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Abstract 
Digital video stabilization (DVS) allows acquiring video sequences without disturbing jerkiness, removing unwanted 

camera movements. A good DVS should remove the unwanted camera movements while maintains the intentional camera 

movements. In this article, we propose a novel DVS algorithm that compensates the camera jitters applying an adaptive 

fuzzy filter on the global motion of video frames. The adaptive fuzzy filter is a Kalman filter which is tuned by a fuzzy 

system adaptively to the camera motion characteristics. The fuzzy system is also tuned during operation according to the 

amount of camera jitters. The fuzzy system uses two inputs which are quantitative representations of the unwanted and the 

intentional camera movements. Since motion estimation is a computation intensive operation, the global motion of video 

frames is estimated based on the block motion vectors which resulted by video encoder during motion estimation 

operation. Furthermore, the proposed method also utilizes an adaptive criterion for filtering and validation of motion 

vectors. Experimental results indicate a good performance for the proposed algorithm. 

 

Keywords: Adaptive, Digital Video Stabilization, Fuzzy Filter, Kalman Filter, Motion Estimation, Motion Vector, 

Video Coding. 
 

 

1. Introduction 

Digital video stabilization (DVS) techniques have 

been studied for decades to improve visual quality of 

image sequences captured by compact and light weight 

digital video cameras. When such cameras are hand held 

or mounted on unstable platforms, the captured video 

generally looks shaky because of undesired camera 

motions. Unwanted video vibrations would lead to 

degraded view experience and also greatly affect the 

performances of applications such as video encoding [1-4] 

and video surveillance [5,6]. With recent advances in  

Wireless technology, video stabilization systems are 

also considered for integration into wireless video 

communication equipment for the stabilization of 

acquired sequences before transmission, not only to 

improve visual quality but also to increase the 

compression performance [1]. Solutions to the 

stabilization problem involve either hardware or software 

to compensate the unwanted camera motion. The 

hardware-based stabilizers are generally expensive and 

lack the kind of compactness that is crucial for today’s 

consumer electronic devices [7, 8]. On the contrary, a 

DVS system that is implemented by software can easily 

be miniaturized and updated. Consequently, DVS system 

is suitable for portable digital devices, such as digital 

camera and mobile phone. 

In general, a DVS system consists of two principal 

units including motion estimation (ME) and motion 

correction (MC) units. The ME unit estimates a global 

motion vector (GMV) between every two consecutive 

frames of the video sequence. Using the GMVs, the MC 

unit then generates smoothing motion vectors (SMVs) 

needed to compensate the frame jitters and warp the 

frames to create a more visual stable image sequence. 

According to the motion models being considered, the 

already proposed global ME techniques for DVS system 

can roughly be divided into two categories: 

(1) Two- dimensional stabilization techniques which 

deal with translational jitter only [9-20] and 

(2) multi-dimensional stabilization techniques which 

aim at stabilizing more complicated fluctuations in 

addition to translation [21-25]. Most of the existing 

algorithms fall into the first category because the 

translation is the most commonly encountered motion and 

the complexity of estimating translation parameters is 

relatively low for real-time stabilization. In the second 

category, the majority of algorithms [21,22,24] 

considered a three-dimensional or perspective motion 

model, while a few algorithms considered affine motion 
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model [23] or sensors attached to the camera to provide 

absolute 3D orientation [25]. 

Regarding to the two-dimensional ME task of DVS 

systems, most previous approaches attempt to reduce the 

computational cost by using fast ME algorithms, e.g. 

gray-coded bit-plane matching [9], two-bit transform [10], 

multiplication-free one-bit transform [11], Laplacian two-

bit transform [12], and binary image matching of color 

weight [13]. In another approach, the global ME is limited 

to small, pre-defined regions [16,17]. Such approaches 

consider DVS and video encoding separately and attempt 

to trade the accuracy of motion vectors (MVs) for the 

computational efficiency; nevertheless they improve the 

computational efficiency at the expense of degradation in 

the accuracy in ME and thereafter in MC tasks. 

Since both the video encoder and the digital stabilizer 

of a digital video camera use a ME unit, we can integrate 

digital stabilizer with video encoder [2,4,26] by making 

the two modules of a digital video camera share a 

common local motion vectors (LMVs) estimation process, 

as shown in Fig. 1. ME can take up 90% of the total 

computation of a digital stabilizer and 50% -70% of a 

video codec. Combined together, the operation required 

for ME can consume more than 70% of the total 

computation [4]. The ME task in video encoders usually 

is implemented on frame blocks by a block matching 

process to estimate a MV for each block (BMV). 

