

 * Corresponding Author

Effective Query Recommendation with Medoid-based Clustering
using a Combination of Query, Click and Result Features

Elham Esmaeeli-Gohari
Faculty of Computer Engineering, Yazd University, Yazd, Iran

elhamesmaeeli@stu.yazd.ac.ir

Sajjad Zarifzadeh*
Faculty of Computer Engineering, Yazd University, Yazd, Iran

szarifzadeh@yazd.ac.ir

Received: 20/Nov/2019 Revised: 21/Dec/2019 Accepted: 29/Feb/2020

Abstract
Query recommendation is now an inseparable part of web search engines. The goal of query recommendation is to help

users find their intended information by suggesting similar queries that better reflect their information needs. The existing

approaches often consider the similarity between queries from one aspect (e.g., similarity with respect to query text or

search result) and do not take into account different lexical, syntactic and semantic templates exist in relevant queries. In

this paper, we propose a novel query recommendation method that uses a comprehensive set of features to find similar

queries. We combine query text and search result features with bipartite graph modeling of user clicks to measure the

similarity between queries. Our method is composed of two separate offline (training) and online (test) phases. In the

offline phase, it employs an efficient k-medoids algorithm to cluster queries with a tolerable processing and memory

overhead. In the online phase, we devise a randomized nearest neighbor algorithm for identifying most similar queries with

a low response-time. Our evaluation results on two separate datasets from AOL and Parsijoo search engines show the

superiority of the proposed method in improving the precision of query recommendation, e.g., by more than 20% in terms

of p@10, compared with some well-known algorithms.

Keywords: Recommendation Systems; Search Engine; Clustering; Query; Click.

1- Introduction

Nowadays, search engines play a critical role in giving

users access to their needed information over the Internet.

The user starts the search process via submitting a query to

the search engine. The search engine processes the query

and returns a result page containing an ordered list of

URLs. The user reviews the excerpt of each URL and

chooses some of them for further examination. If the user

is satisfied with the returned information, the search

process will be finished; otherwise, he/she submits another

query. This process may include several cycles from

submitting query to browsing results to be finished [1].

One of the most important challenges of search engines is

to reduce the response time of queries, while returning the

most relevant results. Both issues have a straight impact on

users’ satisfaction and also the efficiency of search engines.

Most of the time, it is hard for users to precisely and

clearly express their needs through submitted queries [2].

Therefore, search engines should smartly recommend

queries that could lead users faster to the information they

want, while keeping the semantic relevant to the original,

submitted query [3, 4, 5]. In such cases, it is helpful to use

the historical data collected from interactions of users with

the search engine (e.g., past queries and clicks) [6].

There are several factors that make the problem of

identifying users’ intention from search challenging for

information retrieval systems. One factor is the existence

of polysemous words in queries [7]. For example, the term

“jaguar” could refer either to a feline from the same genus

as cheetahs, or to the vehicle brand of Jaguar car. There

are hundreds of similar examples in other languages as

well. For example, the term “ یرش ” in Persian means milk,

lion, and faucet. On the other hand, there are many words

that are synonym (e.g., crash, accident, and collision) and

different users may use different queries for the exactly

same topic.

In the past 15 years, three major approaches have been

proposed for query recommendation. In the most popular

approach, queries are clustered based on their similarity

(e.g., with respect to content or result) and then most

similar queries are recommended from closest clusters.

There is also another approach that constructs a profile for

each user via storing his/her past interactions with the

search engine and then recommends queries according to

the constructed profile. The final approach employs graph

modeling in which a graph structure is built between

mailto:fakhredanesh@mut.ac.ir

Esmaeeli-Gohari & Zarifzadeh, Effective Query Recommendation with Medoid-based Clustering …

34

queries using either subsequent queries in a session or

common URL clicks made after queries. This graph is then

used to find most similar queries.

The current approaches usually define the notion of

similarity between queries from one aspect (e.g., text,

result or click similarity), while neglecting other important

features shared between similar queries. This can

negatively affect the precision of query recommendation.

In addition, the high processing and memory overhead of

running recommendation algorithms is prohibitive in many

cases. The aim of this research is to overcome the

shortcoming of existing algorithms while taking their

advantages, such that a high precision is attained while

preserving the system efficiency in terms of CPU and

RAM usages.

In this paper, we propose a new query recommendation

method that combines the benefits of two well-known

approaches, i.e., query clustering and graph modeling,

together. Our method is composed of two separate offline

and online phases. In the offline phase, we cluster our

training queries based on three kinds of features, i.e., query

n-grams, bipartite query-click graph and search results.

The combination of these features can accurately identify

relevant queries. Then, we use an efficient version of k-

medoids algorithm to cluster queries. In the online phase, a

fast randomized algorithm is proposed to approximate the

most similar queries from the closest cluster. Our

evaluations on the search log of two real search engines,

Parsijoo (the first Persian web search engine) and AOL [8],

show that the proposed method can achieve at least 7%

better precision and 23% higher p@10 in comparison with

three well-known query recommendation algorithms.

Moreover, it incurs a low response time with an affordable

memory overhead.

The rest of the paper is organized as follows: In the next

section, we review the related works. Section 3 is devoted

to the explanation of the proposed method. The results of

our evaluations are presented in Section 4. Finally, we

conclude the paper in Section 5.

2- Related Works

Query recommendation can be done in different forms,

from spelling correction to query auto-completion and

query expansion. As an early attempt, Zhang et al. propose

to model users’ sequential search behavior for

recommending queries [9]. Since then, different

techniques have been suggested for query recommendation

which can be generally divided into query clustering [10,

11, 12, 13], constructing user profile [14, 15, 16] and

graph modeling [17-22] categories.

In clustering-based techniques, queries are clustered and

then recommended according to their similarity with

respect to various factors. For example, Baeza-Yates et al.,

represent each query with a term-weight vector [11]. Their

idea is that queries that have the same meaning may not

have common terms, but they may have similar terms in

documents selected by users. The term-weight vector of

each query is calculated by aggregating the term-weight

vectors of documents clicked as a result of query. Each

term is weighted based on the number of its occurrences in

the clicked documents as well as the number of clicks on

documents containing that term. After that, clustering

methods are used to find out similar queries. Chaudhary et

al., propose to cluster queries based on query content and

also the history of users’ clicks [13]. In their paper, two

principles are used: 1) if two submitted queries contain the

same or similar terms, they probably convey the same

information needs and therefore they can be located in the

same cluster; 2) if two submitted queries lead to clicks on

the same URLs, they are similar.

