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Abstract  
Today, smartphones, due to their ubiquity, have become indispensable in human daily life. Progress in the technology of 

mobile phones has recently resulted in the emergence of several popular services such as location-based social networks 

(LBSNs) and predicting the next Point of Interest (POI), which is an important task in these services. The gathered trajectory 

data in LBSNs include various contextual information such as geographical and temporal contextual information (GTCI) that 

play a crucial role in the next POI recommendations. Various methods, including collaborating filtering (CF) and recurrent 

neural networks, incorporated the contextual information of the user’ trajectory data to predict the next POIs. CF methods do not 

consider the effect of sequential data on modeling, while the next POI prediction problem is inherently a time sequence problem. 

Although recurrent models have been proposed for sequential data modeling, they have limitations such as similarly considering 

the effect of contextual information. Nonetheless, they have a separate impact as well. In the current study, a geographical 

temporal contextual information-extended attention gated recurrent unit (GTCI-EAGRU) architecture was proposed to 

separately consider the influence of geographical and temporal contextual information on the next POI recommendations. In this 

research, the GRU model was developed using three separate attention gates to consider the contextual information of the user 

trajectory data in the recurrent layer GTCI-EAGRU architecture, including timestamp, geographical, and temporal contextual 

attention gates. Inspired by the assumption of the matrix factorization method in CF approaches, a ranked list of POI 

recommendations was provided for each user. Moreover, a comprehensive evaluation was conducted by utilizing large-scale 

real-world datasets based on three LBSNs, including Gowalla, Brightkite, and Foursquare. The results revealed that the 

performance of GTCI-EAGRU was higher than that of competitive baseline methods in terms of Acc@10, on average, by 

42.11% in three datasets. 
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1- Introduction 

Nowadays, people widely use location-based social networks 

(LBSNs) and enjoy location-based services (LBSs) using 

their mobile devices for sharing their locations with others 

by making check-ins at locations or points of interests (POIs) 

that they have visited, including shops, museums, and 

restaurants [1]. The massive record of users’ check-in data 

provides a chance to conduct research on people’s mobility 

behaviors, in particular, for POI recommendation systems 

[2,3]. In addition, governments can use predictions about 

people’s future destinations and develop better transportation 

and scheduling strategies for alleviating traffic jams and 

handling crowd congestions [5,6,7,8]. Some geographical 

and temporal information exists in a user’s historical check-

in sequence [4,9], having different effects on recommending 

the next POI. In this study, it was attempted to separately 

consider this contextual information to better train the 

proposed model. Human mobility is extremely complex and 

diverse; therefore, many previous studies were unable to 

simply determine the offering of the next POI 

recommendation [4,6]. Matrix factorization (MF) and other 

collaborative filtering (CF) techniques have widespread use 

for recommending a list of personally ranked POIs to the 

users [2]. Typically, approaches to MF include contextual 

information about the user. This helps provide valuable 

recommendations to users who lack enough historical 

check-ins and is generally referred to as the cold-start 

problem. However, the employment of collaboration 

filtering (CF)-based methods complicates the processing of 
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sequence data and capturing of dynamic user’s preferences 

[2,6,11]. As a result, the ongoing challenges lie in the 

manner of integrating the information of different features 

to accurately model users’ complex behavioral preferences 

and then recommending reliable POIs [13].  

Recurrent neural networks (RNNs) have recently been 

successfully applied to sequential recommender systems 

[1,4,8,15]. Thus, long-term dependencies can be captured by 

the hidden states of recurrent methods [4,16]. Many types of 

recurrent-based approaches have considered geographical 

and temporal factors to enhance the performance of POI 

recommendation algorithms [2,4,11,12,15]. Nonetheless, 

the present RNN-based POI recommendation methods face 

the alleviation of the cold-start problem [11]. In this regard, 

one of the excellent choices is to incorporate RNN-based 

POI recommendation methods with the MF method to enjoy 

the benefits of each one [2]. The user’s historical check-in 

behaviors do not significantly pose any problems in 

predicting the next behavior; hence, it is necessary to take 

only the important information into serious consideration 

[1,11]. Therefore, the attention mechanism (AM) has been 

proposed to deal with this challenge. The AM can enhance 

the capability of the neural network in capturing long-term 

dependencies and boost the ability to interpret neural 

networks [18]. In this study, the idea of the AM was used to 

address the most important contextual information.  

1-1- Motivations 

This study focused on the next POI recommendation through 

modeling check-in sequences and considering geographical 

and temporal contextual influences separately and proposed a 

novel geographical temporal contextual information extended 

attention gated recurrent unit (GTCI-EAGRU) for the next 

POI recommendation. Among the recurrent models, the GRU 

model is highly simple and does not include many parameters 

in contrast to the long-short term memory (LSTM) model. In 

addition, this model can ignore the earlier unit hidden state, 

which is impossible with the traditional RNN [4,6]. Thus, a 

GRU network was developed to model check-in sequences 

while paying attention to geographical distances and time 

intervals between two successive check-ins [19]. It is 

noteworthy that any piece of contextual information needs 

individual consideration during modeling since the effects of 

contextual information on user behavior are different [2,3]. 

Further, the GRU network was upgraded by inspiration from 

the AM to consider more important contextual information. 

Furthermore, factorization approaches were employed, and 

the preference score was computed by the dot product. 

Following the prediction scores, it is possible to recommend 

top-k POIs to a user, and there is a high chance that the user 

will go there if the score is higher. The Bayesian personalized 

ranking (BPR) framework [20] learned the parameters of 

GTCI-EAGRU. In the last stage, three general datasets were 

utilized to conduct extensive experiments. Five up-to-date 

POI recommendation methods were compared with 

Brightkite, Gowalla, and Foursquare to evaluate the model. 

