

 Corresponding Author

rvinay1@student.nitw.ac.in

Journal of Information Systems and Telecommunication
Vol.10, No.2, April-June 2022, 80-88

http://jist.acecr.org
ISSN 2322-1437 / ESSN:2345-2773

1*, 2

1
.BVRIT Hyderabad, College of Engineering for Women, Hyderabad, India.

2
.National Institute of Technology Warangal, Telangana, India.

Received: 20 Aug 2020 / Revised: 27 Jul 2021/ Accepted: 05 Dec 2021

DOI:

Abstract
Microservices architecture's popularity is rapidly growing as it eases the design of enterprise applications by allowing

independent development and deployment of services. Due to this paradigm shift in software development, many existing

Service Oriented Architecture (SOA) applications are being migrated to microservices. Estimating the effort required for

migration is a key challenge as it helps the architects in better planning and execution of the migration process. Since the

designing style and deployment environments are different for each service, existing effort estimation models in the

literature are not ideal for microservice architecture. To estimate the effort required for migrating SOA application to

microservices, we propose a new effort estimation model called Service Points. We define a formal model called service

graph which represents the components of the service based architectures and their interactions among the services. Service

graph provides the information required for the estimation process. We recast the use case points method and model it to

become suitable for microservices architecture. We have updated the technical and environmental factors used for the effort

estimation. The proposed approach is demonstrated by estimating the migration effort for a standard SOA based web

application. The proposed model is compatible with the design principles of microservices and provides a systematic and

formal way of estimating the effort. It helps software architects in better planning and execution of the migration process.

Keywords: Service Oriented Architecture; Microservices; Migration; Service Graph; Effort Estimation.

1- Introduction

Distributed systems have evolved rapidly beginning with

the monolithic style of designing applications. Monolithic

application has a large codebase, deployed as a single unit

and the components of the application are highly coupled.

Monolithic architecture has a limitation in the size and

complexity of the application.

With the increase in the complexity of enterprise

applications, business requirements, and the need for

designing distributed applications has led to the evolution

of SOA [1]. Service oriented architecture (SOA) has been

widely used in designing large enterprise applications in

the last two decades. It has mainly emerged to overcome

the scalability and deployment challenges of monolithic

applications. SOA is a style of designing applications

where all the components in the system are designed as

services. A service is a reusable software code that

performs various business tasks that can be simple or

complex based on the business requirements. SOA is

mainly used in the integration of multiple software

components using the Enterprise Service Bus (ESB) as the

communication channel [2]. ESB is the backbone of SOA

which helps in providing the features of the middleware

system. ESB acts as a mediator between the service

requester and provider and provides a platform for high

performance and scalability. SOA gained more popularity

with the evolution of web services which is the popular

implementation of SOA concepts. Web services are also

services that can be designed, accessed, and discovered

over the internet using communication protocols such as

XML based Simple Object Access Protocol (SOAP) and

Web Service Description Language (WSDL). Web

services use HTTP and Representational State Transfer

(REST) protocols for the transfer of messages through the

internet. The web services architecture comprises three

main components namely service provider, service

consumer, and service registry. A single web service can

be used by multiple clients at the same time and can be

easily deployed. Though SOA has gained huge demand in

designing applications, it exhibits few design and

deployment challenges [3]. Many changes and updates

occur in large enterprise applications [25] and when there

is a need to update a particular service, due to the

Journal of Information Systems and Telecommunication, Vol.10, No.2, April-June 2022

81

dependency it has on other services and the existence of

tight coupling with ESB, it requires to redeploy multiple

components for a change in a single service. Deploying

multiple services at a time leads SOA to the monolithic

style of deployment and it impacts the business [4].

Additionally, with the increase in ever-changing business

requirements, few services in SOA are tending towards

monolithic in size making the application complex and

difficult to maintain. Scaling such monolithic applications

is a bottleneck as SOA follows centralized governance [5].