The ME unit plays an important role in DVS system 

and its estimation accuracy is a decisive factor for the 

overall stabilization performance of the system. In video 

frames with smooth or complex texture regions, the 

estimated BMVs may not be in coincidence with the real 

motion of the blocks. Although such LMVs are applicable 

to the local motion compensation task which is executed 

in the encoder, they cannot be used for the global motion 

compensation which is executed by the DVS. These 

LMVs include some noises that degrade the global ME 

task. In order to remove the noisy LMVs in these regions 

some algorithms are proposed in [27-30]. The valid 

BMVs as LMVs are used for the global ME and MC 

compensation in next steps. 

After global ME, the next essential task of a DVS system 

is MC in which the unwanted camera jitters are separated 

and removed from the intentional camera movement. 

Among the various MC algorithms proposed in the literature, 

smoothing of the GMV by low-pass filtering is the most 

popular. For instance, an MV integration method is used in 

[9,31] which utilizes a first-order infinite impulse response 

(IIR) low-pass filter to integrate  

 

Fig.1 Integration scheme of the video stabilizer and the video encoder. 

Differential motion and to smoothen the global 

movement trajectory. A frame position smoothing (FPS) 

algorithm, based on smoothing absolute frame positions that 

achieve successful stabilization performance with retained 

smooth camera movements, is utilized for MC in [17,32-41]. 

Off-line discrete Fourier transform (DFT) domain 

filtering is proposed for FPS-based stabilization in [32].  

Kalman filter and fuzzy systems have widely been 

used in DVS applications [33-41]. A real-time FPS-based 

stabilizer using Kalman filtering of absolute frame 

positions has been proposed in [17,33]. In the presented 

algorithm in [34] two Kalman filters are operated in 

parallel, one of which is used as a reference filter with a 

constant high process noise variance and another one is 

used as stabilization filter in which a fuzzy system lets the 

process noise variance to be adjusted. In this case, the 

process noise variance of the stabilization filter is 

adaptively changed by the fuzzy system according to the 

residual between the stabilization and reference filter 

output. Presented DVS in [35] utilizes an fuzzy system in 

which membership functions (MFs) are optimized to 

motion dynamics [35]. A membership selective fuzzy 

stabilization, in which the stabilization system selects 

between a pre-determined set of MFs according to 

instantaneous motion characteristics is proposed in [36]. 

A MF adaptive fuzzy filter based on smoothing of 

absolute frame position for video stabilization is 

presented in [37]. In this method initially a short mean 

filter is applied to raw absolute frame displacement as 

pre-process, to reduce the dynamic range of the fuzzy 

system input. Fuzzy stabilization is then achieved through 

fuzzy correction mapping. In this method output MFs of 

the fuzzy system are continuously adapted so as to 

constitute a MF adaptive fuzzy filtering process. It is 

shown in [38] that the performance of the Kalman filter 

can be improved by a fuzzy system that improves the 

Kalman filter output. In presented algorithm in [33,39], 

the process noise variance in Kalman filter is adjusted 

adaptively according to the camera motion characteristics.  

Almost all fuzzy systems utilized by presented 

algorithms [34-38] have a similar structure with two 

inputs as fuzzy inputs and a little difference in fuzzy MFs. 

In these algorithms, the first input is the difference 

between the absolute frame displacement and the a priori 

estimate of the stabilized frame position that achieve by a 

Kalman filter or another predictor. The second input 

indicates the change of first input over the last two frames. 

Regarding to the MC task of DVS systems, almost all 

published algorithms try to smoothen the global 

movement trajectory by a kind of low-pass filtering. An 

important drawback of the low-pass filtering is that 

smoothened movement trajectory is delayed with respect 

to the desired camera displacements. A stricter filtering 

provides more stabilization at the expense of more 

trajectory delay and vice versa. More trajectory delay 

means losing more image content after stabilization. 

In this article, we propose a DVS algorithm with new 

features in ME and MC units. The ME unit estimates a 
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GMV based on the BMVs which are estimated by the 

video encoder. Therefore, the computational complexity 

of the DVS is very low and the accurate motion 

information is used without extra computation cost. 