1-2- Main Contributions 

1- The proposed architecture is presented by combining the 

development of the GRU model with the MF method, which 

aims to apply the strengths of the models and reduce the 

challenges of each of these methods. According to the MF 

method, in the CF approach, places visited on social networks 

by a user on social networks can affect the next POI of other 

users on those networks. However, CF-based approaches are 

weak in modeling sequential data and do not consider the 

effect of sequential data on modeling, while the next POI 

prediction problem is inherently a time sequence problem. 

Although recurrent models have been proposed for sequential 

data modeling, they have limitations. The traditional RNN 

model cannot integrate the corresponding check-in contextual 

information into the modeling. Newer recurrent models also 

consider the effect of temporal and spatial contextual 

information similarly, while they have a separate effect. 

Therefore, there is a need to develop these models. In the 

recurrent layer of the proposed architecture, a development 

of the GRU model is presented using three attention gates 

that consider the contextual information separately and in 

terms of their importance. 

2- Within the recurrent layer of the proposed architecture, the 

flexibility of the GRU model is employed, and the GRU 

model was expanded following the attention-based approach. 

Moreover, three additional attention gates were proposed, 

including timestamp contextual attention gate (Gts), 

geographical contextual attention gate (Gge), and temporal 

contextual attention gate (Gte). The Gts controls the influence 

of timestamp earlier visited locations, whereas Gge and Gte 

control the effect of the hidden state of the earlier recurrent unit 

based on geographical distances and time intervals between 

two successive check-ins, respectively. This innovation 

makes it possible to extend the model to another context. 
3- In this research, user contextual information is classified 
into two categories of absolute and transitional content 
information. The first category includes check-in timestamp 
and geographical coordinates and the second one consists of 
the time interval and geographical distance between two 
successive consecutive check-ins. Our proposed architecture 
considers two types of absolute and transitional contextual 
information separately. This category focuses on developing a 
model to consider more contextual information in the future.  

4. Some comprehensive experiments were conducted on 

three large-scale real-world datasets, namely, Brightkite, 

Gowalla [21], and Foursquare [14] that are widely used in 

related studies to predict the user POI in LBSNs. The aim 

was to show the effectiveness of the proposed GTCI-

EAGRU architecture for the next POI recommendation. 
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1-3- Problem Statement 

Human mobility prediction is important for a wide 

spectrum of LBSN applications, and the next POI 

recommendation is one of the usages of predicting 

people’s mobility [1]. In some LSBNs, users share their 

location by registering check-ins. The check-ins gathered 

in LBSNs contain geographical and temporal contextual 

information (TCI), and each piece of information has a 

separate effect on predicting the user’s next location [3, 8]. 

In previous studies, some restrictions were applied for 

dividing sequence into different check-in trajectories such 

as using the time interval of less than six hours [1]. 

Nonetheless, applying restrictions for the time interval and 

geographical distance, when considering registered check-

ins in data preprocessing, is not a proper approach for the 

mentioned purpose. The AM can address the mentioned 

issue. Instead of using multiple assumptions to consider 

the time interval or geographical distance constraints 

between two check-ins, it can be addressed by automatic 

weighting given to the model inputs inspired by the AM.  

According to evidence [2], CF-based approaches have 

weaknesses in sequential data modeling and fail to consider 

the effect of sequential data, while the problem of the next 

location prediction is inherently a matter of time sequence 

(Challenge 1). Traditional recurrent models are unable to 

consider contextual information, but this information is highly 

important in determining the next POI (Challenge 2). 

Meanwhile, some earlier studies, based on recurrent models, 

consider the effect of temporal and geographical contextual 

information (GCI) to be the same, while they have a different 

effect (Challenge 3). Furthermore, according to [11], some 

proposed architectures, which are a combination of recurrent 

models and AM, are highly complex (Challenge 4). In this 

work, the GTCI-EAGRU model was proposed to address the 

above-mentioned challenges. 

1-4- Organizations 

The remaining parts of this research are as follows: The 

related methods are briefly reviewed in Section 2. Sections 3 

and 4 describe some preliminaries to the study and the details 

of the GTCI-EAGRU network, respectively. In Section 5, an 

illustration of the experiments is presented, followed by 

providing the results of the proposed method. Finally, Section 

6 summarizes conclusions and an outline for future works. 

2- Related Works 

This section classifies related studies under three 

approaches generally used for the next POI 

recommendations, including CF, RNN, and AM. Table 1 

provides a summary of related works with their challenges 

considered in our research. 

Table 1. summarize of related works 

Model 

Name 

Model 

Approach 
Method summery challenges 

[28] Unified 

method 
CF based 

Believing that time plays 

an important role in POI 

recommendations and 
defining a new 

problem, namely, the 

time-aware POI 
recommendation to 

recommend 

POIs for a given user at a 
specified time in a day 

Focusing on temporal 

contextual 

information and 
paying less attention 

to geographic 

contextual 
information 

[30] LORI CF based 

Applying a confidence 

coefficient for each user 
in the integration process 

and designing a learning-

to-rank 
based algorithm to train 

confidence coefficients 

Not taking into 

consideration time 
interval and 

geographical distance 

[33]  

ST-RNN 
RNN based 

Extending RNN and 

using a transition matrix 
for capturing the 

temporal cyclic effect and 

geographical influence 

Vanishing gradient 

problem in long 
sequence due to the 

use of the traditional 

RNN 

[22] STGN RNN based 

Modifying the basic 

LSTM model slightly by 

introducing gates and 
cells to capture short- and 

long-term preferences 

Considering the same 

effect for temporal 

and geographical 
contextual 

information 

[8] SERM RNN based 

Jointly learning the 
embedding of multiple 

factors (user, location, 

time, and keywords) and 
the transition parameters 

of an RNN in a unified 

framework 

Not taking into 

account the 

geographical distance 
in the training of this 

model 

[35] CA-

RNN 
RNN based 

Employing adaptive 

context-specific input 
matrices and adaptive 

context-specific transition 

matrices 

Using a traditional 
RNN model and 

restrictions on paying 

attention to the 
contextual information, 

low performance 

[1] ATST-

LSTM 

AM and 

RNN based 

Developing an attention-
based spatiotemporal 

LSTM network to focus 

on the relevant historical 
check-in records in a 

check-in sequence 

selectively using the 
spatiotemporal contextual 

information 

Encountering with 

high complexity of 
implementation and a 

lack of attention to 

the scarcity 

[6] Deep 

Move 

AM and 

RNN based 

Capturing complex 

dependencies and multi-

level periodicity nature of 

humans using embedding, 

GRU, and AM 

Not taking into 
account the time 

interval between two 

checks to model the 
behavioral pattern of 

user check-ins 

[11] DAN-
SNR 

AM based 

Makes use of the self-AM. 