Services that are overloaded can be scaled horizontally by

making multiple copies of the same service but the

hardware cost increases. Further, web services use

complex and heavyweight protocols such as SOAP for the

exchange of messages between the services [27].

To over these challenges in existing architectures,

microservices emerged as a new style of designing

applications using cloud-based containers for deployment

[26]. It is a style of designing applications where each

service is a small, loosely coupled, scalable and reusable

service that can be designed and deployed independently

[6]. Each service should perform only one task and should

have its own database and independent deployment

architecture. Microservices uses communication protocols

like HTTP/REST and JSON for data exchange between

the services. Unlike SOA, microservices can be deployed

independently as there is no centralized governance and no

dependency on middleware technologies. It is very easy to

scale on-demand microservices with the use of cloud-

based containers. Microservices architecture suits well

with the DevOps style as every task is to be broken into

small units and complete SDLC is to be done

independently [7]. DevOps and agile methodologies

require the fast design of applications and deployment to

production.

With the various benefits of microservices, software

architects have started migrating their existing legacy

applications to microservices architecture [8]. Many

companies including Netflix, Amazon, and Twitter have

started building their new applications with this style of

architecture [9]. As microservices has emerged recently,

there is a huge demand in both industry and academia to

explore the tools, technologies, and programming

languages used in this architecture. However, some of the

software architects are in chaos whether to migrate to this

new style or not as they are unaware of the pros and cons

of using microservices. The major challenge is estimating

the effort required to migrate the existing applications to

microservices [8][10].

Effort estimation helps software architects in the

proper execution and management of the project. Effective

estimation helps in proper scheduling of the software

engineering activities. Software effort is given by the

formula effort = people * time [11]. It has to be done

during the early stage of the application design as it gives

insights on the effort and cost required to complete the

application. Moreover, estimating the accurate effort

required for the migration process is a challenging task.

Underestimation and overestimation of the effort required

may lead to serious project management issues. Software

effort estimation techniques are divided into four types

namely, empirical, regression, theory-based, and machine

learning techniques based estimation [12]. Empirical way

of estimating is very popular as it gives a clear picture of

the effort required numerically and few of the models

include function point, use case point, and analogy based

techniques. The function point and COCOMO model fail

to estimate the effort and cost required to design the

application [13]. Parametric and non-parametric

forecasting models are used in regression approaches.

Multiple Linear Regression (MLR), Stepwise Regression

(SR), Poisson Regression, Standard Regression, Ordinary

Least Squares (OLS), and Stepwise Analysis of Variance

are some of the most used regression approaches. Theory-

based approaches are based on theoretical concepts that

characterize certain parts of software development

processes. Machine Learning based approaches for

estimating software effort includes Artificial Neural

Networks, Classification and Regression Tree, Case-based

Reasoning, Genetic Algorithm, Genetic programming, and

Rule Induction. Moreover, these techniques are not

suitable for measuring the effort for service-based systems

as they are designed for procedural object-oriented

systems.

Use Case Points (UCP) is a commonly used technique

because of its simplicity, fastness, and accuracy to a

certain extent [14]. UCP approach is based on the use case

diagrams for calculating the effort. Many variations and

enhancements have been published in the literature to

improve the accuracy of the approach [15][16][17].

Though the use case point approach is based on the use

case diagrams of object-oriented concepts, attempts have

been made for estimating the effort for service-oriented

architectures [18]. All the traditional approaches available

for effort estimation cannot be used directly for service-

based systems. Approaches need to be modified and

extended to cope with these service-based systems like

service oriented architecture and microservices

architecture [19].

