

3-2-5- Medoid-based Clustering  

In the last step of the offline phase, we use the final 

similarity feature to cluster our training queries with a k-

medoids algorithm. In contrast to the k-means algorithm 

which calculates the means of points as centroids, k-

medoids chooses points themselves as centroids. This is 

more compatible with our notion of pairwise similarity 

defined in Equation (4), since we do not assign any feature 

to each individual point (i.e., two queries cannot be 

averaged, they can only be compared with respect to the 

similarity features).  

The most common realization of k-medoids is the 

Partitioning Around Medoids (PAM) algorithm [31] which 

works effectively for small datasets, but does not scale 

well for large datasets due to its time complexity. There 

have been some efforts in developing fast algorithms for k-

medoids clustering, e.g., with sampling and randomization 

techniques. In this paper, we use a simple and fast 

algorithm for k-medoids clustering that works in three 

steps [32]:  

 

1. Select initial medoids: Calculate the distance between 

every pair of training points, select k most middle points as 

initial medoids using a local heuristic method in [32]. 

2. Update medoids: Find a new medoid of each cluster, 

which is the point minimizing the total distance to other 

points in its cluster. 

3. Assign objects to medoids: Assign each point to the 

nearest medoid, calculate the sum of distances from all 

points to their corresponding medoids. If the sum is equal 

to the previous one, then stop the algorithm. Otherwise, go 

back to Step 2. 
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The above algorithm can take a significantly reduced time 

in computation with comparable performance, against the 

PAM [32]. We use this algorithm to cluster all training 

queries, using the inverse of final similarity in Equation 

(4) as the distance between two queries: 

                  
 

                  
     (5) 

After clustering, we omit clusters containing only one 

query. As a result, at most 5% of queries are removed from 

our dataset, i.e., we have no recommendation for them. 

The remaining clusters may comprise a lot of queries 

which are not necessarily pairwise relevant, but it is very 

likely that they belong to the same category of 

information. For example, all queries about films, actors, 

and actresses may rest in a single cluster. Based on 

detected clusters, we construct three reverse lookup tables 

which will be used later to identify the corresponding 

cluster of an online (test) query:  

 

- N-gram lookup table: For each 1/2/3-gram g and 

each cluster c, it shows how many times g is 

repeated in queries of cluster c.  

- Click lookup table: For each URL u and each 

cluster c, it represents how many times u is 

clicked following queries in cluster c. 

- Result lookup table: For each URL u and each 

cluster c, it indicates how many times u is 

returned as a search result of queries in cluster c. 

 

The update of clusters is done periodically, e.g., in a per-

day or per-week basis, through re-executing the above 

algorithm on the updated set of queries. During the update 

process, we can boost training queries based on the time of 

their occurrences, to put more emphasis on the 

recommendation of recent queries. We can also remove 

queries that have not been repeated for a while from the 

dataset. 

It is worth mentioning that since we run the clustering 

algorithm in an offline environment, its running time does 

not affect the response time of test queries. In other words, 

we try to perform most time-consuming and complicated 

tasks in an offline manner to make our recommendations 

for online queries as soon as possible.  

3-3- Online Randomized Query Recommendation  

Our model is now trained and ready for query 

recommendation. In the online phase, when a test query q 

is submitted to the system, the closest cluster to q is found 

using the inverse lookup tables built in the clustering step. 

To do so, we first create an N-gram vector containing all 

1/2/3-grams in q and also a URL vector having the first 10 

search results of q. For each element in the N-gram vector, 

we search the N-gram lookup table and determine the 

frequency of occurring g in queries of cluster c as the score 

of cluster c. For the purpose of normalization, all cluster 

scores are divided by the maximum score. Similarly, for 

elements in the URL vector, we separately search the click 

and the result lookup tables to get the corresponding 

scores. The closest cluster to query q is the one with the 

highest total score with respect to the sum of above three 

scores. In rare cases where the score of top clusters are 

very close, we can select 2 or 3 clusters as the closest 

clusters to find relevant queries within them. 