Moreover, in order to improve the accuracy of GMV 

estimation task an adaptive thresholding algorithm is used 

to remove the noisy invalid LMVs. The MC unit of the 

proposed DVS system is an adaptive fuzzy filter that 

applied on the global motion of video frames to smooth 

the camera movement trajectory adaptively. The adaptive 

fuzzy filter is a Kalman filter which is tuned by a fuzzy 

system adaptively to the characteristics of unwanted and 

intentional camera motions. The fuzzy system itself is 

also tuned during operation according to the amount of 

camera jitters. The fuzzy system uses two inputs which 

are quantitative representations of the unwanted and the 

intentional camera movements. Experimental results 

show a good performance for the proposed DVS 

algorithm. Also in order to have a generic comparison 

between our method and some relevant MC algorithms 

proposed in the literature, Table1 is presented. A good 

MC unit should remove the unwanted camera motion 

while tracks the intentional motion without any delay. For 

this purpose, it should discriminate the unwanted and 

intentional camera motions while adjust the smoothing 

filter adaptively according to the amount of unwanted and 

intentional camera motions. The studied published MC 

algorithms lack some of these features. For example in 

the Table1, it is shown that the algorithms presented in 

[27,39,40] suffer from the lack of discrimination of 

unwanted and intentional camera motions. Moreover, the 

proposed adaptive algorithm in [27] suffers from a 

continuous and well adaptation. They use an adaptive 

filter with a smoothing factor that is switched between 

only two values and therefore it leads to undesirable 

jumps in frame position while our proposed MC 

algorithm discriminate between the unwanted and 

intentional camera motions and also uses a fuzzy system 

to improve the quality of adaptive filter. 

The remainder of this article is organized as follows. The 

details of the proposed video stabilization algorithm are  

Table 1: Comparison results for some MC algorithms proposed in the 

literature and our Method 

Criteria 
Adaptive 

Filter 
Kalman 
Filter 

Fuzzy 
System 

Discriminating 

Unwanted and 

Intentional Motions 

Adaptive IIR Filter [27] Y    

Adaptive Kalman Filter 

[33] 
Y Y   

Fuzzy Adaptive Kalman 

Filter [34] 
Y Y Y  

MF Adaptive Fuzzy 

Filter [37] 
Y  Y  

Recursive Fuzzy System 
[38] 

 Y Y  

Adaptive Kalman 

Filtering [39] 
Y Y   

Adaptive Kalman 
Filtering [40] 

Y Y   

Proposed Method Y Y Y Y 

described in Section 2. Some experimental results are 

presented in Section 3, and the article is concluded in 

Section 4. 

2. The Proposed Method 

A flowchart of the proposed DVS system is depicted 

in Fig.2. The details of the proposed system are described 

in the sequel. 

2.1 Block-Based ME 

The block-based ME is used to generate the LMVs. 

Since the ME is done by the video encoder, the 

computational complexity of the DVS is very low and the 

accurate motion information is used without extra 

computation cost. In this article, to test the proposed DVS 

system independent of the encoder, a full search ME 

algorithm with full-pixel resolution is taken for 88 blocks 

over a search range of 3333 pixel to achieve the BMVs. 

The ME algorithm works as follows. First, the current 

frame is divided into a number of NN blocks and an MV 

for each block is computed. The resulting MV points to 

the most correlated reference block in the previous frame 

within the search area. To measure the goodness of each  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Flowchart of the proposed DVS system. 

candidate MV (x,y), the mean absolute difference 

(MAD) measure is used as 
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where C(x+k, y+L) and R(x+i+k, y+j+L) denote the 

block pixels in the target frame, and the displaced block 

pixels in the reference frame, respectively. The candidate 

MV (i,j) with the smallest MAD is chosen as the MV of 

the current block according to: 
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     (   )      (   )              (2) 
 

Where p defines the motion search range. 