By leveraging multi-head 
self-attention, the DAN-

SNR can model long-

range dependencies 
between any two historical 

check-ins efficiently and 

weigh their contributions 
to the next destination 

adaptively 

Using only the 

attention mechanism 
and had low 

performance rather 

than applying 
recurrent neural 

networks for 

modeling the 
sequential influence 

and social influence 
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Note. CF: Collaborating filtering; RNN: Recurrent neural network; AM: 

Attention mechanism; LORI: Learning-to-rank-based integration; ST-
RNN: Spatiotemporal-Recurrent neural network; STGN: Spatio-temporal 

gated network; SERM: Semantics-enriched recurrent model; CA-RNN: 

Context-Aware Recurrent Neural Networks; ATST-LSTM: Attention-
based Spatiotemporal-Long short term memory; DAN-SNR: Deep 

attentive network for social-aware recommendation. 

3- Preliminaries 

The research problem is formulated, and the applied 

preliminaries in this study are presented in the following section. 

3-1- Notations and Definitions 

Table 2 presents some primary notations used in this study. 

Definition 1 (Check-in): A check-in is an action that a user 

takes under a geographical and temporal context. In 

addition, it is a registration of a location in the LBSN that 

contains geographical and temporal information. When a 

user u checks in a location l (including latitude and 

longitude) with venue-Id v at the timestamp t, the check-in 

record can be modeled as a quadruple: cu, v, t < u, l, v, t >. 

Definition 2 (Check-in sequence): A user’s check-in 

sequence or S
u
 is a set of all user check-ins. 

Definition 3 (Trajectory): Given a user u, a trajectory t is a 

sequence of chronologically ordered check-in associated 

with u. For example tru: < u, l1, v1, t1 >,…,< u, li, vi, ti 

>,…,< u, lk, vk, tk >, where tru is the trajectory of a user u 

before time tk. Here, a trajectory set Tr 
(u)

 is used to denote 

all the trajectories of user u. 

Definition 4 (POI): In LBSNs, a POI is a spatial item related to 

a geographical location and known as a venue, including a 

hotel or an office. In this research, POI is represented by v, and 

the set of POIs is demonstrated as V={v1, v2,...}. Each POI v 

has a unique identifier and geographical coordinate, 

consisting of geographical latitude and geographical longitude.  

Definition 5 (the next POI recommendation): Given all 

users’ trajectories, the aim of the next POI 

recommendation is to predict the most likely location 𝑣𝑘 

that a user 𝑢 will visit at a certain time point 𝑡𝑁+1. 

Definition 6 (POI recommendations): Given a set of users’ 

check-in sequences S
u
 and a set of POIs V, the POI 

recommendation task is to recommend top-k POIs that are 

preferable for user u. 

Table 2: Notations and descriptions used in this study 

Notations Descriptions 

u, l, v, & t 
User, location (including latitude and longitude), venue or 

POI, and timestamp 

cu, v, & t A check-in recorded by user u in POI v and timestamp t 

lat v & lng v 
Latitude and longitude of POI v (i.e., geographical 

coordinates of POI v) 

Δt & Δg 

Time interval and geographical distance between two 

successive check-ins 

Su A set of all check-ins generated by user u 

Us, V, & T Sets of users, POIs, and timestamp 

vτ
u POI visited by user u at time step   

Notations Descriptions 

gτ
u & tτ

u 
Vector representations of geographical and temporal 

intervals 

tru 
A sequence of chronologically ordered check-ins related to 

u 

Tr (u) All trajectories from user u 

ϕu The latent factor of user u 

ϕv The latent factor of POI v 

ϕt The latent factor of timestamp t 

d The number of latent dimensions 

v+ 
A set of positive POIs (visited venues) for each user u Us 

v- A set of positive negative POIs (unvisited venues) for each 

user u Us 

  Sigmoid function 

3-2- MF in CF Based Approach 

CF-based methods aim to discover similarities in the 

user’s previous behavior and make predictions to the user 

based on a similar preference with other users [25]. There 

are various model-based CF algorithms, but MF is the 

most commonly applied in recommender systems [2]. MF 

seems to be the most accurate approach for lowering the 

problem from high levels of scarcity in the recommender 

systems database. Generally, MF models map both users 

and items to a joint latent factor space of dimensionality d 

in such a way that user-item interactions are modeled as 

inner products in that space. In the next POI 

recommendation, the item is the same POI or venue that a 

user has selected at the time of the check-in.  

Accordingly, each venue v is related to a vector qv  R
d
, and 

each user u is associated with a vector pu   R
d
. For a given 

venue v, the elements of qv measure the extent to which the 

venue possesses those factors, positive or negative. For a 

given user u, the elements of pu measure the extent of interest 

the user has in venues that are high on the corresponding 

factors, positive or negative. The resulting dot product 

(qv
T
pu) captures the interaction between user u and venue v-

the user u’s overall interest in the venue’s characteristics. 