To the best of our knowledge, there has been no work or

very little work done in estimating the effort required for

migration of service oriented architectures to

microservices architecture. In this paper, we attempt to

propose an approach for effort estimation by recasting the

existing use case point model by enhancing it to suit

appropriately for microservices. Generally, effort

estimation requires knowing about the system before the

design phase which is difficult. In our work, we use the

service graph representation of the microservices

application which is generated by the migration approach

Raj & Ravichandra, A Novel Effort Estimation Approach for Migration of SOA Applications to Microservices…

82

[20] and it gives detailed information about the number of

services and dependency it has on other services.

The remaining paper is organized as follows. The types

of services involved in the migration process are discussed

in section 2. The approach for effort estimation is

presented in section 3. Evaluation of the proposed

approach using a case study application is presented in

section 4. Section 5 concludes the paper.

2- Types of Services Involved During the

Migration Process

To migrate SOA based applications to a microservices

architecture, the monolithic services need to be broken into

small and independent services. However, there may exist

few services in SOA based application which perform a

single business task and can be directly considered as

microservices. For systematic estimation of the effort,

business services are classified into available, migrated,

new, or composed services [21]. However, there exist

many other types of services that are involved in achieving

the business requirements such as utility services, process

services, proxy services, integration services and,

suspended services, etc. Here, we discuss the significance

of each service in the migration of SOA to microservices

architecture.

Available service: Services that can be used directly in the

new architecture are treated as available services. Service

which does a single business task and is independent of

other services can be directly considered as microservice.

It requires no development effort and hence it is

considered as available service.

Migrated service: Service which is extracted from legacy

applications and generated by applying different migration

strategies is considered as migrated service. Here, the

services in SOA which are partitioned to form

microservices will be considered as migrated service.

These services require an effort for redesigning the new

application. The difference between available service and

migrated service is available service can be directly used

as microservice whereas migrated service requires effort

for transforming itself to a new microservice.

New service: Service which is built from scratch and

required for achieving the business needs is considered a

new service. It requires effort and it is very easy to

calculate the effort for new service. However, as both SOA

and microservices architectures are service-based systems,

no new services will be required while migration from

SOA to microservices. Therefore, we will not consider this

kind of service in effort estimation.

Composed service: Service which is formed by

combining one or more services is considered as

composed service. By the definition of microservices, each

service should perform only a single task and independent

from other services. Therefore, there will be no composed

services in the new architecture.

It is inferred from the above that in the effort estimation

of the migration process, only the migrated services need

to be considered. So the proposed model considers only

the migrated services in the effort estimation.

3- Effort Estimation Approach

3-1- Service Graph

Graph theory has been widely used in solving many

complex problems in software engineering as the flow of

messages and dependency between the software

components can be graphically represented. As services

are the software components in SOA based applications,

we develop a new graph called service graph (SG) to

extract the candidate microservices. We start by

introducing the concept of service graph which plays a

fundamental role in our proposed approach.

Service graph (SG) is a regular graph generated for the

visual analysis of communication and dependency

between the services of an SOA application. The service

graph is the simplest representation of the number of

services and the interactions among those services. The

generalized form of any given SOA based application as a

service graph is shown in Fig 1.

3-1-1-Service Definition

Let a graph G(V, E) be a service graph with n nodes,

where the nodes of the graph represent a set of services in

the application, and edges between the nodes represent the

interactions or dependency each service has with other

services in the application.

Let V={s1,s2,s3,...} be the nodes of the service graph where

s1,s2,s3,… are services and E= {(s1,s2), (s1,s3), (s2,s4),}

be the edges between the nodes which represent the

dependency between the services. A service can be

Journal of Information Systems and Telecommunication, Vol.10, No.2, April-June 2022

83

represented as a set of coordinating and interacting

processes as defined in Eq. (1).

Si= < P1
i
, P2

i
, P3

i
, .…., Pn

i
, Λ >

(1)

where Si is the logical service instance, Pk
i
 indicates k

th

process implementing logical service functionality fi

through the programmatic interface Ii and Λ represents

network communication function between individual

processes [22].