After finding the closest cluster which we call it 

designated cluster or    in brief, we extract   most similar 

queries, in terms of the final similarity feature, from that 

cluster. In our work, we find top 10 similar queries (i.e., 

    ), and if the similarity between q and any of these 

queries is below the threshold  , we ignore that query. To 

incur an acceptable query response time, we have to 

extract similar queries in a timely fashion. Since the 

number of queries in cluster    can be large, calculating 

the similarity between q and every query in    may be 

costly. We here devise a randomized nearest neighbor 

algorithm for approximating   most similar queries in 

regard to query q. This algorithm works iteratively as 

follows: 
 

1. Initialization: Randomly select   queries from the 

designated cluster    and put them in set S as the set of 

seed queries.  

2. Distance calculation: Calculate the distance between q 

and every query in S, based on the distance metric in 

Equation (5). 

3. Candidate selection: Sort all queries in S in ascending 

order, based on their distance from q, and put the first   

queries in new set C (as the set of candidate queries). 

4. Exploration: If new set C is different from the old C 

(obtained in the previous iteration), then for each query p 

in new C, greedily add   most similar queries with respect 

to p from cluster    to set S and go to Step 2 for the next 

iteration. Otherwise, return new C. 
 

The exploration step in the above algorithm is 

straightforward, as we do not perform any distance 

calculation or even sorting in this step. This is because the 

distance between every pair of queries in each cluster is 

calculated in the offline phase and we exactly know a 

priori which queries are the most   similar queries with 

respect to a query p in the designated cluster.  

The advantage of the above algorithm is that it performs 

Step 2 and 3 for a limited number of queries in the 

designated cluster. In the worst case, it may go over all 

queries in    or may return   queries that are not 

necessarily most similar to q. However, because of both 

randomized and greedy natures of the algorithm, it usually 

finds most similar queries after 2 or at most 3 iterations, 

even for very large clusters that contain thousands of 

queries. The results of our experiments on this algorithm is 

presented in the next section. 
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4- Evaluation 

In this section, we explain the details of our experiments 

and present the evaluation results. All recommendation 

methods are implemented in Java with its native data 

structures such as ArrayList and LinkedList. To speed up 

the similarity computation and clustering process, we load 

all data directly in RAM without using any traditional 

databases. Our experiments are conducted on a server 

equipped with an Intel® Xeon® Processor X5650 and 

32GB DDR3 RAM.  

4-1- Experimental Dataset 

To assess the efficiency of the recommendation 

algorithms, we use two separate datasets, from Parsijoo 

(the first Persian search engine) and AOL search engine 

logs1. The Parsijoo dataset consists of 7-days log of user 

activities from May 12 till May 18, 2018 and AOL search 

engine log contains web queries in a period of one month 

between March 1 and March 31, 2006. The statistics of 

two datasets are presented in Table 1. There is no record 

belonging to DDoS attacks in the Parsijoo log, as these 

attacks are abandoned by the front firewall. Moreover, we 

remove spam queries and click spams from our log as 

much as possible [33, 34].  

 
Table 1: Statistics of Parsijoo and AOL datasets 

Number of 

unique queries 

Number of 

queries led 

to a click 

Number of 

queries 

Time 

period 
Dataset 

246450 521542 932394 7 days  Parsijoo 

3382951 6484875 12138555 31 days  AOL 

4-2- Evaluation Model 

Our evaluation model is similar to the model used in 

previous works [17]. We first randomly partition our 

datasets into two roughly equal-sized parts and then, 

analyze the tuning of hyper-parameters, including  ,   and 

  in Equation (4), using the first part as the validation 

dataset. Then, we evaluate different algorithms using the 

other part as the evaluation dataset. We randomly select 

1000 queries from the evaluation dataset as test queries 

and all remaining queries are used as training queries to 

train the model and cluster queries 2 . We perform the 

above steps for Parsijoo and AOL datasets separately. In 

order to see how robust our method is, we use different 

ratios of evaluation dataset (i.e., 90%, 70%, 50% and 30%) 

for training. For instance, when R=70%, we only inject 

70% of the evaluation dataset for k-medoids clustering (the 

                                                           
1 The 3-months search log of AOL is publicly available over the Internet, 

e.g., in [8]. 
2 To remove noises, we only consider test queries that have been repeated 

at least 5 times by different users. 

default ratio is R=90%). Also, the default number of 

recommendations is n=10.  