Some other works on query recommendation construct a

profile for each user which includes all important

interactions of user with the search engine (e.g., submitted

queries and clicked URLs). The main idea is to use the

users’ search history to better understand their intention of

search and resolve ambiguities for recommending queries

[15]. In early works, there were three ways to construct

user profiles: (1) utilizing user relevance feedback: the

user is asked to specify whether the visited documents are

relevant to his/her needs or not. If the document is relevant,

it will be used to identify user’s real needs [14]; (2)

utilizing user preference: at the time of signing up, the user

is asked to submit his preferences and personal

information, such as interests, age and education

background; (3) utilizing user ranking: the user is asked to

rank each of the specified documents from 5 (very bad) to

1 (very good), based on its relevance to his information

needs.

The above methods are costly from the viewpoint of users;

they often prefer easier and faster methods. In [15], the

user profile is constructed using the frequency of each

term in user’s visited documents. In other words, a user

profile consists of a set of vectors where each vector

represents a user session in which keywords of the

documents clicked during the session along with their

frequencies in these documents are stored. The

aggregation of these vectors is then used for query

recommendation. Since the current session denotes users’

recent preferences, the weight of current session is set to a

larger value than past sessions. Recently, in [16], the

authors propose to construct user profiles for re-ranking

search results. They first classify user’s clicked URLs into

hierarchical categories and then constructs user’s profile

with respect to these categories.

The third approach for query recommendation is based on

graph modeling. Zhang et al. introduce a graph structure

where vertices indicate queries and edges between vertices

represent the textual similarity between corresponding

Journal of Information Systems and Telecommunication, Vol. 8, No. 1, January-March 2020

35

queries [9]. An edge is weighted by a damping factor,

which denotes the similarity of two consecutive queries in

the same session. The similarity of two queries that are not

neighbors is obtained by multiplying the weight of edges

over the path joining them. In [17], the “Query-URL”

bipartite graph is used for query recommendation. In this

graph, vertices are queries and URLs, and each edge

 exists in the graph, if and only if, URL is

clicked by a user as a result of query . The weight of

edge denotes the number of times users have access to

URL via query . After constructing the graph, the

similarity between queries is computed using a random

walk technique.

Another graph modeling method is to use query-flow

graph within sessions [18]. The idea is to utilize the

sequence of queries and the modifications that users make

to their queries until they reach their intended results. The

query-flow graph is constructed based on queries that

users submit in different sessions. Here, vertices are

distinct queries and each edge indicates that at

least in one session query has been submitted right after

query . The weight of edge is assigned based on

two factors: 1) the probability that two queries and

belong to the same search mission and 2) the relative

frequency of pair and query . The drawback of

this method is that almost half of query pairs occur only

once in users’ searches, and therefore this graph is sparse.

On the other hand, the query-flow graph is asymmetric,

because more than 90% of the edges are not reciprocal.

Hence, it is not certain that two neighbor queries are

equivalent [18].

In order to improve the query-flow graph, a framework is

proposed in [19], in which users’ querying behaviors are

modeled as a Markov-chain process. Furthermore, Bai et

al. propose a new approach using an intent-biased random

walk algorithm to reduce the sparsity problem in query-

flow graphs [20]. The main disadvantage of two latter

works is that their accuracy is fairly low, since they do not

use click information during graph construction.

Some recent works have adopted different approaches for

query recommendation. In [23], the authors propose a

context-aware query recommendation which uses a

sequence of sequence models (seq2seq) along with a

version of Hierarchical Neural Networks for encoding

submitted queries in a session and producing the best

possible sequence of terms as the next query. This

approach considers each query merely as a sequence of

terms and hence, it takes into account neither click nor

result level information.

In [24], a Knowledge Base (KB) technique is introduced to

generate query recommendations based on named entities

existing in queries. In order to improve the precision for

short queries or queries that their entities are not

identifiable, two hybrid methods (named as KB-QREC

and D-QREC) are suggested in [25] where KBs and click

information are used to retrieve entity relationship

information.

To devise a practical recommendation method, we should

make a trade-off between the precision and the

computational performance of recommendation algorithm.

In this paper, we suggest to use a complete set of features

along with efficient clustering and nearest neighbor

algorithms to improve both parameters at the same time.

3- The Proposed Method

The general workflow of our method is illustrated in Fig. 1.

Our method comprises two separate offline and online

phases (or equivalently, train and test phases). In the

offline phase, we preprocess our training data, obtained

from data logs of search engines, via performing spell

checking, writing unification, stemming, synonym labeling

and stop word removal tasks. Then, we cluster training

queries using three kinds of extracted features: “N-grams

feature”, “Bipartite graph feature” and “Top-k search

results and their ranks feature”. We employ a simple and

fast k-medoids algorithm for query clustering. In the online

phase, upon the arrival of a test query, we first preprocess

the query (just as the offline phase) and then find similar

queries through identifying the closest cluster to that query

and finally approximating the most similar queries inside

that cluster.

3-1- Data Preprocessing Step

In the preprocessing step (which is common in both offline

and online phases), the writing structure of queries is

unified as much as possible. This step involves the

following tasks:

Spell checking: the spelling errors in queries are

corrected. For example, the query “TOFL exam” is

modified to “TOEFL exam” or the Persian query “Tarneh

Alidoosi” [as an Iranian actress] is modified to “Taraneh

Alidoosti”.

Writing unification: the punctuation marks (? : ! . - ,) are

removed, since these marks result in different forms of

writing a word. On the other hand, some of the letters in

Persian and Arabic alphabets have different shapes, but are

used interchangeably (for example, ی and ئ). Therefore,

such letters are normalized and replaced with the same

Unicode. Furthermore, plural signs are removed. For

example, the query “programs” is modified to “program”.

