

1
* Corresponding Author

Using Static Information of Programs to Partition the Input
Domain in Search-based Test Data Generation

Atieh Monemi-Bidgoli
Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

monemiatieh@gmail.com

Hassan Haghighi*
Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

h_haghighi@sbu.ac.ir

Received: 01/Oct/2020 Revised: 06/Dec/2020 Accepted: 10/Jan/2021

Abstract
The quality of test data has an important effect on the fault-revealing ability of software testing. Search-based test data

generation reformulates testing goals as fitness functions, thus, test data generation can be automated by meta-heuristic

algorithms. Meta-heuristic algorithms search the domain of input variables in order to find input data that cover the targets.

The domain of input variables is very large, even for simple programs, while this size has a major influence on the

efficiency and effectiveness of all search-based methods. Despite the large volume of works on search-based test data

generation, the literature contains few approaches that concern the impact of search space reduction. In order to partition

the input domain, this study defines a relationship between the structure of the program and the input domain. Based on this

relationship, we propose a method for partitioning the input domain. Then, to search in the partitioned search space, we

select ant colony optimization as one of the important and prosperous meta-heuristic algorithms. To evaluate the

performance of the proposed approach in comparison with the previous work, we selected a number of different benchmark

programs. The experimental results show that our approach has 14.40% better average coverage versus the competitive

approach.

Keywords: search-based software testing; test data generation; ant colony optimization; input space partitioning.

1- Introduction

Software testing is a vital part of the software development

life cycle with the aims of revealing failures in a program

under test. Besides improving the quality of the testing

activity, automation also reduces cost and time [3][4]. Test

data generation as the main part of the software testing

process is the activity of finding test data for testing

programs, effectively.

Symbolic execution and dynamic methods are known as

the two main approaches in automatic test data generation

[5]. In symbolic execution [6] symbolic values are

assigned to the input variables in order to formulate

program paths in terms of logical constraints. These

constraints must be solved in order to discover input

values that trace specific paths in the program.

Dependency on the capability of constraint solvers (that

are unable to solve complex constraints) is the main issue

of this method; pointer references, loop-dependent or

array-dependent variables, and calls to functions whose

implementations are unknown and external libraries also

are the issues related to this approach. In dynamic methods

by instrumenting the program and executing it with some

input data, the state of the program is observed. Since

functions are executed with real argument, pointer values

and array subscripts are known at run-time, thus, many of

the problems relevant to the symbolic execution are

resolved.

The application of optimization algorithms as dynamic

methods in test data generation is called Search-Based

Software Testing (SBST). In this approach, the input

domain of the program is the search space, and a fitness

function is determined to evaluates and scores different

inputs of the program (as solutions) with respect to the

given test criterion. The fitness function aims to guide the

search into promising, unevaluated areas of the search

space.

The authors of [1] investigated the relationship between

the search space size and search effectiveness and

efficiency. They proposed a method to reduce the search

space by removing irrelevant variables that are recognized

based on the slicing approach. This approach has been

applied to three categories of meta-heuristic algorithms,

Hill Climbing as a local search, Genetic Algorithm as a

global technique, and Memetic Algorithm as a hybrid

optimization technique, which is based on the combination

of global and local searches. The method has shown a

Journal of Information Systems and Telecommunication, Vol. 8, No. 4, October-December 2020

239

positive effect on three meta-heuristic algorithms but has

not outperformed random testing.

In order to not being limited to irrelevant variables, we

introduce an approach to partition the input domain of

relevant variables. Our approach focuses on the analysis of

program predicates, i.e., places where logical expressions

of variables are evaluated to select the next branch to

continue. In fact, we are going to establish a relationship

between the structure of the program and the input

domain. We obtain some values per each input variable.

Then, we partition the search space with respect to these

values.

Furthermore, we customize the basic Ant Colony

Optimization (ACO) algorithm, as a well-known

optimization algorithm, according to the partitioned space.

This way, we propose a new test data generation approach

which is based on the static analysis of the code.

To evaluate our proposed approach, we consider average

coverage as the evaluation metric. According to the results

of the experiments, this approach has better results in

comparison to the previous work. We will also show that

the suggested static input space partitioning approach

implicitly contains irrelevant variable removal capability

[1], as well.

The rest of the paper is structured as follows. In the next

section, a brief overview of related work is given. In

Section 3, our approach to partition the search space with

the modified ACO algorithm is presented. The

experimental results and analysis are presented in Section

4, followed by the conclusion and an outline of future

work in Section 5.