As the evaluation metric, we use the precision which is 

defined as follows: 

           
  

     
        (6) 

where    (True Positives) denotes the number of relevant 

queries that are correctly recommended as relevant, and 

   (False Positives) indicates the number of irrelevant 

queries that are wrongly recommended as relevant. In 

order to count    and   , we manually investigate the top 

results of recommendation algorithms for each test query 

to find out how many of them are relevant and irrelevant, 

respectively.  

We also use the important p@10 metric as the number of 

correct recommendations made for each query over 

    : 

      
  

  
         (7) 

To understand the difference between two metrics, 

consider an example where a recommendation algorithm 

returns just one query and this query is relevant. The 

precision is 1, while the p@10 is 0.1. The results of 

precision and p@10 are averaged over all test queries. The 

running time and memory usage of the proposed method is 

calculated according to the executions on test queries. 

4-3- Evaluation Results 

4-3-1- Tuning of Parameters  

To assess the impact of three hyper-parameters in 

Equation (4) and get the best configuration, we use an 

exhaustive grid search in the range [0,1] for  ,   and   

parameters with step size of 0.1. We use the validation 

dataset for hyper-parameter tuning. Table 2 shows the 

results of precision and p@10 obtained in our method with 

different values of  ,   and   for the Parsijoo dataset. We 

separately tune our method for the AOL dataset as well. 

The highest precision and p@10 is achieved at      , 

      and      . For the AOL dataset, the best 

configuration is gotten at      ,       and      . 

The N-gram feature reflects the pure textual similarity 

between queries and hence, it has a higher coefficient than 

other two features. On the other hand, the bipartite graph 

feature is more important than the top-10 search results 

feature, since it is supported by users’ clicks. Thus, we can 

generally conclude that      . It is interesting that 

whenever we ignore any of these three features, we get a 

very bad result, especially with regard to the p@10 metric. 

For example, the p@10 degrades by up to 45% in cases 

where one of  ,   and   parameters is set to 0, while the 

precision worsens about 15%.  
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Table 2: The precision and p@10 results of our method obtained with 

different values of  ,   and   parameters from Parsijoo dataset 

      precision p@10 

0.5 0.3 0.2 66.8% 63.9% 

0.4 0.3 0.3 65.4% 62.7% 

0.5 0.5 0 61.3% 54.5% 

0.5 0 0.5 62.1% 57.5% 

0 0.5 0.5 57.9% 48% 

1 0 0 60.2% 47.6% 

0 1 0 54.3% 42.3% 

0 0 1 55.4% 33.1% 

 

Although the tuning of hyper-parameters is dependent on 

the dataset, but their optimum setting is not influenced by 

choosing different ratios of evaluation dataset (R). More 

specifically, the best value of  ,   and   is roughly the 

same for two cases where R=90% and R=30%. 

Fig. 3 shows the impact of choosing  , i.e., the number of 

recommendations, on the precision (  varies from 1 to 10). 

We conduct this experiment on both Parsijoo and AOL 

datasets. The best result is achieved at    . As the 

number of recommendations increases, the recommended 

queries become less similar to the user’s submitted query, 

from the view point of three features, and thus, the number 

of false positives grows. The precision decreases about 

30% when we change   from 1 to 10. For large values of 

 , the precision does not change much, as our algorithm 

can rarely add any more recommendation for a significant 

portion of queries (e.g., the precision at     is only 1% 

higher, compared with     ). The precision of 

recommendation for AOL is on average 8% higher than 

that of Parsijoo, especially for larger values of  . The main 

reason behind this phenomenon is that the amount of 

queries and users in the AOL dataset is an order of 

magnitude larger than queries in Parsijoo. Thus, the 

likelihood of finding relevant queries for a test query is 

higher. 

