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Abstract  
The quality of test data has an important effect on the fault-revealing ability of software testing. Search-based test data 

generation reformulates testing goals as fitness functions, thus, test data generation can be automated by meta-heuristic 

algorithms. Meta-heuristic algorithms search the domain of input variables in order to find input data that cover the targets. 

The domain of input variables is very large, even for simple programs, while this size has a major influence on the 

efficiency and effectiveness of all search-based methods. Despite the large volume of works on search-based test data 

generation, the literature contains few approaches that concern the impact of search space reduction. In order to partition 

the input domain, this study defines a relationship between the structure of the program and the input domain. Based on this 

relationship, we propose a method for partitioning the input domain. Then, to search in the partitioned search space, we 

select ant colony optimization as one of the important and prosperous meta-heuristic algorithms. To evaluate the 

performance of the proposed approach in comparison with the previous work, we selected a number of different benchmark 

programs. The experimental results show that our approach has 14.40% better average coverage versus the competitive 

approach. 

 

Keywords: search-based software testing; test data generation; ant colony optimization; input space partitioning. 
 

1- Introduction 

Software testing is a vital part of the software development 

life cycle with the aims of revealing failures in a program 

under test. Besides improving the quality of the testing 

activity, automation also reduces cost and time [3][4]. Test 

data generation as the main part of the software testing 

process is the activity of finding test data for testing 

programs, effectively. 

Symbolic execution and dynamic methods are known as 

the two main approaches in automatic test data generation 

[5]. In symbolic execution [6] symbolic values are 

assigned to the input variables in order to formulate 

program paths in terms of logical constraints. These 

constraints must be solved in order to discover input 

values that trace specific paths in the program. 

Dependency on the capability of constraint solvers (that 

are unable to solve complex constraints) is the main issue 

of this method; pointer references, loop-dependent or 

array-dependent variables, and calls to functions whose 

implementations are unknown and external libraries also 

are the issues related to this approach. In dynamic methods 

by instrumenting the program and executing it with some 

input data, the state of the program is observed. Since 

functions are executed with real argument, pointer values 

and array subscripts are known at run-time, thus, many of 

the problems relevant to the symbolic execution are 

resolved. 

The application of optimization algorithms as dynamic 

methods in test data generation is called Search-Based 

Software Testing (SBST). In this approach, the input 

domain of the program is the search space, and a fitness 

function is determined to evaluates and scores different 

inputs of the program (as solutions) with respect to the 

given test criterion. The fitness function aims to guide the 

search into promising, unevaluated areas of the search 

space.  

The authors of [1] investigated the relationship between 

the search space size and search effectiveness and 

efficiency. They proposed a method to reduce the search 

space by removing irrelevant variables that are recognized 

based on the slicing approach. This approach has been 

applied to three categories of meta-heuristic algorithms, 

Hill Climbing as a local search, Genetic Algorithm as a 

global technique, and Memetic Algorithm as a hybrid 

optimization technique, which is based on the combination 

of global and local searches. The method has shown a 
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positive effect on three meta-heuristic algorithms but has 

not outperformed random testing.  

In order to not being limited to irrelevant variables, we 

introduce an approach to partition the input domain of 

relevant variables. Our approach focuses on the analysis of 

program predicates, i.e., places where logical expressions 

of variables are evaluated to select the next branch to 

continue. In fact, we are going to establish a relationship 

between the structure of the program and the input 

domain. We obtain some values per each input variable. 

Then, we partition the search space with respect to these 

values.  

Furthermore, we customize the basic Ant Colony 

Optimization (ACO) algorithm, as a well-known 

optimization algorithm, according to the partitioned space. 

This way, we propose a new test data generation approach 

which is based on the static analysis of the code.  

To evaluate our proposed approach, we consider average 

coverage as the evaluation metric. According to the results 

of the experiments, this approach has better results in 

comparison to the previous work. We will also show that 

the suggested static input space partitioning approach 

implicitly contains irrelevant variable removal capability 

[1], as well.  

The rest of the paper is structured as follows. In the next 

section, a brief overview of related work is given. In 

Section 3, our approach to partition the search space with 

the modified ACO algorithm is presented. The 

experimental results and analysis are presented in Section 

4, followed by the conclusion and an outline of future 

work in Section 5. 