2- Related Work

In this section, we first review some of the important

works for test data generation based on different

optimization algorithms, such as Genetic Algorithm (GA),

Simulated Annealing (SA), ACO, and Particle Swarm

Optimization (PSO) with more emphasis on ACO because

we customize ACO based on our input space partitioning.

Then, the approaches related to input domain reduction in

the search-based test data generation [1] are presented.

In the 1990s, GA was tuned to generate test data. Jones [7]

and [8] examined the usage of GA in order to automate

test data generation with respect to branch coverage. Their

experiments on some small programs demonstrate that GA

notably works better than the random testing method. An

empirical study on GA-based test data generation for

large-scale programs performed by Harman and McMinn

[9][10]. Their experiments showed the superiority of GA

over other optimization algorithms such as Hill Climbing.

A tool named EvoSuite was implemented by Fraser et al.

[11] to generate test suite for satisfying the determined

coverage criterion. In EvoSuite, a list of coverage criteria

can be set such as branch coverage, data flow, and

mutation testing.

Tracey et al. introduced a framework for generating test

data by using SA as one of the well-known optimization

algorithms which works based on the idea of

neighborhood search [12]. Their method applies SA to

structural test data generation with the hope of overcoming

some of the problems raised with the application of local

search. In this work, test data can be generated for

coverage criteria such as branch and statements coverage.

Moreover, Cohen et al. used SA in order to generate test

data in combinatorial testing [13].

Sine ACO has shown notable results in solving

optimization problems [14][15][16], some scholars have

utilized it to resolve software engineering problems in a

wide range of sub-fields such as software project

scheduling [17], release planning optimization [18],

software quality prediction [19], and software testing [20].

Lam et al. [21] and Srivastava et al. [22] utilized ACO to

generate test sequences for state-based software testing. In

conformance testing of object-oriented software, the

problem of state explosion was solved by Bouchachia et

al. [23] via presenting Class Finite State Machines

(CFSM).

Li et al. [24] also utilized the ACO algorithm for

generating test data in respect of the branch coverage

criterion. However, this study lacked detailed experimental

and comparative analysis. Mao et al. [2] also applied ACO

for generating test data and have compared their approach

against GA, PSO, and SA for the same purpose. Their

findings exhibited that ACO has better performance than

GA and SA and is comparable to PSO.

The approach in [25] outperformed the work of Mao et al.

[2] by incorporating (1+1)-evolution strategies to enhance

search exploitation through improving the movement of

ants in the local search. In [25], pheromone values were

defined in each branch, and also, were considered as a part

of the fitness function to discourage every ant from

traversing branches already covered by other ants. Since

this viewpoint is only appropriate for branch coverage,

authors in [26][27] introduced a method for using ACO to

cover prime paths. They applied the idea of adaptive

random testing in local search and used the information of

program predicates in partitioning the search space [26].

The experimental results confirm the positive effects of the

proposed approach, especially for programs with complex

predicates.

Regarding the approaches related to the input domain

reduction, the authors of [28] reduced the search space by

the interval arithmetic method. Their approach is

appropriate only for simple predicates such that each side

of the clauses contains a single interval variable. Also,

some important issues, such as converting local variables

to input variables, have not been addressed in their

Monemi-Bidgoli & Haghighi, Using static information of programs to partition the input Domain in Search…

240

approach. Therefore, we do not consider this approach in

the evaluation section.

An approach in order to reduce the dimension of the input

domain introduced by Harman [1], [29] called "irrelevant

input variable removal". Irrelevant input variables are

input variables that do not affect executing the target

structure. Therefore, they can be removed from the input

domain without affecting the feasibility of the target. Their

approach was empirically evaluated for search-based

structural test data generation. The results showed that

irrelevant input variable removal has no impact on the

random search, but enhance the performance of

optimization techniques. The authors of [1] encouraged

concentrating on relevant variables to more reduce the

search space via utilizing the static analysis stage; an idea

which is followed in this study.

3- Proposed Approach

In this section, after describing the overall process of our

approach, we explain our static analysis approach to input

space partitioning. Then, we explain the customization of

the ACO algorithm based on the partitioned space in

section 3.3. The proposed algorithm produces test data to

satisfy the desired coverage criterion.

3-1- Overall Process

Fig. 1 shows the overall process of our approach, which

consists of two main phases: Partitioning the input domain

and Customizing the ACO algorithm.

Partitioning the input domain Customizing the ACO algorithm

Partition values

1-Symbolically execution of the
program

3-Calculating a sample input
vector per each clause

Local search

Global search

2- For each clause, replacement
of relational operators with an

equal sign Pheromone update

Fig. 1: The overall process of the proposed approach

Partitioning the input domain: Since the search space is

constructed by the domain of input variables, we start with

symbolic execution [30] to transform each clause of the

program to a new clause that only includes input variables.