3-2-Proposed Approach

Our approach is stimulated from the use case points

model of effort estimation. The use case point method

depends on the use case diagram and our model depends

on the service graph as we are estimating the effort for

service-based architectures. The service graph is a

blueprint for the application to be designed and it gives

complete information regarding the number of services

and complexity of the services based on the dependencies

on other services. Similar to the use case point method, we

propose a service point (SP) model to estimate the effort

required for migration to microservices. We classify the

services and then calculate the weights and points using

the classification of the services. Technical and

environmental factors are two important factors that play a

major role in effort estimation. The factors accessed for

the existing use case point method does not suit well for

microservices architecture. Therefore, we have updated the

technical and environmental factors considering the

principles of service-oriented systems. The steps for effort

estimation using the service point technique is illustrated

in Fig. 2.

3-2-1-Classification of Services

The first step of the service point approach is to classify

the services based on the interactions it has with other

services. Unlike the use case point, we don't have actors

here. So, we consider the dependencies each service has on

other services and classify them as simple, average, and

complex. The service graph helps in the identification of

services and their dependencies. A service is classified as

simple if it interacts with less than four services, average if

it interacts with less than eight services, and service is

treated as complex if it interacts with more than or equal to

eight services. The number of interacting services for a

particular service helps in determining the service

complexity. Based on the complexity, different weights are

assigned to each service which is used in the calculation of

service weights. The classification of services and the

weights assigned are given in Table 1.

Table 1: Classification of services with weights

Service Complexity Number of interacting services Weight

Simple Less than or equal to 3 5

Average 4 to 7 10

Complex More than 7 15

3-2-2-Calculation of weights and points

The next step is to calculate the unadjusted service points

based on the weights assigned in Table 1. It is calculated

by summation of number of services of each type

multiplied by weight assigned to corresponding service

type. Unadjusted Service Points (USP) is calculated as

shown in Eq. (2).

Where Si is the number of services of type i and Wi is the

corresponding weight of the service of type i where

i={simple, average, complex}.

3-2-3-Technical and Environmental factors

We calculated the unadjusted service point value from

the Eq. (2) and the final value of service point depends on

technical and environmental factors. The 21 factors [23]

relate to the factors which contribute to the complexity and

the efficiency of the system. However, most of the factors

included in existing works presented in the literature are

not suitable for both service oriented architecture and

microservices. Therefore, we have removed few factors

and added new factors relevant to microservices

architecture.

Each factor has a value assigned between 0 and 5

depending on the importance and impact the factor has on

the system. In the existing use case points approaches,

weights have been assigned based on the experience in

their projects [23]. However, we have conducted an online

survey to collect the inputs from different practitioners

working on SOA and microservices architectures, software

Raj & Ravichandra, A Novel Effort Estimation Approach for Migration of SOA Applications to Microservices…

84

architects involved in the migration process and

developers working with microservices architecture. We

have posted the online questionnaire in multiple social

networking platforms including the groups in LinkedIn,

Twitter and Facebook etc. The questionnaire included the

following questions.

 What is the current role/designation of the

participant?

 How much work experience the participant has in

SOA and microservices projects?

 Does the participant has real time experience in

migration projects?

 How much rating does the participant would like to

rate for each of the 21 factors?

The rating of each factor between 0 and 5 for

each factor are collected through this survey. Based on the

data collected, we have taken the average of ratings and

assigned them to all the factors. The weights assigned and

ratings of technical and environmental factors are

indicated in Table 2 and Table 3.

3-2-3-1-Calculation of Technical Complexity Factor(TCF)

To calculate the TCF, total weight of the 13 factors is

calculated which is obtained by multiplying the value

assigned to each factor between 0 to 5 and weights

assigned to each factor. Calculation of TFactor is given by

Eq. (3),

where TFi is the rating of the technical factor i and Wi is

the weight assigned to corresponding factor. As per the use

case points method, the impact of Technical Complexity

Factor (TCF) on the proposed service points should vary

from a range of 0.6 to 1.3. The formula to calculate TCF is

given as below:

TCF = C1 + C2 * TFactor.