This approximates the user’s rating of venue v, which is 

denoted by ruv, leading to the following estimate [36]: 
 

�̂�   𝑝 𝑞 
                                                                                                       

 

The objective is to minimize the prediction error or the 

loss function in Eq. (2) where K is the set of (u,v) pairs of 

known ratings [25, 36]. 
 

𝑚 𝑛∑  𝑟   𝑝         𝑞 
                                                      (2) 

 

Different approaches exist [13,36] for the extension of MF 

using RNN models to capture the user’s dynamic preferences 

from the sequence of user’s check-ins. Specifically, with 

respect to the sequence of a user’s check-ins, the output of an 

RNN model can be effective in representing a user’s dynamic 

preferences and modifying MF-based approaches. 
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3-3- GRU in RNN Based Approach 

The next POI recommendation is immediately faced with 

the challenge of learning personalized user preferences for 

POIs and the sequential correlations jointly and efficiently 

between the check-ins [1]. To solve this problem, the RNN 

takes a sequence of inputs and learns the sequential pattern 

of the input sequence using hidden states [2,3,8]. The 

problem that the RNN faces is the exploding and 

vanishing gradients; therefore, it cannot capture long-term 

preferences [2,11]. The problems can be solved by long-

short term memory (LSTM), which employs a gate 

mechanism and can capture long-term preferences [1,23].  

The information flow among consecutive LSTM cells is 

controlled through input, forget, and output gates. LSTM 

resolves the problems of the RNN, but it has three gates 

thus the training of an LSTM-based model is slower and 

requires a large amount of training data. GRU [4,6,23,40] 

has updated and reset gates in the network, dealing with 

the update degree of each hidden state. In fact, it 

determines which information should pass to the next state 

[2,3]. Fig. 1 displays the block diagram of basic GRU. As 

shown, GRU uses only two gates (i.e., reset and update 

gates). The GRU-based model can be trained faster and 

perform better compared to LSTM when there are less 

training data. GRU calculates hidden state hτ at time τ 

from the output of update gate zτ, reset gate rτ, current 

input xτ, and previous hidden state hτ−1.  ̂ τ and hτ are 

computed from the reset gate as follows: 
 

zτ =   (Wz xτ + Uz hτ−1 + bz)      (3) 

rτ =   (Wr xτ + Ur hτ−1 + br)                                              (4) 

 ̂ τ = tanh (W xτ+U (rτ   hτ−1) + bh)     (5) 

hτ =(1- zτ)   hτ−1+ zτ   ̂ τ         (6)  

where   is a basic multiplication operation, and W and U 

represent weight matrices for training the network. 

 

 

 

 

 

 

 

 

 

Fig. 1. An illustration of the GRU cell including two gates.[3] 

3-4- Attention Mechanism 

The AM was proposed based on the selective AM in the 

human visual system [1,18]. It should be noted that humans 

are prone to giving higher attention to key parts of the input, 

helping in breaking down a complex input into simpler parts 

that can easily be processed accordingly. Rather than paying 

attention to all available information, selective attention 

mainly focuses on the most relevant information in a 

system. Accordingly, learning to pay attention to the 

specific components of the input data resulted in different 

attention models in deep learning [4,11].  

The present study proposed a novel model that is applied to 

this mechanism for the next location prediction. The key 

idea in the AM is that inputs are mapped to query, key, and 

value vectors. The outputs are calculated by taking the 

weighted sum of the value vectors where weights are 

determined by a function of query and key values [11]. 

Specifically, the attention function presents a query and a 

group of key-value pairs to a context vector, which is a 

weighted sum of all values. The queries, keys, and values 

are merged as 𝑄, 𝐾, and 𝑉𝑣𝑎𝑙 matrices, respectively [1,18]. 

For the output of the attention function, an alignment 

function or the compatibility function, which measures the 

quality of the match between the input query matches and 

the corresponding key, calculates the weight assigned to 

each value. Eq. (7) is used for the computation of the matrix 

of outputs where (𝑄, 𝐾) refers to the attention function [18]:  
 

Attention (Q, K, Vval) = Softmax (f(Q,K))Vval                      (7) 
 

Additive attention and dot-product (multiplicative) 

attention are two of the most commonly used attention 

functions and are defined as follows [1]: 
 

fadd(Q,k)=tanh(wQ+WK k)                                               (8) 
 

fmul(Q,k)= Q k
T                    

                                                   (9) 
 

In theory, these two functions are similar in computation 

complexity. Additive attention and dot-product attention 

use a feed-forward neural network with a single hidden 

layer for the calculation and optimized matrix 

multiplication operation, respectively [1]. The present 

project, which is inspired by previous studies [2,3], 

employed a feed-forward neural network to calculate the 

alignment function to develop the GRU model. 

4- Proposed GTCI-EAGRU Model Description  

The GTCI-EAGRU architecture consists of input, 

embedding, recurrent, and output layers. Fig. 2 presents a 

schematic of our purpose architecture. The details of these 

layers and the learning procedure for the parameters are 

provided as follows: 

4-1- Input Layer 

The input layer contains model inputs that include absolute 

context and relative or transition context. In the proposed 

model, the absolute context is user id, timestamp, 

geographical coordinates (including latitude and longitude), 

and venue id. Further, the relative context (also called the 

transition context) is the time interval (Δt) and geographical 

distance (Δg) between two successive check-ins. 

xt 

ht-1 

ct 
ht 

ĥ t 
Update Gate: 

zt 

Rest Gate: 

rt 

𝝈 𝝈 𝑡𝑎𝑛  

× 

 

+ 

 

× 

 

-1 
 

× 
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The geographical distance and time intervals are calculated 

in the input layer. For a given user u, venue vn, and time t
τ
 , 

the geographical distance (Δg
τ
) and time interval (Δt

τ
) 

between the POIs at current time t
τ 
and previous time t

τ
 
−1

, as 

well as the given venue vn and venue vn-1 previously visited 

at time are computed as: Δt
τ
 = t

τ
 − t

τ
 
−1

 and Δg
τ
 = dist (lat v1, 

lng v1, lat v2, lng v2), respectively, where dist () is the 

Haversine and its function is as Eq.(10)
1
. It should be noted 

that the Haversine distance is the angular distance between 

two points on the surface of a sphere. The former coordinate 

of each point is taken as the latitude and the latter one is the 

longitude given in radians. The data dimension must be two
2
. 