Each resulting clause divides the search space into two

partitions; the input vectors in one partition cause the

clause to be evaluated to True, while the input vectors in

the other partition lead to False value for the clause.

Replacing the relational operator (i.e., , , , ,    ) by

the equality operator in clauses, the borders of these

partitions are determined. Each input vector on these

borders can be considered as partition values.

Customizing the ACO algorithm: In this phase, the ACO

algorithm is customized based on the partitioned search

space obtained in the previous phase.

3-2- Partitioning the Input Domain

To perform static partitioning, the program clauses should

be initially analyzed. A clause is a predicate that does not

have any logical operator. For example, the predicate

contains three clauses. The output of analysis is a set of

values per each input variable. The partitioning of the

input space is done based on these values. In the rest of the

paper, these values are called partition values. For

obtaining partition values, the following three steps must

be done. Step 1 is done for predetermined test paths of the

program (We assume that these test paths cover all the

branches of the program); step 2 and step 3 are done for

each clause.

1. By performing symbolic execution for predestinate

test paths of the program, the clauses of the

program are converted such that they only involve

input variables. This is carried out because the

space we are searching through is constructed by

input variables.
2. Modifying each clause C by using the (=) operator

instead of the operators. The

resulting clause is called C'.

3. Finding a combination of input values that satisfy

C'. For example, values that satisfy (e.g.,

a = 100; b = 100; c = 200) can be considered as

partition values for clause a + b > c.

For clarifying the elimination of non-input variables in

step 1, static partitioning is done on a sample program

shown in Fig. 2.

Journal of Information Systems and Telecommunication, Vol. 8, No. 4, October-December 2020

241

Fig. 2: Sample program (a) The first predicate (b) The second predicate with the related assignments (c) The third predicate with the related assignments

As it can be seen in Fig. 2, three conditions exist in the

program, in lines 3, 8, 9; the first predicate does not have

non-input variables (Fig. 2.)a)(, while the second

predicate in line 8 has variable that is a non-input

variable; assignments which could be used to calculate the

relationship between and input variables are

distinguished by red in Fig. 2. (b (. At last, two functions

 and are achieved to show the

relationship between n and input variables. The same thing

is done for the predicate in line 9 (Fig. 2.)c().

The predicates that are obtained by eliminating the non-

input variables along with the obtained partition values are

shown in Table 1.

Table 1: Partition values for each predicate of the sample program

Partition values predicate Line

number d b a

Fig. 3: Partition values for the predicate a<b in the two-dimensional

search space

To illustrate why we use these partition values in

partitioning the search space, we review some examples.

The only input vector for partitioning the clause a<8 is

a=8, which causes the input domain of a to be divided into

two parts; input vectors in one of these parts lead the True

value for a<8 while input vectors in the other part make

a<8 False. Regarding clause a<b, with a=100 and b=100

as selected partition values, there are (2*2=4) partitions in

the whole input domain. As shown in Fig. 3, all input

Monemi-Bidgoli & Haghighi, Using static information of programs to partition the input Domain in Search…

242

vectors in the top left part force the program execution to

traverse the True case, while all input vectors in the

bottom right part cause it to traverse the False case of

clause a<b. As additional example, input vectors that

satisfy a+b=c (e.g., a= 100, b=100 and c=200) are

suitable to be selected as partition values for clause

a+b>c. Due to partitioning the input domain of a, b and d

into two parts, there are (2*2*2=8) partitions in the whole

input domain. Values in at least one of these parts make

a+b>c True, and values in at least one of these parts cause

a+b>c to be False.

Although we illustrated the partitioned area in the search

space only for one clause in the above example, in the next

section, we use the partitioned space produced by all the

clauses of the program.

3-3- Customizing the ACO Algorithm

ACO as an optimization algorithm is inspired from ants

that release pheromone in the environment. ACO

algorithms were originally utilized to solve the shortest

route in traveling salesman problem [31]. To generate test

data, we change the basic ACO with respect to the

partitioned search space.

We first formally describe the test data generation for the

program under test P. Suppose P has d input variables

represented by vector 1 2 d . Vector is the

position vector of an ant in ACO. If each input variable

 takes its values from the domain , the

corresponding input domain of the program is

.

In the problem of generating test data, each ant's position

actually is a test data which is shown by a vector in the

input domain D. For any ant its position is

marked as k 1 2 d .

For generating test data with the ACO algorithm, an

important consideration is the form of pheromone. In this

paper, pheromones are defined on the partitions

established by static partitioning, explained in the previous

section. This way, in each partition, there is a pheromone

value that is initialized to one.