2- Related Work 

In this section, we first review some of the important 

works for test data generation based on different 

optimization algorithms, such as Genetic Algorithm (GA), 

Simulated Annealing (SA), ACO, and Particle Swarm 

Optimization (PSO) with more emphasis on ACO because 

we customize ACO based on our input space partitioning. 

Then, the approaches related to input domain reduction in 

the search-based test data generation [1] are presented. 

In the 1990s, GA was tuned to generate test data. Jones [7] 

and [8] examined the usage of GA in order to automate 

test data generation with respect to branch coverage. Their 

experiments on some small programs demonstrate that GA 

notably works better than the random testing method. An 

empirical study on GA-based test data generation for 

large-scale programs performed by Harman and McMinn 

[9][10]. Their experiments showed the superiority of GA 

over other optimization algorithms such as Hill Climbing. 

A tool named EvoSuite was implemented by Fraser et al. 

[11] to generate test suite for satisfying the determined 

coverage criterion. In EvoSuite, a list of coverage criteria 

can be set such as branch coverage, data flow, and 

mutation testing.  

Tracey et al. introduced a framework for generating test 

data by using SA as one of the well-known optimization 

algorithms which works based on the idea of 

neighborhood search [12]. Their method applies SA to 

structural test data generation with the hope of overcoming 

some of the problems raised with the application of local 

search. In this work, test data can be generated for 

coverage criteria such as branch and statements coverage. 

Moreover, Cohen et al. used SA in order to generate test 

data in combinatorial testing [13]. 

Sine ACO has shown notable results in solving 

optimization problems [14][15][16], some scholars have 

utilized it to resolve software engineering problems in a 

wide range of sub-fields such as software project 

scheduling [17], release planning optimization [18], 

software quality prediction [19], and software testing [20].  

Lam et al. [21] and Srivastava et al. [22] utilized ACO to 

generate test sequences for state-based software testing. In 

conformance testing of object-oriented software, the 

problem of state explosion was solved by Bouchachia et 

al. [23] via presenting Class Finite State Machines 

(CFSM). 

Li et al. [24] also utilized the ACO algorithm for 

generating test data in respect of the branch coverage 

criterion. However, this study lacked detailed experimental 

and comparative analysis. Mao et al. [2] also applied ACO 

for generating test data and have compared their approach 

against GA, PSO, and SA for the same purpose. Their 

findings exhibited that ACO has better performance than 

GA and SA and is comparable to PSO.  

The approach in [25] outperformed the work of Mao et al. 

[2] by incorporating (1+1)-evolution strategies to enhance 

search exploitation through improving the movement of 

ants in the local search. In [25], pheromone values were 

defined in each branch, and also, were considered as a part 

of the fitness function to discourage every ant from 

traversing branches already covered by other ants. Since 

this viewpoint is only appropriate for branch coverage, 

authors in [26][27] introduced a method for using ACO to 

cover prime paths. They applied the idea of adaptive 

random testing in local search and used the information of 

program predicates in partitioning the search space [26]. 

The experimental results confirm the positive effects of the 

proposed approach, especially for programs with complex 

predicates. 

Regarding the approaches related to the input domain 

reduction, the authors of [28] reduced the search space by 

the interval arithmetic method. Their approach is 

appropriate only for simple predicates such that each side 

of the clauses contains a single interval variable. Also, 

some important issues, such as converting local variables 

to input variables, have not been addressed in their 
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approach. Therefore, we do not consider this approach in 

the evaluation section.  

An approach in order to reduce the dimension of the input 

domain introduced by Harman [1], [29] called "irrelevant 

input variable removal". Irrelevant input variables are 

input variables that do not affect executing the target 

structure. Therefore, they can be removed from the input 

domain without affecting the feasibility of the target. Their 

approach was empirically evaluated for search-based 

structural test data generation. The results showed that 

irrelevant input variable removal has no impact on the 

random search, but enhance the performance of 

optimization techniques. The authors of [1] encouraged 

concentrating on relevant variables to more reduce the 

search space via utilizing the static analysis stage; an idea 

which is followed in this study.  