 

D(x,y)=2arcsin 

[√𝑠 𝑛  
     

 
  𝑐𝑜𝑠    𝑐𝑜𝑠    𝑠 𝑛

 (
     

 
) ]           (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1 https://scikit-learn.org. 
2 In general, the Eq. (10) is used to calculate the Haversine distance 

between samples in X and Y (x1 and x2 are latitude and longitude of X 

and y1 and y2 are latitude and longitude of Y, respectively). 

Fig. 2. GTCI- EAGRU architecture with input, embedding, recurrent, and 

output layers 

Note. GTCI- EAGRU: Geographical temporal contextual information 

Extended attention gated recurrent unit; LBSN: Location-based social 

network. In the recurrent layer, the GRU model is extended with three 

additional attention gates, and a ranked list of the next POI 

recommendations is provided in the output layer. 

4-2- Embedding Layer 

This layer is for embedding inputs from the check-in 

sequence before it goes to the recurrent layer. In this layer, 

embedding or latent factors are generated from the inputs. 

In addition, the latent factors of the user, namely, POI (or 

venue) and time are generated as  ui   U,  v
τ
i   V and 

time  t
τ
   T, respectively. Note that θe = {U, V, T} 

denotes the set of the parameters of the embedding layer. 

Next, the latent factors of venue  v
τ
j, the latent factors of 

the given time  t
τ
, and the contextual transition features 

(Δgτ and Δtτ) are passed to the recurrent layer for training 

using GTCI-EAGRU. 

4-3- Recurrent Layer 

In this layer, the GRU model was developed with three 

attention gates. Following Manotumruksa et al. [2] and 

Kala et al. [3], this study presented timestamp attention 

gate (Gts), geographical attention gate (Gge), and temporal 

attention gate (Gte). The input of Gts is the check-in time 

(i.e., the time that the check-in is registered by a user in 

LBSN and includes the year, month, day, hour, minute, 

and second). This gate is used to specify a more important 

timestamp in the sequence of historical check-ins of a user. 

However, the input of Gte is the time interval (Δt) between 

two successive check-ins used to specify more important 

time intervals in the sequence of historical check-ins of a 

user. The input of Gge is the geographical distance (Δg) 

between two successive check-ins applied to specify a 

more important geographical distance in the sequence of 

historical check-ins of a user. The output of this layer is 

the hidden state of the recurrent unit at time step τ, hτ, and 

is defined as Eq. (11): 
 

hτ = f ( vj
τ
,  t

τ
, Δt

τ
, Δg

τ
 ; θr )    (11) 

 

As mentioned earlier, the purposed model treats the 

absolute and relevant (or) transition contextual information 

separately. It is noteworthy that this contextual 

information has a different effect on the user’s dynamic 

preference and requires independent consideration. The 

following part describes the extension of the traditional 

GRU for the integration of absolute and relevant 

contextual information. 

Generally, in the GRU model, given the user’s sequence of 

check-ins S
u
 and dynamic preference at time step τ, the 

hidden state (h
τ
) is estimated by the update and reset gates, 

which are defined as: 
 

       
u t l v 
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z τ =  (Wz  vj
τ
+ Uz hτ −1 + bz)   (12) 

 

r τ =  (Wr  vj
τ
+ Urhτ −1 + br)   (13) 

 ̂ τ = tanh(Wh  vj
τ
+Uh (rτ   hτ−1) + bh)  (14) 

 

hτ =(1- zτ)   hτ−1+ zτ   ̂ τ    (15) 
 

where  v
τ
j represents the latent factor of venue j that user i 

visited at time step  .  

 () and tanh() are the sigmoid and hyperbolic tangent 

functions, respectively. Furthermore, U is a recurrent 

connection weight matrix that captures sequential signals 

between every two adjacent hidden states hτ and hτ −1 using 

 , which shows the element-wise product. Moreover, W 

and b are the transition matrix between the latent factors of 

venues and the corresponding bias, respectively. It should 

be noted that θr = {W, U, b} denotes the set of the 

parameters of the recurrent layer. Overall, W is the 

transition matrix between the latent factors of venues and 

b indicates the corresponding bias. Additionally, U is a 

recurrent connection weight matrix that captures 

sequential signals between every two adjacent hidden 

states. All the recurrent layer parameters (i.e., Wz, Uz, and 

bz) are the set of the parameters of the update gate. Wr, Ur, 

and br, as well as Wh, Uh, and bh are the set of parameters of 

the reset gate and candidate hidden state, respectively. 

Similarly, WGts, UGts, and bGts are the set of the parameters 

of our proposed Gts. Finally, WGge, UGge, and bGge, as well 

as WGte, UGte, and bGte are the set of the parameters of our 

proposed Gge and Gte, respectively.  

At current step  , the correlation between the latent factor 

of absolute contexts ϕt 
τ
 and the hidden state from the 

earlier step h τ-1 is calculated by Eq. (16): 
 

Gts=   (WGts h τ-1 + WGts ϕt 
τ
 + bGts)    (16) 

 

To effectively model the users’ sequential order of check-

ins, the relevant contextual information needs to be 

examined separately. To address this issue, the current 

study proposed Gge and Gte to individually incorporate the 

geographical distance (Δgτ) and time interval (Δtτ) 

between two check-ins as Eqs. (17) and (18): 
 

Gge=   (WGge h τ-1+ WGge Δg
τ
 + bge   (17) 

 

Gte=   (WGte h τ-1+ WGte Δt
τ
 + bte)   (18) 

 

With the proposed gates for GTCI-EAGRU architecture, 

the equations of the traditional GRU are updated as Eqs. 