The pseudo-code of the customized ACO algorithm is

presented in Algorithm 1
1
. Table 2 contains the notations

and parameters used in this algorithm. The output of

Algorithm 1 is a set of test data (or a test suite) that cover

the given test targets. The test data generation process in

Algorithm 1 is repeated until all the test targets are

traversed by the test suite, or the predefined number of

iterations is exceeded. The data generation process

consists of two stages. In the first stage, all pheromone

values are initialized by one (Lines 4-9) and an input

1 This algorithm along with Table 2 is similar to Algorithm 1 and Table 3

in [26], respectively. This is because both are based on ACO. However,
the way of development was different in both papers.

vector in the input domain is randomly assigned to each

ant as the position vector (Lines 10-12).

In the second stage (Lines 13-34), the local search and

global search are performed for each ant. Then, the

pheromone values are updated with respect to Eq. 1

(Section 3.2.3). The fitness values of the ants are

calculated at the end of each iteration. The position of any

ant k that covers an uncovered test target is added to the

test suite, i.e., TS. The methods local search, global search,

and pheromone update are explained in the following sub-

sections.

Journal of Information Systems and Telecommunication, Vol. 8, No. 4, October-December 2020

243

Table 2: The parameters and notations used in the proposed ACO algorithm

3-3-1- Local Search

In the local transfer of ants, for an ant in

partition , the aim is to investigate whether there is a

partition in the neighborhood of that has a better fitness

function. If there is such a partition, the ant will transfer

to the partition with the best fitness function value. This

transfer increases the value of pheromone in the

destination partition.

The neighboring partitions of an ant in

partition b are the partitions that have at least one common

partition value. In our implementation, a random location

per neighboring partition is selected, and these locations

are the representatives of their partitions.

In the local search ant transfer from to if the

fitness of is better than that of and is in the

neighborhood’s partition of which has the best fitness

value amongst neighborhoods of ; otherwise, the ant’s

location does not change in the local search and remains in

the previous location. It must be noted that less fitness is

considered better fitness, and the best fitness value is 0.

This process is done for all ants in the partitioned space.

3-3-2- Global Search

The global search is used to solve two problems related to

local search. First, there may be some partitions with

acceptable fitness that are not visited by any ant in a

reasonable time (or iteration limit) and second, there may

be ants with the local optima trap [32][32] (that could not

find a neighboring place with superior fitness value). To

resolve these issues, when each ant’s fitness value is worse

than the average fitness value of all ants, a random value

is generated. If is less than a predefined probability

, the ant will randomly be moved to a new partition;

otherwise, the partition with the highest pheromone value

will be the destination of the ant.

3-3-3- Pheromone Update

Eq.1 is used to update the pheromone value in each

partition of the input domain.

 (1)

Where (0, 1) represent pheromone evaporation rate,

 is the amount of pheromone in the jth partition, and j

stands for partition index.

4- Experiment

In this section, we compare our approach with the

approach presented in [1]. Although the competitive

approach has been applied to the genetic algorithm, hill

climbing, and memetic algorithm, we select its

implementation with the genetic algorithm because the

experimental results in [1] showed that removing

irrelevant input variables has the greatest effect on the

genetic algorithm.

Evaluation Metrics

Average Coverage (AC), Average Time (AT), and

Mutation Score (MS) are used as the evaluation metrics.

Average coverage is the average percentage of the covered

branches and is calculated while the two competitive

approaches run with the same iterations.

Average time is the average of elapsed time that has

been taken to run the algorithms and is calculated to

compare the efficiency of the two competitive approaches.

Mutation score is a testing metric provided by the

mutation analysis as a fault-based testing technique. To

perform mutation analysis, PIT [33] is used as a state-of-

the-art tool for this purpose.

Benchmark Programs

To conduct experiments, several benchmark programs

have been selected (see Table 3): the first eleven programs

from the Numerical Case Study (NCS) of EvoSuite1. Tcas

and Totinfo from the Software-artifact Infrastructure

Repository (SIR)2, and the others from various related

work. Table 3 displays the number of lines of code (LoC),

and the description of each benchmark program.

1https://github.com/EvoSuite/evosuite/tree/master/removed/examples/ncs/

src/ncs
2 http://sir.unl.edu/php/showfiles.php

https://github.com/EvoSuite/evosuite/tree/master/removed/examples/ncs/src/ncs
https://github.com/EvoSuite/evosuite/tree/master/removed/examples/ncs/src/ncs
http://sir.unl.edu/php/showfiles.php

Monemi-Bidgoli & Haghighi, Using static information of programs to partition the input Domain in Search…

244

The Parameters of the Algorithms

The parameters of algorithms have been set to the values

presented in Table 4 before performing the experiments.