3- Proposed Approach 

In this section, after describing the overall process of our 

approach, we explain our static analysis approach to input 

space partitioning. Then, we explain the customization of 

the ACO algorithm based on the partitioned space in 

section 3.3. The proposed algorithm produces test data to 

satisfy the desired coverage criterion. 

3-1- Overall Process 

Fig. 1 shows the overall process of our approach, which 

consists of two main phases: Partitioning the input domain 

and Customizing the ACO algorithm.  
 

Partitioning the input domain Customizing the ACO algorithm

Partition values

1-Symbolically execution of the 
program

3-Calculating a sample input 
vector per each clause 

Local search

Global search

2- For each clause, replacement 
of relational operators with an 

equal sign Pheromone update 

 
Fig. 1: The overall process of the proposed approach 

Partitioning the input domain: Since the search space is 

constructed by the domain of input variables, we start with 

symbolic execution [30] to transform each clause of the 

program to a new clause that only includes input variables. 

Each resulting clause divides the search space into two 

partitions; the input vectors in one partition cause the 

clause to be evaluated to True, while the input vectors in 

the other partition lead to False value for the clause. 

Replacing the relational operator (i.e., , , , ,     ) by 

the equality operator in clauses, the borders of these 

partitions are determined. Each input vector on these 

borders can be considered as partition values. 

Customizing the ACO algorithm: In this phase, the ACO 

algorithm is customized based on the partitioned search 

space obtained in the previous phase.  

 

3-2- Partitioning the Input Domain  

To perform static partitioning, the program clauses should 

be initially analyzed. A clause is a predicate that does not 

have any logical operator. For example, the predicate 

 

contains three clauses. The output of analysis is a set of 

values per each input variable. The partitioning of the 

input space is done based on these values. In the rest of the 

paper, these values are called partition values. For 

obtaining partition values, the following three steps must 

be done. Step 1 is done for predetermined test paths of the 

program (We assume that these test paths cover all the 

branches of the program); step 2 and step 3 are done for 

each clause. 

1. By performing symbolic execution for predestinate 

test paths of the program, the clauses of the 

program are converted such that they only involve 

input variables. This is carried out because the 

space we are searching through is constructed by 

input variables.  
2. Modifying each clause C by using the (=) operator 

instead of the   operators. The 

resulting clause is called C'. 

3. Finding a combination of input values that satisfy 

C'. For example, values that satisfy  (e.g., 

a = 100; b = 100; c = 200) can be considered as 

partition values for clause a + b > c. 

For clarifying the elimination of non-input variables in 

step 1, static partitioning is done on a sample program 

shown in Fig. 2. 
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Fig. 2: Sample program (a) The first predicate (b) The second predicate with the related assignments (c) The third predicate with the related assignments 

As it can be seen in Fig. 2, three conditions exist in the 

program, in lines 3, 8, 9; the first predicate does not have 

non-input variables (Fig. 2. )a)(, while the second 

predicate in line 8 has variable  that is a non-input 

variable; assignments which could be used to calculate the 

relationship between  and input variables are 

distinguished by red in Fig. 2. (b  ( . At last, two functions 

 and   are achieved to show the 

relationship between n and input variables. The same thing 

is done for the predicate in line 9 (Fig. 2.  )c().  

The predicates that are obtained by eliminating the non-

input variables along with the obtained partition values are 

shown in Table 1. 

 
Table 1: Partition values for each predicate of the sample program 

Partition values predicate Line 

number d b a 

     

     
     

     
     

 

 
Fig. 3: Partition values for the predicate a<b in the two-dimensional 

search space 

To illustrate why we use these partition values in 

partitioning the search space, we review some examples. 