Also, all English letters are converted to lower case. For

instance, both queries “JAVA” and “Java” are converted to

“java”.

Esmaeeli-Gohari & Zarifzadeh, Effective Query Recommendation with Medoid-based Clustering …

36

Stemming: All words are replaced with their stems. In this

way, the diversity of words in queries is reduced which

increases the chance of detecting similar queries. For

example, if a user submits a query containing the word

“analyze”, then queries containing the words “analysis”,

“analyzing”, “analyzer”, “analyzes” and “analyzed” could

also be related to the user’s search needs. Previous studies

have shown that stemming reduces the size of bag-of-

words by about 50% [26].

Synonym labeling: All words with the same meaning are

labeled with the same label such that the distance between

similar queries are reduced. As a result of this task, each

word is replaced with its most frequently used synonym.

For example, the words “battle”, “clash”, “attack” and

“fight” are synonyms and therefore the word “fight” is

used as their label.

Stop word removal: The stop words are identified and

removed from the submitted queries by using a fixed list

of stop words. The stop words are words that appear

frequently in queries and documents, but do not imply any

particular meaning. Such words consist of articles,

prepositions, conjunctions, pronouns and some specific

nouns and verbs. As an example, terms like “however” are

removed from queries. This task improves both the

precision and the computational performance of

recommendation system.

These tasks are all performed, using open-source tools

available for Persian and English languages, i.e., Hunspell

package [27] and PersianStemmer [28].

3-2- Query Clustering Step

Due to its simplicity and performance gains, query

clustering has attracted the attention of many researchers

in the past years [12, 13]. After accomplishing the data

preprocessing step, we cluster our training queries. We

argued earlier that terms cannot solely represent the

purpose of a query and as a result, it is not precise to just

consider the terms of queries to measure their similarity. In

this paper, we use various lexical and semantic features to

find out similar queries. After the data preprocessing phase,

training queries are clustered. In order to compute the

similarity between queries, the following three features are

extracted:

• N-grams feature

• Bipartite graph (bigraph) feature

• Top-k search results feature

3-2-1- N-grams Feature

If two queries have the same words, they are supposed to

indicate similar information needs. To obtain the lexical

similarity between queries, we extract the N-grams (up to

trigram) of each query. For example, for the sample query

“find research council site”, we have:

 Unigrams: “find”, “research”, “council”, “site”;

 Bigrams: “find research”, “research council”,

“council site”;

 Trigrams: “find research council”, “research

council site”.

We construct an N-gram vector for each query. Our

vocabulary is the set of all different 1/2/3-grams in

submitted queries. An N-gram g exists in the vector of

query q, if g appears in q at least once. Similar to the

previous works such as [11], the N-gram vector is then

Fig. 1: Workflow of the proposed method

Journal of Information Systems and Telecommunication, Vol. 8, No. 1, January-March 2020

37

used to obtain the similarity measure between queries. For

instance, the vector for the above example includes the

following N-grams:

{find, research, council, sites, find research, research

council, council sites, find research council, research

council sites}

We use the simple Jaccard similarity [35] to compute the

similarity between two queries and :

 ()
 ()

 (1)

where represents the set of N-grams exist in

the vector of query . In other words, the above similarity

indicates the ratio of common N-grams between two

queries. The average number of terms in queries is usually

limited to a small value, e.g., around 4 in our dataset. Thus,

it is easy to compute the above formula. The obtained

similarity from the N-grams feature would be more

reliable for long queries and may fail for short queries. For

example, consider two queries “Apple pear” as a fruit, and

“Apple Inc.” as a company. According to this feature, the

similarity between two queries is 20%, despite the fact that

they convey different meanings. On the other hand, many

queries (like “natural disasters” and “unforeseen events”)

denote the same purpose, but they are expressed with

different terms. We need extra features to unravel such

problems.

3-2-2- Bipartite Graph (Bigraph) Feature

The second feature is based on this assumption that queries

that lead to a click on the same documents are likely to

represent the same information needs [13]. For this reason,

the “Query-URL” bipartite graph (bigraph) is used to

obtain the second feature. In this graph, vertices are

queries and ULRs. Each edge in the graph shows

that at least one user has clicked on URL , as the search

result of query . The weight of the edge shows the

number of users’ clicks on URL after query . All other

queries that lead to click on are nominated for

recommendation for query . We use to refer

to the bipartite graph where and are the set of all

queries and URLs, respectively which aggregately

construct the set of vertices and is the set of edges in the

graph. We use [] to denote the weight of the edge

between query and URL .

From the bipartite graph, we construct a URL vector for

each query in which a URL exists in the vector of query

 (with a weight of []), if exists in the graph

 . Just as the previous works [9, 17], in order to compute

the similarity between two queries and from the

bipartite graph, the following steps should be taken:

 The set of URLs that appear in the URL vectors

of both and are extracted. We use to

refer to this set.

 If , the similarity between and is

assumed zero.

 Otherwise, the similarity between and is

obtained using the following equation:

 ()
∑ [] []

∑ []

 []
 (2)

where is the th
 URL in set and is the th

URL in set . Moreover, [] denotes the weight

of the edge between query and URL in the

bigraph.

Fig. 2 illustrates a sample “Query-URL” bipartite graph.

The number over each link shows the weight of that link.

Suppose we want to obtain the similarity between and

other queries in this graph. As shown in the figure, users

have clicked on URLs , and after submitting

query . Now, all other queries that result to a click on

any of these URLs are identified, i.e., queries in the set

 . The URL vector for each of these four

queries has at least one URL in common with the URL

vector of .

Fig. 2: A sample “Query-URL” bipartite graph

The similarity between and each query in the set

 is computed using Equation (2), while the

rest of queries have zero similarity with .

Since the average number of URLs clicked after each

query is limited (e.g., about 3 in our dataset), computing

the above similarity is not a difficult task. Although a click

can be regarded as an indirect indication of a user’s

interest to the content of the corresponding URL, yet

clicking on a URL can not necessarily denote the

relevancy between queries. For example, a user may click

on a URL by mistake or face with a click bait, while

having no interest to that content. On the other hand, there

are many relevant queries that have no common URL

clicks and thus their similarity becomes zero, especially

when we know that usually users click on a few top

results. An additional feature is required to detect similar

queries despite differences in their texts and clicks.