Parameter selection for our algorithm was done based on

the sensitivity analysis which had been done in [2].

Although we can use any coverage criteria, in this paper,

we consider branch coverage with the fitness function

proposed in [1].

Table 3. Programs selected for the empirical studies

Table 4. Parameter setup

4-1- Experiment Results

Experiments were repeated 50 times with various initial

population to consider the accidental nature of

optimization algorithms. The average coverage resulted

per each algorithm for all benchmarks are displayed in Fig.

4. The results demonstrate that the proposed approach has

better average coverage for most benchmarks, except

three, i.e., BubbleSort, Median, and Variance. The two

approaches reached 100% average coverage for these three

benchmark programs because satisfying the conditions of

these programs is very easy.

The Wilcoxon test in R [34] are conducted to statistically

evaluate our experimental results. Table 5 presents the

average coverage and average time along with resulted P-

values and effect size. The effect sizes of the comparisons

are quantified with the Vargha-Delaney Ȃ statistics. In

case of average coverage, Ȃxy is an estimation of the

probability that, if we run the approach x, we will obtain

better coverage than running it with the approach y. When

two approaches are equivalent, then Ȃxy = 0.5. A high-

value Ȃxy = 1 means that, in all of the runs of x, we

obtained higher coverage than the coverage obtained in all

of the runs with y.

Journal of Information Systems and Telecommunication, Vol. 8, No. 4, October-December 2020

245

Fig. 4: The resulted average coverage by the proposed approach and the approach presented in [1]

Table 5. Statistical analysis of the results of experiments

Program name The approach in [1] Our approach AC AT

AC AT AC AT Effect size P-value Effect size P-value

Bessj 76.11 135.34 93.44 138.98 0.73 0.01 0.43 0.05

BubbleSort 64.20 35.23 81.22 39.78 0.53 1.00 0.41 1.00

Encoder 67.89 65.39 79.44 57.67 0.59 1.00 0.58 1.00

Expint 69.22 76.23 87.66 70.36 0.71 <0.001 0.60 0.06

Fisher 69.20 110.67 85.83 67.89 0.64 0.03 0.61 0.09

Gammq 67.23 104.78 87.39 99.67 0.69 <0.001 0.53 <0.001

Median 57.89 3.65 73.55 6.30 0.52 1.00 0.42 1.00

Remainder 62.22 4.6 79.78 4.99 0.58 0.76 0.49 0.76

TT1 79.67 43.2 100 41.49 0.50 <0.001 0.5 0.01

TT2 65.74 36.2 82.79 30.5 0.71 <0.001 0.58 <0.001

Variance 100 23.7 100 31.89 0.5 0.15 0.34 0.95

GCD 100 25.4 100 20.5 0.5 0.94 0.59 0.74

MinMax 99.5 3.6 100 4.50 0.56 0.28 0.42 0.98

BinarySearch 70.6 6.5 79.33 7.78 0.58 0.90 0.49 0.40

ComputeTax 89.6 48.9 100 40.5 0.69 <0.001 0.52 <0.001

PrimeBetween 85.2 250.7 100 200.31 0.59 0.01 0.69 0.03

Synthesis-1 61.78 154.7 81.56 143.64 0.67 0.02 0.77 0.04

Synthesis-2 50.76 120.7 72.44 119.43 1 <0.001 0.51 0.03

PrintCalender 55.78 67.98 85 50.32 1 <0.001 0.69 <0.001

Number 49.67 301.67 69.55 278.43 0.98 <0.001 0.76 <0.001

Tcas 28.9 404.7 46.8 306.43 0.87 <0.001 0.80 <0.001

Totinfo 23.67 505.6 45.17 398.54 0.82 <0.001 0.76 <0.001

Mcknap 25.78 408.5 41.33 375.89 0.78 <0.001 0.61 <0.001

Monemi-Bidgoli & Haghighi, Using static information of programs to partition the input Domain in Search…

246

The results reveal significant improvements in the average

coverage for 15 out of 23 benchmarks and significant

improvement in the average time for 7 out of 23

benchmarks in comparison to the approach presented in

[1]. The main cause for this outperformance is partitioning

the input domain based on the information that exists in

the conditional statement. In other words, we created a

relationship between the input domain and the structure of

the program. This causes performing searches more

intelligently. Therefore, individuals converge to the test

goal with higher speed. Utilizing the logic of the program

to trace pheromone values results in having better

exploitation. Furthermore, this causes having better

exploration in the partition which has the highest

pheromone value.