(19), (20), and (21): 
 

z τ =  (Wz  v
τ
j+ Uz hτ −1 + Wz((Gts   ϕt 

τ
 ) +  

(Gge   Δg
τ
 ) + (Gte   Δt

τ
 ))+bz)   (19) 

              

r τ =  (Wr  v
τ
j+ Urhτ −1 +  Wr((Gts   ϕt 

τ
 ) + 

(Gge   Δg
τ
 ) + (Gte   Δt

τ
 )) +br)   (20) 

 

 ̂ τ = tanh(W  v
τ
j +U (rτ   hτ−1) + Wr((Gts   ϕt 

τ
 ) + (Gge 

  Δg
τ
 ) + (Gte   Δt

τ
 )) + bh)   (21) 

 

In the following section, the hidden sate hτ will be updated 

and as previously mentioned, it will be the output of the 

recurrent unit at time step τ. 

4-4- Output Layer 

In the next POI recommendations based on the MF 

approach, recommendations are mainly derived from a dot 

product of the latent factors of users U   R
|U|×d

 and venues 

V   R
|V|×d

 where d is the number of latent dimensions (i.e. 

�̂�i,j =  ui  vj
T
 ) and  ui and  vj denote the latent factors of 

user i and venue j, respectively [2,36]. In the output layer, 

the preference of user u on venue v at timestamp t is 

estimated using Eq. (22): 
 

�̂� u,v,t= uu h
τ
 
T
     (22) 

 

According to previous works, the pairwise loss function 

outperformed the classification loss function in learning 

patterns from sequential data and was more efficient for the 

network training of the recurrent-based recommendation 

[2,3,13,20]. Therefore, following Manotumruksa et al. [2,13], 

the pairwise BPR [20] can be applied to estimate the 

embedding and recurrent layer parameters and the probability 

distribution over all venues given the hidden state h
τ
. 

4-5- Network training 

This study employed datasets consisting of a set of 

sampled triplets each containing one user and a pair of 

POIs in which one POI is positive (known as visited) 

while the other one is negative (known as unvisited). As 

mentioned earlier, this study applied the pairwise BPR to 

learn the embedding and recurrent layer parameters (  = 

{ e, r}). Based on an underlying assumption, stating that a 

user prefers the observed POI to all unobserved ones, BPR 

considers the relative order of the predictions for the pairs 

of POIs [1,4]. At each sequential position k in the BPR 

framework, the goal of GTCI-EAGRU is to maximize the 

following probability [1,4,20]: 
 

P(u, t, v > 𝑣 ) =g( ou,t,v – ou,t, v’)     (23) 
 

𝑣 and 𝑣′
 stand for a positive (visited) POI and a negative 

(unvisited) POI, respectively, and 𝑔(∙) represents a 

nonlinear function defined by Eq. (24) as [1, 20]:  
 

𝑔    
 

     
      (24) 

 

The objective function of the network for the next POI 

recommendation can be solved by integrating the loss 

function and a regularization term as follows [20]: 
 

J= ∑     𝑢 𝑡 𝑣 >  𝑣        +    ||   ||
2
  (25) 

 

where   is used to specify the power of regularization and   

is the parameter set. The dimension of the latent factors d 

and hidden layers hτ of GTCI-EAGRU architecture d = 10 

across three datasets can be set based on methods by 

Manotumruksa et al. [2] and Kala et al. [3], and all 
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embedding and recurrent layers’ parameters can be 

randomly be initiated with a Gaussian distribution. Initially, 

the learning rate and the batch size are set to 0.001 and 256, 

respectively. An Adam optimizer was employed to optimize 

the model parameters. The output of the GTCI-EAGRU 

model is a set of scores for POIs, similar to their likelihood 

of being the next POI in each sequence. A summary of the 

learning algorithm of GTCI-EAGRU is provided as follows: 

 
 

Algorithm 1: Training of GTCI-EAGRU 

Input: Set of users 𝑈s and set of historical check-in sequences Su 

Output: GTCI-EAGRU model {   } 

//construct training instances 

1. Initialize D=Usu Du =    Du is a set of check-in trajectory 

samples combined with negative POIs of 𝑢    

2. For each user 𝑢  𝑈s do 

3.          For each check-in sequence Su = {st1
u , st2

u ,…, stn
u } do 

4.             Get the set of negative samples 𝑣
 
  

5.             For each check-in activity in Su do 

6.                   Compute the embedded vector vτ
u 

7.                   Compute the geographical contexts vector gτ
u 

8.                   Compute the temporal contexts vector tτ
u 

9.            End for 

10.            Add a training instance ({vτ
u , gτ

u , tτ
u },{𝑣

 
}) into Du 

11.         End for 

12. End for 

//train the model 

13. Initialize the parameter set   

14. While (exceed(maximum number of iterations)==FALSE) do 

15.          For each user 𝑢 in 𝑈 do 

16.              Randomly select a batch of instances 𝐷𝑏
𝑢 from 𝐷𝑢  

17.              Find   minimizing the objective (23) with 𝐷𝑏
𝑢 

18.         End for 

19. End While 

20. Return the set of parameter   

5- Experimental Result and Analysis 

This section presents the experimental setup and empirical 

results of this study. Empirical experiments are conducted 

on three public datasets in LBSNs for validating the 

efficiency of the proposed method. To address the 

challenges made in Section 2-4, the experiments are 

designed for the following research questions:  

RQ1: How can the basic GRU architecture be extended to 

separately consider the absolute and relative (or transition) 

contextual information associated with the sequence of check-ins?  

RQ2: Is it important to model absolute and relative (or 

transition) contextual information separately?  