Esmaeeli-Gohari & Zarifzadeh, Effective Query Recommendation with Medoid-based Clustering …

38

3-2-3- Top-k Search Results and their Ranks Feature

The third feature, for computing similarity between

queries, is related to the top-k search results of query

returned by the search engine. The idea is if two queries

have several common search results, it is highly probable

that they are relevant, even if they have no common terms

or clicks. We only consider the results of the first search

result page which typically contains 10 results (i.e., k=10).

This is due to the fact that the first page usually receives

much more traffic (click rate) than other pages: According

to a recent research on Google search engine, the first page

attracts 91.5%, the second page 4.8%, the third page 1.1%,

and the forth page 0.4% of the traffic [29].

The ranking of search results is also an important factor.

For example, by submitting the query “apple” in Google, a

couple of first search results are related to the Apple Inc.

and the next results are related to the apple fruit, while for

the query “apples”, the top results are related to the apple

fruit. Although these two queries are lexically similar

(after stemming), the intent of users for submitting them is

quite different. This sample shows why the search results

of queries and their ranks are beneficial to identify similar

queries. In cases where users do not click on the same

results or even do not click on any search result, this

feature can be a proper measure to compute similarity

between queries. We first weigh the search results of a

query according to their ranks. The higher the rank of a

URL is, the more its weight would be. The reason for this

weighting is that the search engines rank the URLs based

on their relevance to the submitted query; and a higher

ranked URL receives more clicks from users [12, 30].

Therefore, the value of a URL decreases as its rank

increases. We define the weight of a URL with rank ,

with []

 .

As before, we construct a result vector for each query in

which a URL exists in the vector of query (with

weight of []), if is the th
-ranked search result for

query . To compute the similarity between two queries

and , the following equation is used:

(3) ()

∑

 [] []

| |

where is the number of common URLs in the top 10

search results of two queries and , and are

the ranks of the th
 common URL with respect to query

and , respectively. According to the above formula, as

much as two queries have more common search results

with similar ranks (especially in top ranks), they get a

higher similarity score. For example, the presence of a

same search result l in the first rank of both and

implies a much higher score, compared with the case

where the result l appears in different ranks for two

queries. According to the weight value we assign to a

search result in rank i, high-ranked common results can

significantly boost the similarity score. As we explained

before, the rationale is that the rank of each URL indicates

the amount of its relevance to the submitted query.

3-2-4- Final Similarity

To get the final similarity between two given queries

and , the values of the above three features are

combined linearly as follows:

 () ()

 () () (4)

The sum of , and parameters is equal to one (i.e.,

). Therefore, the result of Equation (4) is

always between 0 and 1, as the value of all three features is

also between 0 and 1. The setting of these hyper-

parameters is explained in Section 4. In order to reduce the

number of incorrect recommendations, we use a minimum

similarity threshold such that if the final similarity

between two queries is smaller than , we assume they

have a zero similarity, i.e., they are irrelevant. Based on

our experiments, we use .

3-2-5- Medoid-based Clustering

In the last step of the offline phase, we use the final

similarity feature to cluster our training queries with a k-

medoids algorithm. In contrast to the k-means algorithm

which calculates the means of points as centroids, k-

medoids chooses points themselves as centroids. This is

more compatible with our notion of pairwise similarity

defined in Equation (4), since we do not assign any feature

to each individual point (i.e., two queries cannot be

averaged, they can only be compared with respect to the

similarity features).

The most common realization of k-medoids is the

Partitioning Around Medoids (PAM) algorithm [31] which

works effectively for small datasets, but does not scale

well for large datasets due to its time complexity. There

have been some efforts in developing fast algorithms for k-

medoids clustering, e.g., with sampling and randomization

techniques. In this paper, we use a simple and fast

algorithm for k-medoids clustering that works in three

steps [32]:

1. Select initial medoids: Calculate the distance between

every pair of training points, select k most middle points as

initial medoids using a local heuristic method in [32].

2. Update medoids: Find a new medoid of each cluster,

which is the point minimizing the total distance to other

points in its cluster.

3. Assign objects to medoids: Assign each point to the

nearest medoid, calculate the sum of distances from all

points to their corresponding medoids. If the sum is equal

to the previous one, then stop the algorithm. Otherwise, go

back to Step 2.

Journal of Information Systems and Telecommunication, Vol. 8, No. 1, January-March 2020

39

The above algorithm can take a significantly reduced time

in computation with comparable performance, against the

PAM [32]. We use this algorithm to cluster all training

queries, using the inverse of final similarity in Equation

(4) as the distance between two queries:

 (5)

After clustering, we omit clusters containing only one

query. As a result, at most 5% of queries are removed from

our dataset, i.e., we have no recommendation for them.

The remaining clusters may comprise a lot of queries

which are not necessarily pairwise relevant, but it is very

likely that they belong to the same category of

information. For example, all queries about films, actors,

and actresses may rest in a single cluster. Based on

detected clusters, we construct three reverse lookup tables

which will be used later to identify the corresponding

cluster of an online (test) query:

- N-gram lookup table: For each 1/2/3-gram g and

each cluster c, it shows how many times g is

repeated in queries of cluster c.

- Click lookup table: For each URL u and each

cluster c, it represents how many times u is

clicked following queries in cluster c.

- Result lookup table: For each URL u and each

cluster c, it indicates how many times u is

returned as a search result of queries in cluster c.

The update of clusters is done periodically, e.g., in a per-

day or per-week basis, through re-executing the above

algorithm on the updated set of queries. During the update

process, we can boost training queries based on the time of

their occurrences, to put more emphasis on the

recommendation of recent queries. We can also remove

queries that have not been repeated for a while from the

dataset.

It is worth mentioning that since we run the clustering

algorithm in an offline environment, its running time does

not affect the response time of test queries. In other words,

we try to perform most time-consuming and complicated

tasks in an offline manner to make our recommendations

for online queries as soon as possible.

3-3- Online Randomized Query Recommendation

Our model is now trained and ready for query

recommendation. In the online phase, when a test query q

is submitted to the system, the closest cluster to q is found

using the inverse lookup tables built in the clustering step.