To explain more precisely, consider the following clauses

and calculated partition values that are selected from

program Synthesis-1
1
:

 x > 200 : {x = 200},

 x < y : {x = 20; y = 20},

 x + y > z : {x = 50; y = 50; z = 100},

 y × y - 4 × x × z > 0 : {x = 4; y = 4; z = 1}

 y x : {y = 150; x = 150}.

Fig. 5: The partitioned input domain based on the clauses a > 50 and a >

b [26]

The obtained partition values for each input variable are:

x={4, 20, 50, 150, 200}, y={4, 20, 50, 150}, and z={1,

100}. As the result, the input domain of x, y, and z

respectively divided into 6, 5, and 3 parts. The

composition of them creates 3 × 5 × 6 = 90 partitions in

the whole input domain. If we assume each predicate

involves only one clause, choosing one input vector from

each of these partitions will lead to one of the branches

1 This example is the same as the one presented in [26].

being traversed. Partitioning based on the program

structure causes individuals to converge to the targets

sooner than when we just consider irrelevant input

variables.

Even though the search space is partitioned by considering

only one clause (i.e., we do not consider a predicate),

occasionally, the partitions that lead to True or False for a

predicate are created spontaneously. This leads to more

improvements in the efficiency of the proposed approach.

To more explain, consider predicate (a > b && a > 50). As

shown in Fig. 5, the partition that leads True for this

predicate is made spontaneously just via dividing the input

domain by "a > 50" and "a > b", separately.

Most importantly, our approach implicitly benefits from

the strength point of the previous work [1]. In the case of

having an irrelevant input variable, by definition, this

variable is not used in any predicate of the target test

paths. Since only the involved input variables are used for

obtaining partition points in our approach, no partition

value is found for irrelevant input variables. Consequently,

only one part exists with respect to the domain of an

irrelevant input variable; hence, it does not matter which

value is selected for irrelevant input variables.

Table 6: Statistical analysis of the resulting mutation scores.
Program The approach

in [1]

Our

approach

Effect

size

P-value

Bessj 21.34 29.43 0.98 0.67

BubbleSort 71.4 80.98 0.97 0.06

Encoder 67.56 76.54 0.89 < 0.001

Expint 59.43 73.76 0.99 < 0.001

Fisher 45.43 56.33 0.86 < 0.001

Gammq 68.87 81.96 0.9 0.56

Median 87.22 91.89 0.84 0.34

Remainder 95.7 98.12 0.82 0.08

TT1 92.8 95.1 0.5 0.05

TT2 78.33 79.32 0.87 0.10

Variance 100 100 0.5 1

GCD 77.1 84.13 0.5 0.09

MinMax 75 75 0.51 1

BinarySearch 93.93 100 0.68 0.78

ComputeTax 80.8 83 0.69 < 0.001

PrimeBetween 64 81.9 0.1 < 0.001

Synthesis-1 78 80.67 0.95 < 0.001

Synthesis-2 100 96.17 0.99 0.25

Tcas 47.03 93 0.89 < 0.001

We performed mutation analysis to experimentally

investigate the failure detection capability of test suites

generated by the proposed approach against test suites

produced by the previous approach [1]. In order to conduct

this analysis, we used 19 of 23 benchmarks presented in

Table 4. Four benchmarks PrintCalender, Number,

Totinfo, and Mcknap, had been implemented in C, and

therefore, could not be used in PIT, which is a java-based

tool. The statistical analysis of the results is shown in

Table 6. In this table, the significant level for the p-value is

considered as p-value ≤0.05. The results show that, with

Journal of Information Systems and Telecommunication, Vol. 8, No. 4, October-December 2020

247

high statistical confidence, in 7 out of 19 programs, the

generated test suites by our approach have a more

mutation score, and thus, have a better ability to detect

failures.

In some benchmarks, such as Remainder, there is no

significant difference between mutation score achieved by

the two approaches, while the improvement of mutation

score on a program like Tcas is noticeable. Test data

generation for more complicated programs such as Tcas

with 12 input variables is likely more time-consuming. In

these programs, fewer data from the input domain are

desired, and therefore, using static information to generate

test data enhance the mutation score of the generated test

suites.

5- Threats to Validity

Threats to internal validity might come from the way the

empirical study was carried out. To reduce the probability

of having faults in our implementation, it has been

carefully tested. But it is well known that testing alone

cannot prove the absence of defects. Furthermore,

optimization algorithms have random behavior, and thus,

are affected by chance. To cope with this problem, we

repeated experiments 50 times. Then, we followed

statistical procedures to analyze the results. As a threat to

the external validity of our results, it should be noted that a

different selection of the benchmark programs might result

in different conclusions.