Hence, we consider the lowest range value for C1 i.e 0.6

and C2 is calculated as C2 = (1.3-0.6)/50 = 0.014 where 50

is the maximum value of TCF. Therefore, the TCF value

for the proposed service point is calculated by the below

Eq. (4).

Table 2: Technical Factors

Fi Factors contributing to complexity Wi Rating

F1 Distributed systems 2 5

F2 Application performance objectives 1 4

F3 End-user efficiency 1 2

F4 Complex internal processing 1 2

F5 Reusability 1 3

F6 Easy Installation 0.5 1

F7 Interoperability 0.5 2

F8 Portability 0.5 1

F9 Changeability 1 1

F10 Coupling 1.5 5

F11 Modularity 2 4

F12 Statelessness 1 3

F13 Independent deployment 1 4

3-2-3-2-Calculcation of Environmental Factor (EF)

Similarly, the impact of environmental factors in the final

service point is evaluated by finding the EF score. To

calculate the EF value, the weight of each factor is

multiplied with rating assigned to each factor. It is given

by the Eq. (5).

The impact of Environmental Factor (EF) is more on the

proposed service points method and it varies from a range

of 0.0425 to 1.4. The formula to calculate EF is as below:

EF = C1 + C2 * EFactor.

Since, its impact is high, we consider the highest range

value for C1 and C2 is calculate as C2 = (1.4-0.0425)/37.5

= 0.03 where 37.5 is the maximum value of EF. The EF

for proposed approach is calculated by the below Eq. (6).

Table 3: Environmental factors

Fi Factors contributing to efficiency Wi Rating

F1 Familiar with containers 1.5 3

F2 Service configurations 1 2

F3 Analyst capability 0.5 4

F4 Application experience 0.5 2

F5 Cloud computing experience 1 2

F6 Motivation 1 5

F7 Polyglot 1.5 2

F8 Stable requirements 1 4

3-2-4-Final service point evaluation

Journal of Information Systems and Telecommunication, Vol.10, No.2, April-June 2022

85

The final Service Points (SP) is calculated by

multiplying the unadjusted service point with both

technical and environmental factor values. It is given by

below Eq. (7).

According to Karner [23], the effort required to implement

each service point takes 20 hours. Therefore, to estimate

the final man-hours, the calculated service point should be

multiplied with 20 to get the effort required for migration.

Moreover, it is observed that effort required for migrating

and designing a microservices application is more

compared to designing existing legacy applications [8].

4- Case Study Application

To evaluate and demonstrate the proposed approach, we

choose a standard web application that is built based on

SOA. In [24], the author has chosen a Vehicle

Management System (VMS) application to demonstrate

the migration of the legacy application to SOA style.

Taking the SOA application as input and applying the

microservices extraction approach proposed by Raj, V. et

al. [20], we have generated the service graph for

corresponding microservices based application. The

service graph of microservices application is represented

in Fig. 3. The service graph is the prototype of a

microservices application that has to be built through the

migration process. From the service graph represented in

Fig. 3, it is clear that there are 12 services in the migrated

system. The details of the SOA services, extracted

microservices, and the type of services are mentioned in

Table 4. As mentioned in Section 3.1, only the migrated

service for estimating the effort as few services in SOA

based applications can be directly considered as

microservices. The calculation of service points according

to the proposed approach is presented in the next section.