To do so, we first create an N-gram vector containing all

1/2/3-grams in q and also a URL vector having the first 10

search results of q. For each element in the N-gram vector,

we search the N-gram lookup table and determine the

frequency of occurring g in queries of cluster c as the score

of cluster c. For the purpose of normalization, all cluster

scores are divided by the maximum score. Similarly, for

elements in the URL vector, we separately search the click

and the result lookup tables to get the corresponding

scores. The closest cluster to query q is the one with the

highest total score with respect to the sum of above three

scores. In rare cases where the score of top clusters are

very close, we can select 2 or 3 clusters as the closest

clusters to find relevant queries within them.

After finding the closest cluster which we call it

designated cluster or in brief, we extract most similar

queries, in terms of the final similarity feature, from that

cluster. In our work, we find top 10 similar queries (i.e.,

), and if the similarity between q and any of these

queries is below the threshold , we ignore that query. To

incur an acceptable query response time, we have to

extract similar queries in a timely fashion. Since the

number of queries in cluster can be large, calculating

the similarity between q and every query in may be

costly. We here devise a randomized nearest neighbor

algorithm for approximating most similar queries in

regard to query q. This algorithm works iteratively as

follows:

1. Initialization: Randomly select queries from the

designated cluster and put them in set S as the set of

seed queries.

2. Distance calculation: Calculate the distance between q

and every query in S, based on the distance metric in

Equation (5).

3. Candidate selection: Sort all queries in S in ascending

order, based on their distance from q, and put the first

queries in new set C (as the set of candidate queries).

4. Exploration: If new set C is different from the old C

(obtained in the previous iteration), then for each query p

in new C, greedily add most similar queries with respect

to p from cluster to set S and go to Step 2 for the next

iteration. Otherwise, return new C.

The exploration step in the above algorithm is

straightforward, as we do not perform any distance

calculation or even sorting in this step. This is because the

distance between every pair of queries in each cluster is

calculated in the offline phase and we exactly know a

priori which queries are the most similar queries with

respect to a query p in the designated cluster.

The advantage of the above algorithm is that it performs

Step 2 and 3 for a limited number of queries in the

designated cluster. In the worst case, it may go over all

queries in or may return queries that are not

necessarily most similar to q. However, because of both

randomized and greedy natures of the algorithm, it usually

finds most similar queries after 2 or at most 3 iterations,

even for very large clusters that contain thousands of

queries. The results of our experiments on this algorithm is

presented in the next section.

Esmaeeli-Gohari & Zarifzadeh, Effective Query Recommendation with Medoid-based Clustering …

40

4- Evaluation

In this section, we explain the details of our experiments

and present the evaluation results. All recommendation

methods are implemented in Java with its native data

structures such as ArrayList and LinkedList. To speed up

the similarity computation and clustering process, we load

all data directly in RAM without using any traditional

databases. Our experiments are conducted on a server

equipped with an Intel® Xeon® Processor X5650 and

32GB DDR3 RAM.

4-1- Experimental Dataset

To assess the efficiency of the recommendation

algorithms, we use two separate datasets, from Parsijoo

(the first Persian search engine) and AOL search engine

logs1. The Parsijoo dataset consists of 7-days log of user

activities from May 12 till May 18, 2018 and AOL search

engine log contains web queries in a period of one month

between March 1 and March 31, 2006. The statistics of

two datasets are presented in Table 1. There is no record

belonging to DDoS attacks in the Parsijoo log, as these

attacks are abandoned by the front firewall. Moreover, we

remove spam queries and click spams from our log as

much as possible [33, 34].

Table 1: Statistics of Parsijoo and AOL datasets

Number of

unique queries

Number of

queries led

to a click

Number of

queries

Time

period
Dataset

246450 521542 932394 7 days Parsijoo

3382951 6484875 12138555 31 days AOL

4-2- Evaluation Model

Our evaluation model is similar to the model used in

previous works [17]. We first randomly partition our

datasets into two roughly equal-sized parts and then,

analyze the tuning of hyper-parameters, including , and

 in Equation (4), using the first part as the validation

dataset. Then, we evaluate different algorithms using the

other part as the evaluation dataset. We randomly select

1000 queries from the evaluation dataset as test queries

and all remaining queries are used as training queries to

train the model and cluster queries 2 . We perform the

above steps for Parsijoo and AOL datasets separately. In

order to see how robust our method is, we use different

ratios of evaluation dataset (i.e., 90%, 70%, 50% and 30%)

for training. For instance, when R=70%, we only inject

70% of the evaluation dataset for k-medoids clustering (the

1 The 3-months search log of AOL is publicly available over the Internet,

e.g., in [8].
2 To remove noises, we only consider test queries that have been repeated

at least 5 times by different users.

default ratio is R=90%). Also, the default number of

recommendations is n=10.

As the evaluation metric, we use the precision which is

defined as follows:

 (6)

where (True Positives) denotes the number of relevant

queries that are correctly recommended as relevant, and

 (False Positives) indicates the number of irrelevant

queries that are wrongly recommended as relevant. In

order to count and , we manually investigate the top

results of recommendation algorithms for each test query

to find out how many of them are relevant and irrelevant,

respectively.

We also use the important p@10 metric as the number of

correct recommendations made for each query over

 :

 (7)

To understand the difference between two metrics,

consider an example where a recommendation algorithm

returns just one query and this query is relevant. The

precision is 1, while the p@10 is 0.1. The results of

precision and p@10 are averaged over all test queries. The

running time and memory usage of the proposed method is

calculated according to the executions on test queries.

4-3- Evaluation Results

4-3-1- Tuning of Parameters

To assess the impact of three hyper-parameters in

Equation (4) and get the best configuration, we use an

exhaustive grid search in the range [0,1] for , and

parameters with step size of 0.1. We use the validation

dataset for hyper-parameter tuning. Table 2 shows the

results of precision and p@10 obtained in our method with

different values of , and for the Parsijoo dataset. We

separately tune our method for the AOL dataset as well.

The highest precision and p@10 is achieved at ,

 and . For the AOL dataset, the best

configuration is gotten at , and .