 

 
Fig. 3: The precision results of our method with respect to number of 

reommendations ( ), obtained from AOL and Parsijoo datasets 
 

 

Now, we analyze how the volume of training dataset 

affects the test results. The result of precision and p@10 

for different ratios of Parsijoo dataset are shown in Fig. 4. 

As the amount of training data shrinks, the precision 

declines slightly. For example, the precision worsens only 

11%, when R decreases from 90% to 30%. As much as we 

reduce the size of training dataset, the number of true 

relevant queries recommended for a given test query 

decreases. However, since we use a minium similarity 

threshold between relevant queries in Equation (4), the 

number of irrelevant queries recommended by our 

algorithm does not change much. But, the story is different 

when we pay attention to the p@10 metric. It is affected 

considerably by the value of R in a way that it drops by 

about one third when R falls to 30%. This is because our 

algorithm can barely find multiple relevant queries as we 

have not enough training queries. The trend of results in 

Fig. 4 remains roughly the same for AOL dataset. 

However, since the number of training queries is much 

larger in this dataset, the decrease in p@10 is not so 

devastating (the recall gets halved, as we reduce R from 

90% to 30%).  

 

 
Fig. 4: The evaluation results of our method with respect to different 

evaluation dataset ratio R 

 

The number of clusters in the k-medoids clustering 

algorithm impacts on both precision and response time of 

our method. Fig. 5 demonstrates the evaluation results of 

the proposed method obtained for Parsijo dataset when k 

raises from 50 to 500 with step size of 50. For smaller 

values of k, the precision is lower because it is more likely 

that irrelevant queries are placed in the same cluser. As a 

result, our randomized nearest neighbor algorithm 

probably returns some irrelevent queries in response to a 

submitted query. As much as we enlarge k, the precision 

improves as well. However, this improvement becomes 

negligible for very large values of k. On the other hand, the 

p@10 metric worsens when k goes beyond 350, because 

the number of relevant queries in clusters is reduced and 

our randomized algorithm fails in many cases to find 10 

similar queries. Based on these results, we choose k=400 

as the optimum value for our experiments.  
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Fig. 5: The evaluation results of our method with respect to different 

number of clusters (k), obtained from AOL and Parsijoo datasets 

 

The choice of k depends on the properties of dataset. Thus, 

we conduct the same experiment on the AOL dataset 

which leads to k=900 as the best choice. It is fascinating 

that the tunning of k is independent of the dataset ratio R 

(if the training queries are randomly selected from the 

whole dataset). From the perspective of response time, our 

randomized algorithm works faster when we increase the 

number of clusters, because it explores all candidate 

queries in fewer iterations. For example, the response time 

of the online algorithm gets halved when we change k 

from 50 to 500. 

 

4-3-2- Evaluating the Online Algorithm  

As discussed before, the randomized algorithm, proposed 

for approximating most similar queries in the online phase, 

makes a good tradeoff between the performance and 

response time of the recommendation system. We compare 

the performance results of this algorithm with the 

exhaustive algorithm which exactly finds the most similar 

queries through brute-force search in the designated 

cluster. The results of this comparison obtained from the 

Parsijoo dataset are presented in Table 3. The randomized 

algorithm produces the response 3 times faster than the 

exhaustive one at the cost of only 2% reduction in 

precision. As shown in the table, the average number of 

candidate queries investigated to find most similar queries 

is reduced by a factor of about 4. The results are improved 

further for bigger datasets like AOL, namely the response 

time decreases by a factor of 6 with only 3% loss in 

precision. 