The only input vector for partitioning the clause a<8 is 

a=8, which causes the input domain of a to be divided into 

two parts; input vectors in one of these parts lead the True 

value for a<8 while input vectors in the other part make 

a<8 False. Regarding clause a<b, with a=100 and b=100 

as selected partition values, there are (2*2=4) partitions in 

the whole input domain. As shown in Fig. 3, all input 
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vectors in the top left part force the program execution to 

traverse the True case, while all input vectors in the 

bottom right part cause it to traverse the False case of 

clause a<b. As additional example, input vectors that 

satisfy a+b=c (e.g., a= 100, b=100 and c=200) are 

suitable to be selected as partition values for clause 

a+b>c. Due to partitioning the input domain of a, b and d 

into two parts, there are (2*2*2=8) partitions in the whole 

input domain. Values in at least one of these parts make 

a+b>c True, and values in at least one of these parts cause 

a+b>c to be False. 

Although we illustrated the partitioned area in the search 

space only for one clause in the above example, in the next 

section, we use the partitioned space produced by all the 

clauses of the program. 

3-3- Customizing the ACO Algorithm  

ACO as an optimization algorithm is inspired from ants 

that release pheromone in the environment. ACO 

algorithms were originally utilized to solve the shortest 

route in traveling salesman problem [31].  To generate test 

data, we change the basic ACO with respect to the 

partitioned search space. 

We first formally describe the test data generation for the 

program under test P. Suppose P has d input variables 

represented by vector 1 2 d . Vector  is the 

position vector of an ant in ACO. If each input variable  

 takes its values from the domain , the 

corresponding input domain of the program is 

. 

In the problem of generating test data, each ant's position 

actually is a test data which is shown by a vector in the 

input domain D. For any ant  its position is 

marked as k 1 2 d .  

For generating test data with the ACO algorithm, an 

important consideration is the form of pheromone. In this 

paper, pheromones are defined on the partitions 

established by static partitioning, explained in the previous 

section. This way, in each partition, there is a pheromone 

value that is initialized to one.  

The pseudo-code of the customized ACO algorithm is 

presented in Algorithm 1
1
. Table 2 contains the notations 

and parameters used in this algorithm. The output of 

Algorithm 1 is a set of test data (or a test suite) that cover 

the given test targets. The test data generation process in 

Algorithm 1 is repeated until all the test targets are 

traversed by the test suite, or the predefined number of 

iterations is exceeded. The data generation process 

consists of two stages. In the first stage, all pheromone 

values are initialized by one (Lines 4-9) and an input 

                                                           
1 This algorithm along with Table 2 is similar to Algorithm 1 and Table 3 

in [26], respectively. This is because both are based on ACO. However, 
the way of development was different in both papers. 

vector in the input domain is randomly assigned to each 

ant as the position vector (Lines 10-12). 

In the second stage (Lines 13-34), the local search and 

global search are performed for each ant. Then, the 

pheromone values are updated with respect to Eq. 1 

(Section 3.2.3). The fitness values of the ants are 

calculated at the end of each iteration. The position of any 

ant k that covers an uncovered test target is added to the 

test suite, i.e., TS. The methods local search, global search, 

and pheromone update are explained in the following sub-

sections.  
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Table 2: The parameters and notations used in the proposed ACO algorithm 

 

3-3-1- Local Search  

In the local transfer of ants, for an ant   in 

partition , the aim is to investigate whether there is a 

partition in the neighborhood of  that has a better fitness 

function. If there is such a partition, the ant  will transfer 

to the partition with the best fitness function value. This 

transfer increases the value of pheromone in the 

destination partition.  

The neighboring partitions of an ant   in 

partition b are the partitions that have at least one common 

partition value.  In our implementation, a random location 

per neighboring partition is selected, and these locations 

are the representatives of their partitions. 

In the local search ant  transfer from  to  if the 

fitness of  is better than that of  and  is in the 

neighborhood’s partition of  which has the best fitness 

value amongst neighborhoods of ; otherwise, the ant’s 

location does not change in the local search and remains in 

the previous location. It must be noted that less fitness is 

considered better fitness, and the best fitness value is 0. 

This process is done for all ants in the partitioned space. 

3-3-2-  Global Search 

The global search is used to solve two problems related to 

local search. First, there may be some partitions with 

acceptable fitness that are not visited by any ant in a 

reasonable time (or iteration limit) and second, there may 

be ants with the local optima trap [32][32] (that could not 

find a neighboring place with superior fitness value). To 

resolve these issues, when each ant’s fitness value is worse 

than the average fitness value of all ants, a random value 

is generated. If  is less than a predefined probability 

, the ant will randomly be moved to a new partition; 

otherwise, the partition with the highest pheromone value 

will be the destination of the ant.  
 