The N-gram feature reflects the pure textual similarity

between queries and hence, it has a higher coefficient than

other two features. On the other hand, the bipartite graph

feature is more important than the top-10 search results

feature, since it is supported by users’ clicks. Thus, we can

generally conclude that . It is interesting that

whenever we ignore any of these three features, we get a

very bad result, especially with regard to the p@10 metric.

For example, the p@10 degrades by up to 45% in cases

where one of , and parameters is set to 0, while the

precision worsens about 15%.

Journal of Information Systems and Telecommunication, Vol. 8, No. 1, January-March 2020

41

Table 2: The precision and p@10 results of our method obtained with

different values of , and parameters from Parsijoo dataset

 precision p@10

0.5 0.3 0.2 66.8% 63.9%

0.4 0.3 0.3 65.4% 62.7%

0.5 0.5 0 61.3% 54.5%

0.5 0 0.5 62.1% 57.5%

0 0.5 0.5 57.9% 48%

1 0 0 60.2% 47.6%

0 1 0 54.3% 42.3%

0 0 1 55.4% 33.1%

Although the tuning of hyper-parameters is dependent on

the dataset, but their optimum setting is not influenced by

choosing different ratios of evaluation dataset (R). More

specifically, the best value of , and is roughly the

same for two cases where R=90% and R=30%.

Fig. 3 shows the impact of choosing , i.e., the number of

recommendations, on the precision (varies from 1 to 10).

We conduct this experiment on both Parsijoo and AOL

datasets. The best result is achieved at . As the

number of recommendations increases, the recommended

queries become less similar to the user’s submitted query,

from the view point of three features, and thus, the number

of false positives grows. The precision decreases about

30% when we change from 1 to 10. For large values of

 , the precision does not change much, as our algorithm

can rarely add any more recommendation for a significant

portion of queries (e.g., the precision at is only 1%

higher, compared with). The precision of

recommendation for AOL is on average 8% higher than

that of Parsijoo, especially for larger values of . The main

reason behind this phenomenon is that the amount of

queries and users in the AOL dataset is an order of

magnitude larger than queries in Parsijoo. Thus, the

likelihood of finding relevant queries for a test query is

higher.

Fig. 3: The precision results of our method with respect to number of

reommendations (), obtained from AOL and Parsijoo datasets

Now, we analyze how the volume of training dataset

affects the test results. The result of precision and p@10

for different ratios of Parsijoo dataset are shown in Fig. 4.

As the amount of training data shrinks, the precision

declines slightly. For example, the precision worsens only

11%, when R decreases from 90% to 30%. As much as we

reduce the size of training dataset, the number of true

relevant queries recommended for a given test query

decreases. However, since we use a minium similarity

threshold between relevant queries in Equation (4), the

number of irrelevant queries recommended by our

algorithm does not change much. But, the story is different

when we pay attention to the p@10 metric. It is affected

considerably by the value of R in a way that it drops by

about one third when R falls to 30%. This is because our

algorithm can barely find multiple relevant queries as we

have not enough training queries. The trend of results in

Fig. 4 remains roughly the same for AOL dataset.

However, since the number of training queries is much

larger in this dataset, the decrease in p@10 is not so

devastating (the recall gets halved, as we reduce R from

90% to 30%).

Fig. 4: The evaluation results of our method with respect to different

evaluation dataset ratio R

The number of clusters in the k-medoids clustering

algorithm impacts on both precision and response time of

our method. Fig. 5 demonstrates the evaluation results of

the proposed method obtained for Parsijo dataset when k

raises from 50 to 500 with step size of 50. For smaller

values of k, the precision is lower because it is more likely

that irrelevant queries are placed in the same cluser. As a

result, our randomized nearest neighbor algorithm

probably returns some irrelevent queries in response to a

submitted query. As much as we enlarge k, the precision

improves as well. However, this improvement becomes

negligible for very large values of k. On the other hand, the

p@10 metric worsens when k goes beyond 350, because

the number of relevant queries in clusters is reduced and

our randomized algorithm fails in many cases to find 10

similar queries. Based on these results, we choose k=400

as the optimum value for our experiments.

Esmaeeli-Gohari & Zarifzadeh, Effective Query Recommendation with Medoid-based Clustering …

42

Fig. 5: The evaluation results of our method with respect to different

number of clusters (k), obtained from AOL and Parsijoo datasets

The choice of k depends on the properties of dataset. Thus,

we conduct the same experiment on the AOL dataset

which leads to k=900 as the best choice. It is fascinating

that the tunning of k is independent of the dataset ratio R

(if the training queries are randomly selected from the

whole dataset). From the perspective of response time, our

randomized algorithm works faster when we increase the

number of clusters, because it explores all candidate

queries in fewer iterations. For example, the response time

of the online algorithm gets halved when we change k

from 50 to 500.

4-3-2- Evaluating the Online Algorithm

As discussed before, the randomized algorithm, proposed

for approximating most similar queries in the online phase,

makes a good tradeoff between the performance and

response time of the recommendation system. We compare

the performance results of this algorithm with the

exhaustive algorithm which exactly finds the most similar

queries through brute-force search in the designated

cluster. The results of this comparison obtained from the

Parsijoo dataset are presented in Table 3. The randomized

algorithm produces the response 3 times faster than the

exhaustive one at the cost of only 2% reduction in

precision. As shown in the table, the average number of

candidate queries investigated to find most similar queries

is reduced by a factor of about 4. The results are improved

further for bigger datasets like AOL, namely the response

time decreases by a factor of 6 with only 3% loss in

precision.