2.2 LMV Validation 

The ME unit plays an important role in DVS system 

and its estimation accuracy is a decisive factor for the 

overall performance of stabilization system. Block ME 

process typically computes some wrong MVs which are 

not in coincidence to the real motion direction of the 

blocks. Although, such MVs can be useful for the motion 

compensation in encoder, they include noise and should 

not be used for the global motion compensation and video 

stabilization operations. These LMVs include some noises 

that degrade the global ME task. The noisy MVs are 

mostly obtained from two types of regions including: very 

smooth regions with lack of features and very complex 

uneven regions [27-30]. Inspiring from the algorithm 

presented in [27], two qualifying tests, namely 

“Smoothness Test” and “Complexity Test”, are used to 

detect and remove the noisy MVs by an adaptive 

thresholding method as follows. The valid BMVs as 

LMVs are used for the global ME and MC in next steps. 

2.2.1 Smoothness Test 

The noisy MVs corresponding to the smooth regions 

such as sky image are detected by thresholding of the 

average of MAD as:  
 

      
   h       (3) 

 

where       
  denotes the average of calculated 

MADs within the search area, during ME of n
th

 block. th1 

is also defined as  
 

 h        
         (      

 )   (4) 
 

Where       
  and       

  denote the minimum and 

the average values of computed MADs, respectively, 

during ME of n
th

 block within the search area. T1 is an 

experimentally defined constant coefficient about 0.45 

and     (      
 ) denotes the average of       

 , over 

all blocks of the frame. In fact the threshold th1 includes a 

global average value over the frame plus a margin.  

2.2.2 Complexity Test 

The noisy MVs corresponding to the complex texture 

regions are identified by another thresholding as: 
 

      
           (5) 

 

Where threshold th2 is defined adaptively as: 
 

          (      
 )    (6) 

 

Where T2 is an experimentally defined constant 

coefficient about 0.45, and     (      
 )  denotes the 

maximum value of        
 , over all blocks of the frame. 

According to the equations above, the       
  is compared 

against a portion of its global maximum over a frame. 

It is notable that MAD is computed during ME by 

encoder. Therefore, the smoothness test and complexity 

test have no additional computational complexity cost for 

the proposed DVS system. 

Provided results on different video contents show that, 

using fixed thresholds for different video contents may 

cause a remarkable amount of invalid noisy LMVs remain 

or a notable amount of valid LMVs be removed. To solve 

this problem, the values of thresholds th1 and th2 are 

adjusted adaptively based on the video content for each 

frame. Note, if ME is executed by a fast search algorithm 

rather than full-search algorithm at the encoder, the 

MADs calculated during ME are used for adaptation of 

thresholds th1 and th2. 

Original LMVs and validated LMVs for a sample frame 

are presented in Fig.3. This figure shows that many noisy 

LMVs have been removed by the LMV validation process. 

2.3 Global ME 

The global ME unit produces a unique GMV for each 

video frame, which represents the camera movement 

during the time interval of two frames. Since the LMVs 

obtained from the image background tend to be very 

similar in both magnitude and direction, we used a 

clustering process to classify the motion field into clusters 

corresponding to the background and foreground objects.  

 
(a) 

 
(b) 

Fig. 3 Example of noisy LMV removal on a frame of the avenue 

sequence. (a) Original MVs, (b) Valid MVs. 
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The global motion induced by camera movement is 

determined by a clustering process that consists of the 

following steps.  

Step 1) Construct the histogram H of the valid LMVs. 

The value of H(x,y) is incremented by one each time the 

LMV(x,y) is encountered. 

Step 2) As long as the scene is not dominated by 

moving objects, the cluster corresponding to background 

blocks has the maximum votes in the clustering process. 

The position (x,y) of the largest cluster or histogram bin is 

considered as the GMV. 

As an example, Fig. 4 shows the largest histogram bin 

at coordinates (5,12), yields the GMV. 

2.4 Unwanted ME and Correction 

An estimated GMV may consist of two major 

components: an intentional motion component (e.g., 

corresponding to camera panning) and unintentional 

motion component (e.g., corresponding to handshake). A 

good MC algorithm should only remove the unwanted 

motion while maintain and track the intentional motion. 

Assuming that the unwanted motion is corresponding to 

the high-frequency components, the proposed algorithm 

uses a low-pass filter to remove the unwanted motion 

component. An SMV is resulted by a Kalman filtering on 

the GMVs that resembles the intentional camera 

movement. The Kalman filter provides an estimation to 

the state of a discrete-time process defined as a linear 

dynamical system as 

 (   )     ( )   ( )       (7) 

Where F and w(t) represent state transition matrix and 

the process noise, respectively. The Kalman filter 

operates  

 

Fig. 4 Clusters of Motion field 

using observations defined by the observation system as 

 ( )     ( )   ( )     (8) 

Where H and v(t) show measurement matrix and noise, 

respectively. Process and measurement noise are assumed 

to be independent of each other, white, and with normal 

probability distributions: w ~ N (0, Q) and v ~ N (0, R). 