6- Conclusions and Future Work

In this paper, we have presented an approach to input

space partitioning based on the program’s conditional

statements. We also customized the ACO algorithm with

respect to the partitioned space. In the evaluation section,

we have compared our approach with the irrelevant input

variable removal method. The results revealed that our

approach leads to better results in respect of average

coverage. The following research areas will be considered

as future work:

 Customizing other meta-heuristic algorithms based on

predicate’s information

 Considering the combination of clauses to select better

partition values

 Presenting a more comprehensive way to reduce the

input domain so that it can be applied to all

optimization algorithms



References
[1] P. McMinn, M. Harman, K. Lakhotia, Y. Hassoun, and J.

Wegener, “Input domain reduction through irrelevant

variable removal and its effect on local, global, and hybrid

search-based structural test data generation,” IEEE Trans.

Softw. Eng., vol. 38, no. 2, pp. 453–477, 2012, doi:

10.1109/TSE.2011.18.

[2] C. Mao, L. Xiao, X. Yu, and J. Chen, “Adapting ant colony

optimization to generate test data for software structural

testing $,” Swarm Evol. Comput., vol. 20, pp. 23–36, 2014,

doi: 10.1016/j.swevo.2014.10.003.

[3] S. Anand et al., “An Orchestrated Survey on Automated

Software Test Case Generation,” J. Syst. Softw., vol. 86, no.

8, pp. 1978–2001, 2013, doi: 10.1016/j.jss.2013.02.061.

[4] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-

Walawege, “A Systematic Review of the Application and

Empirical Investigation of Evolutionary Testing,” IEEE

Trans. Softw. Eng., vol. 36, no. 6, pp. 742–762, 2010, doi:

http://doi.ieeecomputersociety.org/10.1109/TSE.2009.52.

[5] P. Ammann and J. Offutt, Introduction to software testing.

Cambridge University Press, 2016.

[6] M. Weiser, “Program Slicing,” IEEE Trans. Softw. Eng., vol.

SE-10, no. 4, pp. 352–357, 1984, doi:

10.1109/TSE.1984.5010248.

[7] B. F. Jones, H. H. Sthamer, and D. E. Eyres, “Automatic

structural testing using genetic algorithms,” Softw. Eng. J.,

vol. 11, pp. 299–306, 1996.

[8] R. Pargas, M. J. Harrold, and R. Peck, “Test-Data Generation

Using Genetic Algorithms,” J. Softw. Testing, Verif. Reliab.,

vol. 9, pp. 263–282, 1999.

[9] P. Mcminn, “Search-Based Software Testing : Past , Present

and Future,” pp. 153–163, 2011, doi:

10.1109/ICSTW.2011.100.

[10] M. Harman and P. McMinn, “A theoretical and empirical

study of search-based testing: Local, global, and hybrid

search,” IEEE Trans. Softw. Eng., vol. 36, no. 2, pp. 226–247,

2010, doi: 10.1109/TSE.2009.71.

[11] G. Fraser and A. Arcuri, “Whole test suite generation,”

IEEE Trans. Softw. Eng., vol. 39, no. 2, pp. 276–291, 2013,

doi: 10.1109/TSE.2012.14.

[12] N. Tracey, “An Automated Framework for Structural Test-

Data Generation 2 Optimisation-Based Struc- tural Test-Data

Generation 1 Introduction,” 1904.

[13] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling,

“Augmenting simulated annealing to build interaction test

suites,” Proc. - Int. Symp. Softw. Reliab. Eng. ISSRE, vol.

2003-Janua, pp. 394–405, 2003, doi:

10.1109/ISSRE.2003.1251061.

[14] E. Elbeltagi, T. Hegazy, and D. Grierson, “Comparison

among five evolutionary-based optimization algorithms,”

Adv. Eng. Informatics, vol. 19, no. 1, pp. 43–53, 2005, doi:

10.1016/j.aei.2005.01.004.

[15] K. Socha and M. Dorigo, “Ant colony optimization for

continuous domains,” Eur. J. Oper. Res., vol. 185, no. 3, pp.

1155–1173, 2008, doi: 10.1016/j.ejor.2006.06.046.

[16] C. Simons and J. Smith, “A comparison of evolutionary

algorithms and ant colony optimization for interactive

software design,” 2012.

[17] B. Suri and P. Jajoria, “Using ant colony optimization in

software development project scheduling,” in 2013

International Conference on Advances in Computing,

Monemi-Bidgoli & Haghighi, Using static information of programs to partition the input Domain in Search…

248

Communications and Informatics (ICACCI), 2013, pp. 2101–

2106.