Table 3: Comparison between exhaustive and randomized

recommendation algorithms

Algorithms precision p@10 #candidate

queries

response

time

Exhaustive nearest

neighbor

68.1% 65.3% 672 615ms

Randomized nearest
neighbor

66.8% 63.9% 164 201ms

4-3-3- Comparing Different Algorithms

Finally, we compare the performance of our method with

three famous query recommendation algorithms

introduced in [17], [13] and [24], which we refer to by

“Bipartite graph”, “Query clustering” and “KB-QREC”,

respectively. Table 4 shows the results of precision and

p@10 obtained separately from Parsijoo and AOL

datasets. Our proposed method, has a better precision in

comparison with the other three methods, especially when

we conside the Parsijoo dataset. More precisely, the

proposed method outperforms KB-QREC by about 7%,

and overcomes the bipartite graph and query clustering

methods by more than 9% and 20%, respectively. From

the viewpoint of p@10, the gap between the results of our

method and other methods becomes even more apparent in

a way that the improvement reaches to at least 23%. We

achieve this advantage through utilizing various kinds of

features simultaneously (from a linguistic feature to a user

behavioral feature) to find similar queries. This property is

more vital when we consider smaller datasets, since the

only way to generate multiple recommendations is to catch

similar queries from all different perspectives.

Table 5 compares the above four query recommendation

methods with respect to the response time and memory

usage parameters, obtained from Parsijoo and AOL

datasets. To get the results, we submit 1000 queries to

each recommendation method and then measure these two

parameters for each method separately. First of all, since

the size of AOL data is much larger than that of Parsijoo,

we observe a considerably higher value for both

parameters in all methods, when we take this dataset into

account. The Bipartite graph is the simplest algorithm

which is solely based the query-click graph. As a result, it

yields the minimum value for both response time and

memory usage. On the other hand, our method works with

three different kinds of information to compute similarity

features and hence, it has the worst memory usage. For

instance, with Parsijoo dataset, it consume about 10%,

20% and 50% more memory than KB-QREC, Query

clustering and Bipartite graph, respectively. This gab

expands even further, when we consider the bigger AOL

dataset.

Table 4: Comparison of different methods with respect to precision and

p@10

Methods
Parsijoo AOL

precision p@10 precision p@10

Query clustering [13] 51.5% 43.1% 62.2% 59.1%
Bipartite graph [17] 61.4% 38.8% 69.6% 62.6%

KB-QREC [24] 62.7% 48.8% 70.8% 67.2%

Our proposed method 66.8% 63.9% 74.7% 72.2%

In regard to the response time factor, the story becomes

completely different. With Parsijoo dataset, the response

time of our algorithm is about 10% and 16% shorter than

KB-QREC and Query clustering methods, respectively (it

still incurs a 10% longer response time than Bipartite

graph). The response time of our method (in comparison

with other methods) is improved more, when using AOL

Journal of Information Systems and Telecommunication, Vol. 8, No. 1, January-March 2020

43

dateset. More precisely, it outperforms KB-QREC and

Query clustering by about 25% and 40%, respectively.

This advantage is mainly due to the fast randomized

algorithm we use in the online phase of our proposed

method, as it tries to keep the set of candidate queries for

finding most similar ones as small as possible.

Table 5: Comparison of different methods with respect to system

parameters

Methods

Parsijoo AOL

response

time

memory

usage

response

time

memory

usage

Query clustering [13] 386ms 51MB 1437ms 575MB
Bipartite graph [17] 288ms 44MB 789ms 409MB

KB-QREC [24] 354ms 56MB 1096ms 603MB

Our proposed method 321ms 62MB 814ms 681MB

5- Conclusions

In this paper, a novel method is proposed for query

recommendation in search engines, using a combination of

two query clustering and graph modeling approaches. As

opposed to former methods, we take into account diverse

features (query, click and result) to define similarity

between queries and cluster them. In order to improve both

precision and response time, we use an efficient k-medoids

clustering algorithm as well as a new randomized nearest

neighbor algorithm to find most similar queries.

Evaluation results show that the proposed method

outperforms some famous query recommendation methods

with respect to precision and p@10 metrics. For example,

the p@10 is improved by at least 23%, when compared

with other counterparts.

References

[1] J. Wang, J. Z. Huang, J. Guo, and Y. Lan, “Query Ranking

Model for Search Engine Query Recommendation”,

International Journal of Machine Learning and Cybernetics,

Vol. 8, No. 3, 2015, pp. 1-20.

[2] M. Mitsui, “A Generative Framework to Query

Recommendation and Evaluation”, in ACM Conference on

Human Information Interaction and Retrieval (CHIIR), 2017,

pp. 407-409.

[3] X. Zhu, J. Guo, X. Cheng and Y. Lan, “More than Relevance:

High Utility Query Recommendation by Mining Users'

Search Behaviors”, in 21st ACM International Conference on

Information and Knowledge Management (CIKM), 2012, pp.

1814-1814.

[4] P. Melville and V. Sindhwani, “Recommender Systems”,

Encyclopedia of Machine Learning, Springer US, pp. 829-

838, 2011.

[5] Y. Liu, J. Miao, M. Zhang, S. Ma and L. Ru, “How Do Users

Describe Their Information Need: Query Recommendation

based on Snippet Click Model”, Expert Systems with

Applications, Vol. 38, No. 11, 2011, pp. 13:847-13:856.

[6] W. Song, J. Z. Liang, X. L. Cao and S. C. Park, “An Effective

Query Recommendation Approach using Semantic Strategies

for Intelligent Information Retrieval”, Expert Systems with

Applications, Vol. 41, No. 2, 2014, pp. 366-372.

[7] Y. Song, D. Zhou and L. W. He, “Query Suggestion by

Constructing Term-transition Graphs”, in 5th ACM

International Conference on Web Search and Data Mining

(WSDM), 2012, pp. 353-362.

[8] Web Search Query Log Downloads.

https://www.jeffhuang.com/search_query_logs.html (2018).

[9] Z. Zhang and O. Nasraoui, “Mining Search Engine Query

Logs for Query Recommendation”, in 15th International

Conference on World Wide Web (WWW), 2006, pp. 1039–

1040.

[10] J. R. Wen, J. Y. Nie and H. J. Zhang, “Clustering User

Queries of a Search Engine”, in 10th International Conference

on World Wide Web (WWW), 2001, pp. 162-168.

[11] R. Baeza-Yates, C. Hurtado and M. Mendoza, “Query

Recommendation using Query Logs in Search Engines”, in

International Conference on Extending Database Technology

(EDBT), 2004, pp. 588-596.