Table 4: Details of extracted microservices from SOA application

SOA Services Microservices Notation in

service graph

Type

Config Service Config Service S1 Available

Part Service Part Service S2 Available

Product

Service

Product Service S3 Available

Compare

Service

Compare

Service

S4 Available

Incentives &

Pricing

Service

Incentives

Service

S5 Migrated

Pricing Service S6 Migrated

Dealer &

Inventory

Service

Dealer Service S7 Migrated

Dealer Locator

Service

S8 Migrated

Inventory

Service

S9 Migrated

Lead Service Get-A-Quote

Service

S10 Migrated

Lead Processor

Service

S11 Migrated

User Interface

Client Service

User Interface

Client Service

S12 Available

4-1-Classification of Services

The details of the services along with classification are

presented in Table 5. Based on the classification and the

weights and ratings of technical and environmental factors,

we calculate the service point value used for migration of

SOA based application to microservices architecture.
Table 5: List of services along with classification for microservices based

application
Service

Interacting

Services

Classification Services

considered

in estimation

S1 2,3,4,5,6,7,9,10,

12

Complex

S2 1,4,5,6,10,12 Average

S3 1,4,5,6,10,12 Average

S4 1,2,3,10,12 Average

S5 1,2,3,6,12 Average

S6 1,2,3,5,10,12 Average

S7 1,9,10,11,12 Average

S8 11,12 Simple

S9 1,7,10,12 Average

S10 1,2,3,4,6,7,9,12 Complex

S11 7,8,12 Simple

S12 1,2,3,4,5,6,7,8,9,

10,11

Complex

As discussed in Section 2, the services which are classified

as migrated services are considered in effort estimation.

The other types of services either does not require effort or

Raj & Ravichandra, A Novel Effort Estimation Approach for Migration of SOA Applications to Microservices…

86

not suitable in this migration process. Only the services

with tick mark will be considered for effort estimation as

they are migrated services.

4-2-Calculation of USP

Unadjusted service point value is calculated by

multiplying the number of services based on each

classification and the weights assigned to each type. From

the information from Table 5, there are 2 simple, 4 average

and 1 complex services. Therefore, the value of USP is

4-3-Considering the Ratings of the Factors

Collected Through Online survey

4-3-1-Technical Complexity Factor

First, we need to calculate the TFactor using the

information from Table 2. TFactor value is calculated as

given below

Now, we calculate the TCF value.

4-3-2-Environmental Factor

Similarly, we calculate the EFactor using the information

from Table 3 and then use this value of EFactor to

calculate the EF value.

Environmental Factor (EF) is calculated by the below

equation

4-3-3-Final service point calculation

The service point is given as the product of USP, TCF,

and EF. It is calculated as below.

The total effort required for migrating the SOA based

VMS application to microservices is calculated by

multiplying the number of services points with 20 hours.

Total estimated effort = 48.11 * 20 ≈ 962 hours.

4-4-Considering the Default Value Suggested by

Karner

Karner suggests that if we cannot fill the values for the

factors for any reason, we can use the default value as 3

for all the factors [23]. Considering this default value for

all factors, we calculated the TCF, EF and service points

values.

4-4-1-Technical Complexity Factor

4-4-2-Environmental Factor

4-4-3-Final service Point Calculation

Total estimated effort =45.1 * 20 ≈ 902 hrs.

4-5-Observation

By considering the TCF, EF and SP values of both the

calculations, the values are very close to each other. Hence,

the ratings of factors collected by online survey can be

used as reference for estimating the effort of other projects

as well.
Table 5: Comparison of values

Ratings TCF EF SP

Collected through online survey 1.065 0.695 48.1

Considering Karner's default value 1.02 0.68 45.1

5-Conclusion

Effort estimation is an important software engineering

activity which helps project managers and architects to

effectively schedule the project. With the evolution of

microservices, companies are migrating existing legacy

applications to microservices architecture. In this paper,

we propose a new technique which is recasted from the

well known use case points technique to estimate the effort

required for migration of SOA based applications to

microservices architecture. We define a formal model

called service graph which is the representation of any

service based application. We have revised the technical

and environmental factors as the existing factors are not

compatible with the microservices architecture. We have

conducted online survey to collect the ratings of each of

these factors and used in the our effort estimation process.