3-3-3- Pheromone Update  

Eq.1 is used to update the pheromone value in each 

partition of the input domain. 
  

    (1) 

Where (0, 1) represent pheromone evaporation rate, 

 is the amount of pheromone in the jth partition, and j 

stands for partition index. 

4-  Experiment 

In this section, we compare our approach with the 

approach presented in [1]. Although the competitive 

approach has been applied to the genetic algorithm, hill 

climbing, and memetic algorithm, we select its 

implementation with the genetic algorithm because the 

experimental results in [1] showed that removing 

irrelevant input variables has the greatest effect on the 

genetic algorithm.  

Evaluation  Metrics 

Average Coverage (AC), Average Time (AT), and 

Mutation Score (MS) are used as the evaluation metrics. 

Average coverage is the average percentage of the covered 

branches and is calculated while the two competitive 

approaches run with the same iterations.  

Average time is the average of elapsed time that has 

been taken to run the algorithms and is calculated to 

compare the efficiency of the two competitive approaches.  

Mutation score is a testing metric provided by the 

mutation analysis as a fault-based testing technique. To 

perform mutation analysis, PIT [33] is used as a state-of-

the-art tool for this purpose. 

Benchmark  Programs 

To conduct experiments, several benchmark programs 

have been selected (see Table 3): the first eleven programs 

from the Numerical Case Study (NCS) of EvoSuite1. Tcas 

and Totinfo from the Software-artifact Infrastructure 

Repository (SIR)2, and the others from various related 

work. Table 3 displays the number of lines of code (LoC), 

and the description of each benchmark program.  

                                                           
1https://github.com/EvoSuite/evosuite/tree/master/removed/examples/ncs/

src/ncs 
2 http://sir.unl.edu/php/showfiles.php 

https://github.com/EvoSuite/evosuite/tree/master/removed/examples/ncs/src/ncs
https://github.com/EvoSuite/evosuite/tree/master/removed/examples/ncs/src/ncs
http://sir.unl.edu/php/showfiles.php
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The Parameters of the Algorithms  

The parameters of algorithms have been set to the values 

presented in Table 4 before performing the experiments. 

Parameter selection for our algorithm was done based on 

the sensitivity analysis which had been done in [2]. 

Although we can use any coverage criteria, in this paper, 

we consider branch coverage with the fitness function 

proposed in [1]. 

 

 
Table 3. Programs selected for the empirical studies   

Table 4. Parameter setup   

 

4-1- Experiment Results 

Experiments were repeated 50 times with various initial 

population to consider the accidental nature of 

optimization algorithms. The average coverage resulted 

per each algorithm for all benchmarks are displayed in Fig. 

4. The results demonstrate that the proposed approach has 

better average coverage for most benchmarks, except 

three, i.e., BubbleSort, Median, and Variance. The two 

approaches reached 100% average coverage for these three 

benchmark programs because satisfying the conditions of 

these programs is very easy. 

The Wilcoxon test in R [34] are conducted to statistically 

evaluate our experimental results. Table 5 presents the 

average coverage and average time along with resulted P-

values and effect size. The effect sizes of the comparisons 

are quantified with the Vargha-Delaney Ȃ statistics. In 

case of average coverage, Ȃxy is an estimation of the 

probability that, if we run the approach x, we will obtain 

better coverage than running it with the approach y. When 

two approaches are equivalent, then Ȃxy = 0.5. A high-

value Ȃxy = 1 means that, in all of the runs of x, we 

obtained higher coverage than the coverage obtained in all 

of the runs with y. 
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Fig. 4: The resulted average coverage by the proposed approach and the approach presented in [1] 