[12] Y. Hong, J. Vaidya and H. Lu, “Search Engine Query

Clustering using Top-k Search Results”, in IEEE/WIC/ACM

International Conferences on Web Intelligence and

Intelligent Agent Technology (WI-IAT), 2011, pp. 112-119.

[13] R. Chaudhary and N. Taneja, “A Novel Approach for Query

Recommendation via Query Logs”, International Journal of

Scientific and Engineering Research (IJSER), Vol. 3, No. 8,

2012, pp. 1-6.

[14] L. Fitzpatrick and M. Dent, “Automatic Feedback using Past

Queries: Social Searching?”, in 20th Annual International

Conference on Research and Development in Information

Retrieval (SIGIR), 1997, pp. 306–313.

[15] K. Sugiyama, K. Hatano and M. Yoshikawa, “Adaptive

Web Search based on User Profile Constructed without any

Effort from Users”, in 13th Conference on World Wide Web

(WWW), 2004, pp. 675–684.

[16] B. J. Chelliah, R. Ojha, S. Semwal, P. Dobhal and C. Sahu,

“Personalized Search Engine with Query Recommendation

and Re-ranking”, Journal of Network Communications and

Emerging Technologies (JNCET), Vol. 8, No. 4, 2018, pp.

213-217.

[17] Q. Mei, D. Zhou and K. Church, “Query Suggestion using

Hitting Time”, in 17th ACM Conference on Information and

Knowledge Management (CIKM), 2008, pp. 469–478.

[18] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis and S.

Vigna, “The Query-flow Graph: Model and Applications”, in

17th ACM Conference on Information and Knowledge

Management (CIKM), 2008, pp. 609-618.

[19] A. Anagnostopoulos, L. Becchetti, C. Castillo and A. Gionis,

“An Optimization Framework for Query Recommendation”,

in 3rd ACM International Conference on Web Search and

Data Mining (WSDM), 2010, pp. 161-170.

[20] L. Bai, J. Guo and X. Cheng, “Query Recommendation by

Modelling the Query-flow Graph”, in Asia Information

Retrieval Symposium (AIRS), 2011, pp. 137-146.

[21] F. Bonchi, R. Perego, F. Silvestri, H. Vahabi and R.

Venturini, “Recommendations for the Long Tail by Term-

Query Graph”, in 20th International Conference on World

Wide Web (WWW), 2011, pp. 15-16.

https://www.jeffhuang.com/search_query_logs.html

Esmaeeli-Gohari & Zarifzadeh, Effective Query Recommendation with Medoid-based Clustering …

44

[22] J. Wang, J. Z. Huang, D. Wu, J. Guo and Y. Lan, “An

Incremental Model on Search Engine Query

Recommendation”, Elsevier Neurocomputing, Vol. 218,

2016, pp. 423-431.

[23] A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma, J. G.

Simonsen and J. Y. Nie, “A Hierarchical Recurrent Encoder-

decoder for Generative Context-aware Query Suggestion”, in

24th ACM International Conference on Information and

Knowledge Management (CIKM), 2015, pp. 553-562.

[24] Z. Huang, B. Cautis, R. Cheng and Y. Zheng, “Kb-enabled

Query Recommendation for Long-tail queries”, in 25th ACM

International Conference on Information and Knowledge

Management(CIKM), 2016, pp. 2107-2112.

[25] R. Cheng, Y. Zheng and J. Yan, “Entity-based Query

Recommendation for Long-tail Queries”, ACM Transactions

on Knowledge Discovery from Data, Vol. 1, No. 1, 2018, pp.

1-22.

[26] S. Kannan and V. Gurusamy, “Preprocessing techniques for

text mining”, International Journal of Computer Science &

Communication Networks, Vol. 5, No. 1, 2014, pp. 1-7.

[27] Hunspell GitHub. https://github.com/hunspell (2018).

[28] H. Taghi-Zadeh, M. H. Sadreddini, M. H. Diyanati, and A.

H. Rasekh, “A New Hybrid Stemming Method for Persian

Language”, Digit. Scholarsh. Humanit., Vol. 32, No. 1, 2017,

pp. 209–221.

[29] Infront Webworks: Value of Organic First-page Results.

https://www.infront.com/blogs/the-infront-

blog/2015/6/17/value-of-first-page-google-results (2018).

[30] T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski

and G. Gay, “Evaluating the Accuracy of Implicit Feedback

from Clicks and Query Reformulations in Web Search”,

ACM Transactions on Information Systems (TOIS), Vol. 25,

No. 2, 2007, pp. 183-190.

[31] L. Kaufman, and P.J. Rousseeuw, “Clustering by Means of

Medoids in Statistical Data Analysis based on the L1–norm

and Related Methods”, North-Holland, pp. 405–416, 1987.

[32] H. S. Park, and C. H. Jun, “A Simple and Fast Algorithm for

K-medoids Clustering”, Elsevier Expert Systems with

Applications, Vol. 36, No. 2, 2009, pp. 3336-3341.

[33] T. Shakiba, S. Zarifzadeh, and V. Derhami, “Spam Query

Detection using Stream Clustering”, Springer World Wide

Web (WWW), Vol. 21, No. 2, 2018, pp. 557–572.

[34] M. Fallah, S. Zarifzadeh, “Practical Detection of Click

Spams using Efficient Classification-based Algorithms”,

International Journal of Information and Communication

Technology Research, Vol. 10, No. 2, 2018, pp. 63-71.

[35] C. D. Manning, P. Raghavan and H. Schütze, Introduction to

Information Retrieval, Cambridge University Press, 2008.

Elham Esmaeeli-Gohari received the B.S. degree in

Computer Engineering from Shahid Bahonar University,
Kerman, Iran in 2013, and M.S. degree in Software
Engineering from Yazd University, Iran, in 2017. Currently
she is a Ph.D. Student in Isfahan University, Iran. Her
research interests include Autonomous vehicles, Data fusion,
Big data, Recommendation systems, Machine learning and
Data mining.

Sajjad Zarifzadeh is an assistant professor of Computer

Engineering at Yazd University, Iran. He received his Ph.D. in
Computer Engineering from University of Tehran, Iran in
2012. His research is focused on Data analysis, Big data,
Network security, Web and Internet services.

https://github.com/hunspell