We have demonstrated the new technique through a case

Journal of Information Systems and Telecommunication, Vol.10, No.2, April-June 2022

87

study application and calculated the effort required for

migration. We have compared the results with effort

calculated by considering the default values for factors

suggested by Karner.

However, this is the first attempt to estimate the effort

required for migration of SOA based applications to

microservices and hence, we could not compare it with

existing techniques. This approach is applied only on a

single case study application and in future we plan to

evaluate the proposed technique on applications of

different domains and large enterprise applications.

References
[1] Vinay Raj and R. Sadam, “Patterns for Migration of SOA

Based Applications to Microservices Architecture,” Journal of

Web Engineering, Jul. 2021, doi: 10.13052/jwe1540-9589.2051.

[2] J. Yin, H. Chen, S. Deng, Z. Wu, and C. Pu, “A Dependable

ESB Framework for Service Integration,” IEEE Internet

Computing, vol. 13, no. 2, pp. 26–34, Mar. 2009, doi:

10.1109/mic.2009.26.

[3] V. Raj and R. Sadam, “Evaluation of SOA-Based Web

Services and Microservices Architecture Using Complexity

Metrics,” SN Computer Science, vol. 2, no. 5, Jul. 2021, doi:

10.1007/s42979-021-00767-6.

[4] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual

understanding of microservice architecture,” ACM SIGAPP

Applied Computing Review, vol. 17, no. 4, pp. 29–45, Jan.

2018, doi: 10.1145/3183628.3183631.

[5] Z. Xiao, I. Wijegunaratne and X. Qiang, "Reflections on SOA

and Microservices," 2016 4th International Conference on

Enterprise Systems (ES), 2016, pp. 60-67, doi:

10.1109/ES.2016.14.

[6] J. Thones, “Microservices,” IEEE Software, vol. 32, no. 1, pp.

116–116, Jan. 2015, doi: 10.1109/ms.2015.11.

[7] D. Taibi, V. Lenarduzzi, C. Pahl, and A. Janes, “Microservices

in agile software development: a workshop-based study into

issues, advantages, and disadvantages,” in Proceedings of the

XP2017 Scientific Workshops, 2017, pp. 1–5. doi:

10.1145/3120459.3120483

[8] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations,

and Issues for Migrating to Microservices Architectures: An

Empirical Investigation,” IEEE Cloud Computing, vol. 4, no. 5,

pp. 22–32, Sep. 2017, doi: 10.1109/mcc.2017.4250931.

[9] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The

pains and gains of microservices: A Systematic grey literature

review,” Journal of Systems and Software, vol. 146, pp. 215–

232, Dec. 2018, doi: 10.1016/j.jss.2018.09.082.

[10] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert,

“Microservices,” IEEE Software, vol. 35, no. 3, pp. 96–100,

May 2018, doi: 10.1109/ms.2018.2141030.

[11] P. C. Pendharkar, G. H. Subramanian, and J. A. Rodger, “A

probabilistic model for predicting software development effort,”

IEEE Transactions on Software Engineering, vol. 31, no. 7, pp.

615–624, Jul. 2005, doi: 10.1109/tse.2005.75.

[12] G. H. Subramanian, P. C. Pendharkar, and M. Wallace, “An

empirical study of the effect of complexity, platform, and

program type on software development effort of business

applications,” Empirical Software Engineering, vol. 11, no. 4,

pp. 541–553, Oct. 2006, doi: 10.1007/s10664-006-9023-3.

[13] S. M. Satapathy, S. K. Rath, and B. P. Acharya, “Early stage

software effort estimation using random forest technique based

on use case points,” IET Software, vol. 10, no. 1, pp. 10–17,

Feb. 2016, doi: 10.1049/iet-sen.2014.0122.

[14] S. M. Satapathy, B. P. Acharya, and S. K. Rath, “Early Stage

Software Effort Estimation using Random Forest Technique

based on Optimized Class Point Approach”, INFOCOMP

Journal of Computer Science, vol. 13, no. 2, pp. 22–33, Dec.