 
Table 3: Comparison between exhaustive and randomized 

recommendation algorithms 

Algorithms precision p@10 #candidate 

queries 

response 

time 

Exhaustive nearest 

neighbor 

68.1% 65.3% 672 615ms 

Randomized nearest 
neighbor 

66.8% 63.9% 164 201ms 

4-3-3- Comparing Different Algorithms 

Finally, we compare the performance of our method with 

three famous query recommendation algorithms 

introduced in [17], [13] and [24], which we refer to by 

“Bipartite graph”, “Query clustering” and “KB-QREC”, 

respectively. Table 4 shows the results of precision and 

p@10 obtained separately from Parsijoo and AOL 

datasets. Our proposed method, has a better precision in 

comparison with the other three methods, especially when 

we conside the Parsijoo dataset. More precisely, the 

proposed method outperforms KB-QREC by about 7%, 

and overcomes the bipartite graph and query clustering 

methods by more than 9% and 20%, respectively. From 

the viewpoint of p@10, the gap between the results of our 

method and other methods becomes even more apparent in 

a way that the improvement reaches to at least 23%. We 

achieve this advantage through utilizing various kinds of 

features simultaneously (from a linguistic feature to a user 

behavioral feature) to find similar queries. This property is 

more vital when we consider smaller datasets, since the 

only way to generate multiple recommendations is to catch 

similar queries from all different perspectives.  

Table 5 compares the above four query recommendation 

methods with respect to the response time and memory 

usage parameters, obtained from Parsijoo and AOL 

datasets. To get the results, we submit 1000 queries to 

each recommendation method and then measure these two 

parameters for each method separately. First of all, since 

the size of AOL data is much larger than that of Parsijoo, 

we observe a considerably higher value for both 

parameters in all methods, when we take this dataset into 

account. The Bipartite graph is the simplest algorithm 

which is solely based the query-click graph. As a result, it 

yields the minimum value for both response time and 

memory usage. On the other hand, our method works with 

three different kinds of information to compute similarity 

features and hence, it has the worst memory usage. For 

instance, with Parsijoo dataset, it consume about 10%, 

20% and 50% more memory than KB-QREC, Query 

clustering and Bipartite graph, respectively. This gab 

expands even further, when we consider the bigger AOL 

dataset.  

 
Table 4: Comparison of different methods with respect to precision and 

p@10 

Methods 
Parsijoo AOL 

precision p@10 precision p@10 

Query clustering [13]  51.5% 43.1% 62.2% 59.1% 
Bipartite graph [17] 61.4% 38.8% 69.6% 62.6% 

KB-QREC [24] 62.7% 48.8% 70.8% 67.2% 

Our proposed method 66.8% 63.9% 74.7% 72.2% 

 
In regard to the response time factor, the story becomes 

completely different. With Parsijoo dataset, the response 

time of our algorithm is about 10% and 16% shorter than 

KB-QREC and Query clustering methods, respectively (it 

still incurs a 10% longer response time than Bipartite 

graph). The response time of our method (in comparison 

with other methods) is improved more, when using AOL 
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dateset. More precisely, it outperforms KB-QREC and 

Query clustering by about 25% and 40%, respectively. 

This advantage is mainly due to the fast randomized 

algorithm we use in the online phase of our proposed 

method, as it tries to keep the set of candidate queries for 

finding most similar ones as small as possible. 

 
Table 5: Comparison of different methods with respect to system 

parameters 

Methods 

Parsijoo AOL 

response 

time 

memory 

usage 

response 

time 

memory 

usage 

Query clustering [13]  386ms 51MB 1437ms 575MB 
Bipartite graph [17] 288ms 44MB 789ms 409MB 

KB-QREC [24] 354ms 56MB 1096ms 603MB 

Our proposed method 321ms 62MB 814ms 681MB 

5- Conclusions 

In this paper, a novel method is proposed for query 

recommendation in search engines, using a combination of 

two query clustering and graph modeling approaches. As 

opposed to former methods, we take into account diverse 

features (query, click and result) to define similarity 

between queries and cluster them. In order to improve both 

precision and response time, we use an efficient k-medoids 

clustering algorithm as well as a new randomized nearest 

neighbor algorithm to find most similar queries. 

Evaluation results show that the proposed method 

outperforms some famous query recommendation methods 

with respect to precision and p@10 metrics. For example, 

the p@10 is improved by at least 23%, when compared 

with other counterparts. 
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