The Q (process noise variance) in Kalman filter has a 

direct effect on the operation of stabilizer. A relative small 

variance value provides expanded stabilization with 

reduced adaptability to changes in intentional motion 

dynamics, it means Kalman acts as a strong filter and 

provides expanded stabilization. While a relative large 

variance value enables close tracking of intentional camera 

movements but at the cost of slightly reduced stabilization 

capabilities, it means Kalman acts as a weak filter and 

quickly adjusts to changes in intentional motion dynamics. 

So, we can have an adaptive Kalman filter if the process 

noise variance of Kalman filter changes automatically 

during filtering operation. A fixed value of Q not 

effectively leads to good stabilized image sequences [13]. 

To avoid the lag of intentional movement and to smooth 

the unwanted camera motion efficiently, the following 

fuzzy adaptation mechanism of Q is proposed. 

2.4.1 Fuzzy Adaptation of Kalman Filter 

The Kalman filter is implemented on the vertical and 

horizontal components of the GMVs separately. The 

process noise variance of Kalman filter i.e., Q(n) is 

adjusted by a fuzzy system continuously for MC of each 

frame. In facts, two fuzzy systems with a similar structure 

are used corresponding to the vertical and horizontal 

motion components. The fuzzy system has two inputs 

(Input1, Input2) and one output. The fuzzy inputs are 

defined as: 

    
 

 
∑ |    ( )      (   )|
 
            (9) 

   |    ( )      (   )|                     (10) 

    
 

 
∑ |    ( )      (   )|
 
          (11) 

   |    ( )      (   )|                   (12) 

where x1 and x2 denote the inputs of fuzzy system used 

for the adaptive filtering of the horizontal motion 

component and also y1 and y2 are the inputs of fuzzy 

system used for the adaptive filtering of the vertical motion 

component. GMVx(n) and GMVy(n) indicate the horizontal 

and vertical components of the GMV of last frame and 

M+1 is the number of last GMVs used for decision. The 

fuzzy system inputs, Input1 (x1,y1) and Input2 (x2,y2), are 

used as quantitative representations of unwanted and 

intentional camera movements, respectively. The value of 

Input1 is proportional to the noise amplitude and the value 

of Input2 is proportional to the intentional camera motion 

when it has an accelerating movement. 

Defining suitable inputs for an adaptive DVS system 

has a great impact on the performance of system. Only 

relevant inputs can provide precise discriminating 

between unwanted and intentional camera motions to be 

used for the adaptation of Process Noise Variance. 

Different scenarios for the combination of unwanted and 

intentional camera motion can be considered. As 

examples, some scenarios are presented graphically in Fig. 

5. In graphs (a) and (b), camera has an intentional 

accelerating movement plus noise or unwanted motion. 

The noise amplitude is high in (a) while it can be ignored 

in (b). Graph (e) is corresponding to a camera movement 

path while panning in which the camera is moving with a 

constant velocity without any acceleration and noise. The 

explanations of all graphs are summarized in Table2. 

From the adaptive filtering point of view it is 

important to measure the amount of noise and the 
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intentional camera movement velocity and acceleration. A 

softer Process Noise Variance is needed when the noise 

amplitude is high to remove the noise. On the other hand 

the soft Process Noise Variance prevents following of 

camera path when  

 

Fig.5 Sample scenarios for combination of unwanted and intentional 

camera motions: (a) high acceleration with high noise, (b) high 

acceleration with no noise, (c) high noise with no acceleration, (d) low 
acceleration with low noise, (e) constant velocity without noise and 

acceleration, (f) constant velocity with noise. 