2014.

[15] M. R. Braz and S. R. Vergilio, "Software Effort Estimation

Based on Use Cases," 30th Annual International Computer

Software and Applications Conference (COMPSAC'06), 2006,

pp. 221-228, doi: 10.1109/COMPSAC.2006.77.

[16] S. Diev, “Use cases modeling and software estimation,”

ACM SIGSOFT Software Engineering Notes, vol. 31, no. 6, p.

1, Nov. 2006, doi: 10.1145/1218776.1218780.

[17] P. Mohagheghi, B. Anda and R. Conradi, "Effort estimation

of use cases for incremental large-scale software development,"

Proceedings. 27th International Conference on Software

Engineering, 2005. ICSE 2005., 2005, pp. 303-311, doi:

10.1109/ICSE.2005.1553573.

[18] G. Canfora, A. R. Fasolino, G. Frattolillo, and P. Tramontana,

“A wrapping approach for migrating legacy system interactive

functionalities to Service Oriented Architectures,” Journal of

Systems and Software, vol. 81, no. 4, pp. 463–480, Apr. 2008,

doi: 10.1016/j.jss.2007.06.006.

[19] Z. A. Siddiqui and K. Tyagi, “A critical review on effort

estimation techniques for service-oriented-architecture-based

applications,” International Journal of Computers and

Applications, vol. 38, no. 4, pp. 207–216, Oct. 2016, doi:

10.1080/1206212x.2016.1237132.

[20] V. Raj and R. Sadam, “A Framework for Migration of SOA

based Applications to Microservices Architecture,” Journal of

Computer Science and Technology, vol. 21, no. 2, p. e18, Oct.

2021, doi: 10.24215/16666038.21.e18.

[21] E. A. Farrag, R. Moawad, and I. F. Imam, “An Approach for

Effort Estimation of Service Oriented Architecture (SOA)

Projects,” Journal of Software, vol. 11, no. 1, pp. 44–63, 2016,

doi: 10.17706/jsw.11.1.44-63.

[22] A. Yanchuk, A. Ivanyukovich, and M. Marchese, “Towards a

Mathematical Foundation for Service-Oriented Applications

Design,” Journal of Software, vol. 1, no. 1, Jul. 2006, doi:

10.4304/jsw.1.1.32-39.

[23] G. Karner, “Resource estimation for objectory projects,”

Objective Systems SF AB, vol. 17, pp. 1–9, 1993.

[24] P. Bhallamudi, S. Tilley and A. Sinha, "Migrating a Web-

based application to a service-based system - an experience

report," 2009 11th IEEE International Symposium on Web

Systems Evolution, 2009, pp. 71-74, doi:

10.1109/WSE.2009.5630392.

[25] F.S. Aliee, S. Oviesi. A way to improve Adaptive

Maintenance in Enterprise Architecture. Journal of Information

Systems and Telecommunication;8(1):1-4.2020;doi:

10.7508/jist.2020.01.001

[26] V. Raj and S. Ravichandra, "Microservices: A perfect SOA

based solution for Enterprise Applications compared to Web

Services," 2018 3rd IEEE International Conference on Recent

Trends in Electronics, Information & Communication

Technology (RTEICT), 2018, pp. 1531-1536, doi:

10.1109/RTEICT42901.2018.9012140.

https://doi.org/10.1145/3120459.3120483
https://doi.org/10.1145/3120459.3120483

Raj & Ravichandra, A Novel Effort Estimation Approach for Migration of SOA Applications to Microservices…

88

[27] V. Raj and R. Sadam, “Performance and complexity

comparison of service oriented architecture and microservices

architecture,” International Journal of Communication

Networks and Distributed Systems, vol. 27, no. 1, p. 100, 2021,

doi: 10.1504/ijcnds.2021.116463.