[18] J. T. de Souza, C. L. B. Maia, T. do Nascimento Ferreira,

R. A. F. Do Carmo, and M. M. A. Brasil, “An ant colony

optimization approach to the software release planning with

dependent requirements,” in International symposium on

search based software engineering, 2011, pp. 142–157.

[19] D. Azar and J. Vybihal, “An ant colony optimization

algorithm to improve software quality prediction models:

Case of class stability,” Inf. Softw. Technol., vol. 53, no. 4,

pp. 388–393, 2011.

[20] B. Suri, “Literature Survey of Ant Colony Optimization in

Software Testing,” 2010.

[21] H. Li, “An Ant Colony Optimization Approach to Test

Sequence Generation for State-Based Software Testing,” no.

1, pp. 255–262, 2005.

[22] P. R. Srivastava and K. Baby, “Automated Software

Testing Using Metahurestic Technique Based on an Ant

Colony Optimization,” Electron. Syst. Des. (ISED), 2010 Int.

Symp., 2010, doi: 10.1109/ISED.2010.52.

[23] A. Bouchachia, R. Mittermeir, P. Sielecky, S. Stafiej, and

M. Zieminski, “Nature-inspired techniques for conformance

testing of object-oriented software,” Appl. Soft Comput. J.,

vol. 10, no. 3, pp. 730–745, 2010, doi:

10.1016/j.asoc.2009.09.003.

[24] K. Li, Z. Zhang, and W. Liu, “Automatic Test Data

Generation Based on Ant Colony Optimization,” 2009 Fifth

Int. Conf. Nat. Comput., vol. 6, pp. 216–220, 2009, doi:

10.1109/ICNC.2009.239.

[25] H. Sharifipour, M. Shakeri, and H. Haghighi, “Structural

test data generation using a memetic ant colony optimization

based on evolution strategies,” Swarm Evol. Comput., vol.

40, pp. 76–91, 2018, doi: 10.1016/j.swevo.2017.12.009.

[26] A. M. Bidgoli and H. Haghighi, “Augmenting ant colony

optimization with adaptive random testing to cover prime

paths,” J. Syst. Softw., vol. 161, p. 110495, 2020.

[27] A. Monemi Bidgoli, H. Haghighi, T. Zohdi Nasab, and H.

Sabouri, Using Swarm Intelligence to Generate Test Data for

Covering Prime Paths, vol. 10522 LNCS. 2017.

[28] X. Lv, S. Huang, and H. Ji, “Input Domain Reduction of

Search-based Structural Test Data Generation using Interval

Arithmetic.,” Int. J. Performability Eng., vol. 14, no. 6, 2018.

[29] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J.

Wegener, “The impact of input domain reduction on search-

based test data generation,” Proc. 6th Jt. Meet. Eur. Softw.

Eng. Conf. ACM SIGSOFT Symp. Found. Softw. Eng., pp.

155–164, 2007, doi: 10.1145/1287624.1287647.

[30] C. Cadar and M. Nowack, “KLEE symbolic execution

engine in 2019.”

[31] M. Dorigo and L. M. Gambardella, “Ant colonies for the

travelling salesman problem,” BioSystems, vol. 43, no. 2, pp.

73–81, 1997, doi: 10.1016/S0303-2647(97)01708-5.

[32] V. Maniezzo, “Ant System: Optimization by a Colony of

Cooperating Agents,” vol. 26, no. 1, pp. 1–13, 1996.

[33] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A.

Ventresque, “PIT: A practical mutation testing tool for Java

(Demo),” ISSTA 2016 - Proc. 25th Int. Symp. Softw. Test.

Anal., pp. 449–452, 2016, doi: 10.1145/2931037.2948707.

[34] R Developement Core Team, “R: A Language and

Environment for Statistical Computing,” R Found. Stat.

Comput., vol. 1, p. 409, 2015, doi: 10.1007/978-3-540-

74686-7.

 Atieh Monemi-Bidgoli received her B.S. degree in

Computer Science from the Faculty of Computer Science,
University of Kashan, Kashan, Iran, in 2010. She received
her M.Sc. degree in Software Engineering from the Faculty of
Computer Science at Sharif University of Technology,
Tehran, Iran in 2012. She is currently a Ph.D. candidate in
the Faculty of Computer Science and Engineering at Shahid
Beheshti University. Her research interests are in the area of
software testing.

Hassan Haghighi is Associate Professor at the Faculty of

Computer Science and Engineering, Shahid Beheshti
University, Iran. He received his Ph.D. degree in software
engineering from Sharif University of Technology, Iran, in
2009. His main research interest includes software testing
and using formal methods in the software development life
cycle.