Table 5. Statistical analysis of the results of experiments  

Program name The approach in [1] Our approach AC AT 

AC AT AC AT Effect size P-value Effect size P-value 

Bessj 76.11 135.34 93.44 138.98 0.73 0.01 0.43 0.05 

BubbleSort 64.20 35.23 81.22 39.78 0.53 1.00 0.41 1.00 

Encoder 67.89 65.39 79.44 57.67 0.59 1.00 0.58 1.00 

Expint 69.22 76.23 87.66 70.36 0.71 <0.001 0.60 0.06 

Fisher 69.20 110.67 85.83 67.89 0.64 0.03 0.61 0.09 

Gammq 67.23 104.78 87.39 99.67 0.69 <0.001 0.53 <0.001 

Median 57.89 3.65 73.55 6.30 0.52 1.00 0.42 1.00 

Remainder 62.22 4.6 79.78 4.99 0.58 0.76 0.49 0.76 

TT1 79.67 43.2 100 41.49 0.50 <0.001 0.5 0.01 

TT2 65.74 36.2 82.79 30.5 0.71 <0.001 0.58 <0.001 

Variance 100 23.7 100 31.89 0.5 0.15 0.34 0.95 

GCD 100 25.4 100 20.5 0.5 0.94 0.59 0.74 

MinMax 99.5 3.6 100 4.50 0.56 0.28 0.42 0.98 

BinarySearch 70.6 6.5 79.33 7.78 0.58 0.90 0.49 0.40 

ComputeTax 89.6 48.9 100 40.5 0.69 <0.001 0.52 <0.001 

PrimeBetween 85.2 250.7 100 200.31 0.59 0.01 0.69 0.03 

Synthesis-1 61.78 154.7 81.56 143.64 0.67 0.02 0.77 0.04 

Synthesis-2 50.76 120.7 72.44 119.43 1 <0.001 0.51 0.03 

PrintCalender 55.78 67.98 85 50.32 1 <0.001 0.69 <0.001 

Number 49.67 301.67 69.55 278.43 0.98 <0.001 0.76 <0.001 

Tcas 28.9 404.7 46.8 306.43 0.87 <0.001 0.80 <0.001 

Totinfo 23.67 505.6 45.17 398.54 0.82 <0.001 0.76 <0.001 

Mcknap 25.78 408.5 41.33 375.89 0.78 <0.001 0.61 <0.001 
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The results reveal significant improvements in the average 

coverage for 15 out of 23 benchmarks and significant 

improvement in the average time for 7 out of 23 

benchmarks in comparison to the approach presented in 

[1]. The main cause for this outperformance is partitioning 

the input domain based on the information that exists in 

the conditional statement. In other words, we created a 

relationship between the input domain and the structure of 

the program. This causes performing searches more 

intelligently. Therefore, individuals converge to the test 

goal with higher speed. Utilizing the logic of the program 

to trace pheromone values results in having better 

exploitation. Furthermore, this causes having better 

exploration in the partition which has the highest 

pheromone value. 

 

To explain more precisely, consider the following clauses 

and calculated partition values that are selected from 

program Synthesis-1
1
:  

 x > 200 : {x = 200},  

 x < y : {x = 20; y = 20},  

 x + y > z : {x = 50; y = 50; z = 100},  

 y × y - 4 × x × z > 0 : {x = 4; y = 4; z = 1}  

 y  x : {y = 150; x = 150}.  

 

 

Fig. 5: The partitioned input domain based on the clauses a > 50 and a > 

b [26] 

 

The obtained partition values for each input variable are: 

x={4, 20, 50, 150, 200}, y={4, 20, 50, 150}, and z={1, 

100}. As the result, the input domain of x, y, and z 

respectively divided into 6, 5, and 3 parts. The 

composition of them creates 3 × 5 × 6 = 90 partitions in 

the whole input domain. If we assume each predicate 

involves only one clause, choosing one input vector from 

each of these partitions will lead to one of the branches 

                                                           
1 This example is the same as the one presented in [26]. 

being traversed. Partitioning based on the program 

structure causes individuals to converge to the targets 

sooner than when we just consider irrelevant input 

variables. 

Even though the search space is partitioned by considering 

only one clause (i.e., we do not consider a predicate), 

occasionally, the partitions that lead to True or False for a 

predicate are created spontaneously. This leads to more 

improvements in the efficiency of the proposed approach. 