RQ3: Does GTCI-EAGRU that leverages multiple types 

of contextual information improve prediction accuracy by 

applying additional attention gates? Or, does it outperform 

the previous methods? 

 

 

 

 

 

5-1- Datasets and Experimental Settings 

The experiments were conducted for evaluating three 

publicly LBSN datasets (i.e., BrightKite
1
, Gowalla

2
, and 

Foursquare
3
 datasets). Following Manotumruksa et al. [2] 

some deletions were made to lessen data sparsity and cold 

start problems. Users with less than 10 check-ins and POIs 

with less than 10 were eliminated from the three datasets. 

Table 3 presents an overview of the statistics of the three 

datasets. In this study, a check-in record is a quadruple 

composed of a user, the corresponding check-in timestamp, 

the geographical coordinates of the check-in, and a location 

Id or POI. The check-in records in these three datasets were 

regarded as user sequences. The density calculation formula 

for three datasets is as follows [38]: 
 

𝐷 𝑛𝑠 𝑡  
           

              
    (26) 

Table 3. Statistics of the three datasets 

Dataset #Users #Check-ins #POIs Density 

Brightkite 915 676721 7527 0.0982 

Gowalla 1047 614340 5011 0.1170 

Foursqure 615 108195 19245 0.0091 
 

A leave-one-out evaluation method was adopted to evaluate 

the efficiency of the proposed GTCI-EAGRU architecture 

based on earlier works [2], [3]. Each user’s most recent 

check-in was taken as the base, and 100 POIs, which had not 

been visited before, were randomly selected for this purpose. 

They were the testing set, and the other remaining check-ins 

were considered as the training set. The task of the GTCI-

EAGRU was to rank those 100 venues for each user as their 

preferred contexts (i.e., timestamp, time interval, and 

geographical distance), aiming at ranking highest the recent, 

ground truth check-in. Following Manotumruksa et al. [2] 

and Kala et al. [3], the researchers set the dimension of the 

latent factors d and hidden layers hτ of the proposed GTCI-

EAGRU architecture: d = 10. As mentioned before, 

Gaussian distribution [32] was employed for the random 

initialization of the recurrent layer’s parameters, and Adam 

Optimizer [39] was utilized for optimizing the parameters 

because it had a faster convergence compared to the 

stochastic gradient descent optimization, which 

automatically adjusts the learning rate for each iteration. In 

addition, the batch size and the dropout rate were set to 256 

and 0.2, respectively, to prevent overfitting. 

5-2- Comparison 

The following five up-to-date methods were compared to 

validate the efficiency of the GTCI-EAGRU in the next POI 

recommendation task. Table 4 summarizes these methods into 

different aspects. Based on data, they are categorized into MF-

                                                           
1 https://snap.stanford.edu/data/loc-brightkite.html 
2 https://snap.stanford.edu/data/loc-gowalla.html   
3https://sites.google.com/site/yangdingqi/home/foursquare-dataset 
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, RNN-, and AM-based approaches. The compared models 

are also classified according to the use of GCI and TCI. 

A brief description of these models is given below:  

STGN: Spatio-temporal gated network was proposed by 

Zhao et al. [22], and improved the LSTM network, in 

which STGs are introduced for capturing the Spatio-

temporal relationships between successive check-ins. By 

introducing new gates and cells to capture short- and long-

term preferences, STGN modified the basic LSTM model.  

ARNN: An attentional RNN was proposed by Guo et al. [7] 

to jointly model the transition regularities and sequential 

regularity of similar locations (neighbors). Using embedding, 

knowledge graph, LSTM, and AM, the ARNN captured 

sequential, spatial, temporal, and semantic influences.  

GeoSAN: By introducing a new loss function, Lian et al. [37] 

resolved the sparsity issue. GeoSAN represents the hierarchical 

gridding of each GPS point with a self-attention based 

geography encoder for better use of geographical information.  

DRCF: To benefit from the traditional RNN to model the 

sequential order of users’ check-ins, Manotumruksa et al. 

[13] extended NeuMF. DRCF has two components each 

having its recurrent layer.  

CARA: By employing embedding, GRU, and two gating 

mechanisms, Manotumruksa et al. [2] captured various 

types of the impact of different contextual information.  

Following earlier works [6-8,22], the current study used 

prediction accuracy (Acc@k, k = 10) for evaluating the 

performance of the above-mentioned methods and 

checking if the ground-truth location can be found in the 

top-k recommendation list. Generally, the Accuracy@ is 

defined by Eq. (27) as follows [29]: 
 

 𝑐𝑐𝑢𝑟𝑎𝑐  𝑘  
                                     

                       
     (27) 

Table 4. Summary of all the baseline methods used in this study 

Methods 
Approaches and Contextual Information 

MF RNN AM GCI TCI 

STGN ×   ×     

ARNN ×         

GeoSAN × ×       

DRCF     × × × 

CARA           

GTCI-EAGRU           

Note. MF; Matrix factorization; RNN: Recurrent neural network; AM: 

Attention mechanism; GCI: Geographical contextual information; TCI: 

Temporal contextual information; STGN: Spatio-temporal gated network; 

ARNN: Attentional Recurrent Neural Network; GeoSAN: Geography-

aware sequential recommender based on the Self-Attention Network; 

DRCF: Deep Recurrent Collaborative Filtering; CARA: Contextual 

attention recurrent architecture ; GTCI-EAGRU: Geographical temporal 

contextual information-extended attention gated recurrent unit. 

5-3- Results and Discussion 

Table 5 compares the recommendation results of six 

methods on the three datasets. The numbers in bold in 

each column represent the best performance. 

Table 5. Comparison of different methods in recommendation performance 

Methods 
Acc@10 

Brightkite Gowalla Foursquare 

STGN 0.2020 0.5231 0.3017 

ARNN - 0.2336 0.4285 

GeoSAN 0.6425 0.6028 0.4867 

DRCF 0.7363 - 0.8805 

CARA 0.7385 - 0.8851 

GTCI-EAGRU 0.9751 0.9606 0.8901 

Note.: STGN: Spatio-temporal gated network; ARNN: Attentional 

Recurrent Neural Network; GeoSAN: Geography-aware sequential 

recommender based on the Self-Attention Network; DRCF: Deep 
Recurrent Collaborative Filtering; CARA: Contextual attention recurrent 

architecture; GTCI-EAGRU: Geographical temporal contextual 

information-extended attention gated recurrent unit. 

The comparison of the experimental results of the models 

demonstrated that the use of AM alone (i.e., the GeoSAN 

model) has not increased prediction accuracy. Moreover, the 

experimental results of other previous studies (e.g., DAN-

SNR) revealed lower evaluation metrics values. Although 

the STGN model separately considered the GCI and TCI, it 

did not use the attenuation mechanism approach. It applied 

the LSTM model and was less prediction accurate compared 

to models that employed the GRU such as CARA. Although 

the ARNN model applied the LSTM model, it had a higher 

accuracy prediction in comparison with the STGN model 

due to the use of the attenuation mechanism. Similar to the 

STGN, it had less prediction accuracy compared to models 

that considered the GRU model. 

The GeoSAN model only uses the AM for location 

recommendation, and despite considering geographical 

and TCI, it is less prediction accurate than DRCF and 

CARA models. The DRCF model pays attention to the 

sequence of previously visited venues while not taking 

into consideration the contextual information related to the 

check-ins. Thus, its prediction accuracy is lower than that 

of the hybrid models. However, it should be stated that the 

performance of these hybrid approaches was not worse 

than that of RNN and LSTM. Thus, it is worth modeling 

geographical and spatial contextual information for the 

task of the next POI recommendations. It means that it is 

insufficient to have a good network architecture, but more 

geographical and spatial contextual information of human 

check-in behaviors should be taken into account to obtain 

excellent results [1]. This is the reason for the 

outperformance of CARA over DRCF. 

The accuracy prediction in the CARA model is higher 

compared to other models due to the separate use of TCI and 

GCI and a combination of the RNN, attention, and factoring 

approaches. Inspired by the idea behind this model, the 

researchers introduced a new initiative to employ three gates 

in the GRU model to address GCI and TCI to better predict 

the accuracy of the next POI recommendation. As mentioned 

in previous sections, the proposed model uses three separate 

attention gates, namely, Gts, Gge, and Gte, which consider the 

timestamp, geographical distance, and time interval between 

successive check-ins, respectively, and the output of each of 
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them separately affects the values of the reset and update 

gates of the GRU model. As depicted in Fig. 3, the 

experiment results of the proposed models indicate that it has 

achieved this goal, and the accuracy prediction has been 

improved in the proposed GTCI-EAGRU architecture. 
 

 

Fig. 3. Comparison of GTCI-EAGRU with baseline methods in terms of 

Accuracy@10 on three datasets 

To answer RQ1 for the development of the GRU model, it 

should be mentioned that three gates were introduced and 

implemented as a feed-forward network. The output of these 

gates affects the values of the GRU reset and update gates, 

and they are responsible for controlling the geographical 

and temporal information of the user’s trajectory data. To 

answer RQ2 and RQ3, these results were obtained (Table 6) 

by comparing the accuracy prediction of the GTCI-EAGRU 

model with up-to-date architectures. 

Table 6. Percentage of Improvement of GTCI-EAGRU 

Methods 
Percentage of Improvement 

Brightkite (%) Gowalla (%) Foursquare (%) 

STGN 79.28 45.54 66.10 

ARNN - 75.68 51.86 

GeoSAN 34.11 37.25 45.32 

DRCF 24.49 - 01.08 

CARA 24.26 - 00.56 

Improvement 40.54 52.82 32.98 

On Average in three Dataset 42.11  

6- Conclusions 

In recent years, the next POI recommendation is of great 

importance for a wide spectrum of LBSN applications. The 

influences of contextual information (e.g., spatial and 

temporal context information) are crucial for analyzing 

individual behaviors for personalized POI recommendations. 

Hence, many studies have considered this contextual 

information to improve the performance of POI 

recommendation algorithms such as the CF and RNN. There 

are still many challenges regarding how to integrate 

contextual information to accurately model users’ complex 

behavioral preferences and recommend reliable POIs to users.  

The current study proposed a novel GTCI-EAGRU for the 

next POI recommendation by addressing the challenges 

concerning previous studies. Our proposed architecture was 

presented with the development of the GRU model, in which 

the contextual information of the user trajectory data is 

considered separately. Moreover, the development of the 

model inspired by the AM makes contextual information 

more important in modeling sequential user data. POIs were 

scored to provide recommendations to a user from her/his 

historical check-ins. The simple development of this model 

for considering more contextual information is one of the 

other features of the proposed model.  

By comparing the experimental results of baseline methods, 

an increase in the accuracy of prediction indicates the 

importance of considering contextual information 

separately. The proposed GTCI-EAGRU architecture with 

three additional contextual attention gates worked well for 

the next POI recommendation. 

In this study, the comprehensive experiments conducted on 

three large- scale datasets from the Brightkite, Gowalla, and 

Foursquare demonstrated a significant improvement in the 

GTCI-EAGRU architecture for the next POI recommendations 

compared with various up-to-date recurrent architectures and 

many different recent factorization approaches.  

To enhance the quality of recommendations for the next 

POI, the GTCI-EAGRU architecture could be enriched by 

adding the impact of each user’s social relationships with 

other users on LBSNs. Furthermore, it can be possible to 

include more contextual information (e.g., visual and text 

information) related to users’ check-ins or the weather 

condition of the check-in registration location as well. 
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