To more explain, consider predicate (a > b && a > 50). As 

shown in Fig. 5, the partition that leads True for this 

predicate is made spontaneously just via dividing the input 

domain by "a > 50" and "a > b", separately.  

Most importantly, our approach implicitly benefits from 

the strength point of the previous work [1]. In the case of 

having an irrelevant input variable, by definition, this 

variable is not used in any predicate of the target test 

paths. Since only the involved input variables are used for 

obtaining partition points in our approach, no partition 

value is found for irrelevant input variables. Consequently, 

only one part exists with respect to the domain of an 

irrelevant input variable; hence, it does not matter which 

value is selected for irrelevant input variables.  

Table 6: Statistical analysis of the resulting mutation scores. 
Program The approach 

in [1] 

Our 

approach 

Effect 

size 

P-value 

 

Bessj 21.34 29.43 0.98  0.67 

BubbleSort  71.4 80.98 0.97 0.06 

Encoder 67.56 76.54 0.89 < 0.001 

Expint  59.43 73.76 0.99 < 0.001 

Fisher  45.43 56.33 0.86  < 0.001 

Gammq 68.87 81.96 0.9  0.56 

Median  87.22 91.89 0.84 0.34 

Remainder 95.7 98.12 0.82 0.08 

TT1 92.8 95.1 0.5   0.05 

TT2 78.33 79.32 0.87 0.10 

Variance 100 100 0.5 1 

GCD  77.1 84.13 0.5 0.09 

MinMax 75 75 0.51 1 

BinarySearch  93.93 100 0.68 0.78 

ComputeTax  80.8 83 0.69 < 0.001 

PrimeBetween  64 81.9 0.1 < 0.001 

Synthesis-1  78 80.67 0.95 < 0.001 

Synthesis-2  100 96.17 0.99  0.25 

Tcas 47.03 93 0.89 < 0.001 

 

We performed mutation analysis to experimentally 

investigate the failure detection capability of test suites 

generated by the proposed approach against test suites 

produced by the previous approach [1]. In order to conduct 

this analysis, we used 19 of 23 benchmarks presented in 

Table 4. Four benchmarks PrintCalender, Number, 

Totinfo, and Mcknap, had been implemented in C, and 

therefore, could not be used in PIT, which is a java-based 

tool. The statistical analysis of the results is shown in 

Table 6. In this table, the significant level for the p-value is 

considered as p-value ≤0.05. The results show that, with 
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high statistical confidence, in 7 out of 19 programs, the 

generated test suites by our approach have a more 

mutation score, and thus, have a better ability to detect 

failures.  

In some benchmarks, such as Remainder, there is no 

significant difference between mutation score achieved by 

the two approaches, while the improvement of mutation 

score on a program like Tcas is noticeable. Test data 

generation for more complicated programs such as Tcas 

with 12 input variables is likely more time-consuming. In 

these programs, fewer data from the input domain are 

desired, and therefore, using static information to generate 

test data enhance the mutation score of the generated test 

suites. 

5- Threats to Validity 

Threats to internal validity might come from the way the 

empirical study was carried out. To reduce the probability 

of having faults in our implementation, it has been 

carefully tested. But it is well known that testing alone 

cannot prove the absence of defects. Furthermore, 

optimization algorithms have random behavior, and thus, 

are affected by chance. To cope with this problem, we 

repeated experiments 50 times. Then, we followed 

statistical procedures to analyze the results. As a threat to 

the external validity of our results, it should be noted that a 

different selection of the benchmark programs might result 

in different conclusions.  

6- Conclusions and Future Work 

In this paper, we have presented an approach to input 

space partitioning based on the program’s conditional 

statements. We also customized the ACO algorithm with 

respect to the partitioned space. In the evaluation section, 

we have compared our approach with the irrelevant input 

variable removal method. The results revealed that our 

approach leads to better results in respect of average 

coverage.  The following research areas will be considered 

as future work: 

 Customizing other meta-heuristic algorithms based on 

predicate’s information 

 Considering the combination of clauses to select better 

partition values 

 Presenting a more comprehensive way to reduce the 

input domain so that it can be applied to all 

optimization algorithms 
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