Table 2: Sample scenarios for combination of unwanted and intentional 
camera motion 

Graph Noise Velocity Acceleration 

a High High High 

b Low High High 

c High Zero Zero 

d Low Low Low 

e Zero High Zero 

F High High Zero 

 

it has an intentional high acceleration. Therefore, the 

Process Noise Variance of Kalman filter should be tuned 

carefully proportional to the amount of noise and camera 

movement acceleration. According to this, we defined the 

fuzzy inputs so that Input1 gives information about the 

amount of noise and Input2 gives information about the 

amount of camera movement acceleration. It is notable 

that amount of camera movement velocity itself does not 

have any constrain on the filtering so it is not measured 

and used here. The proposed fuzzy system tunes the 

Process Noise Variance of the Kalman filter, Q(n), 

adaptively according to the amount of noise and the 

camera intentional accelerating movement. In the 

proposed fuzzy system, trapezoidal and triangular MFs 

are used for the inputs and the outputs, respectively. The 

number of MFs has been selected so as to obtain decent 

performance with as few MFs as possible to maintain low 

system complexity. The experimentally designed input 

and output membership functions and also the surface of 

desired outputs are shown in Fig. 6. 

According to experimental results, the performance of 

used Kalman filter is more sensitive to Q’s changes where 

Q has a small value. Therefore, more MFs of the fuzzy 

output are concentrated in this operating area. The 

constructed rule base is containing 30 rules as presented in 

Table3. The proposed fuzzy system was implemented 

while the min function was used for the fuzzy implication 

and the max function used for the fuzzy aggregation. 

Furthermore, the centroid defuzzification method was 

applied. The output of fuzzy system defines the Q of 

Kalman filter, i.e., Q (n). for MC of n
th
 video frame. 

2.4.2 Adaptive Fuzzy MFs 

Study on a number of video sequences has shown that 

the range of fuzzy inputs (Input1, Input2) is very variable 

on different video contents. Therefore, fixed MFs for the 

inputs of fuzzy system cannot provide a good stabilization 

performance over all video contents. In order to have a 

good performance for the proposed DVS system over 

different video contents, it is proposed to adjust the MFs 

of fuzzy inputs adaptively to recently received video 

frames. The range of MFs for the fuzzy inputs, i.e., 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6 (a) MFs of fuzzy Input1(x1,y1), (b) MFs of fuzzy Input2(x2,y2) (c) MFs of 

fuzzy output, (d) Surface of desired outputs. 
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(0, Input1(max)) and (0, Input2(max)) are modified 

adaptively as 

Input1(max)= Max of input1over K recent frames, 

      (13) 

Input2(max)= Max of input2 over K recent frames, 

      (14) 

where Input1 and Input2 are clipped to a range from 1 

to 10% of video frame height in term of pixel, and the K 

corresponds to the number of frames received in last few 

seconds, e.g., 2 s. This means that the system is adapted 

to the time-varying noise conditions while the frame size 

and frame rate are considered. 

2.4.3 Motion Correction Algorithm 

After computing the Q(n) (Process noise variance) by the 

fuzzy system, the camera motion path constructed by the  

Table 3: Central Values of Fuzzy System Output*. 

 

 Input1 

In
p
u

t2
 

 L ML M MH H VH 

L 0.04 0.02 0.008 0.004 0.004 0.0009 

ML 0.07 0.04 0.02 0.008 0.004 0.0009 

M 0.1 0.07 0.04 0.02 0.008 0.0009 

MH 0.14 0.1 0.07 0.04 0.02 0.0009 

H 0.17 0.14 0.1 0.07 0.04 0.004 

 

* L, low; ML, medium low; M, medium; MH, medium high; H, high; 

VH, very high 

GMVs is filtered by the Kalman filter to compute the 

smoothened motion vectors (SMVs). For the first three 

frames, a fixed small value for Q(n) is used. After 

computing SMV, the unwanted motion vector (UMV) is 

obtained by 

UMV (n) = GMV (n) - SMV (n).   (15) 

To restore the current frame to its stabilized position, 

we offset the current frame by the accumulated UMV, 

AMV, defined by  

   ( )  ∑    ( )  
       (16) 

Where m is the frame number of the last scene cut frame. 

3. Experimental Results 

The performance of the proposed DVS method is 

evaluated over 15 video sequences covering different 

types of scenes. Since there is no well-known video 

sequence in this research field, the algorithm is tested on a 

number of sequences which are easily available. For 

example, some used video sequences are available at 

[42,43]. These sequences have a frame rate of 25 fps and 

a picture size of 352×288 pixels. Sample frames of used 

video sequences are shown in Fig. 7. We worked with 

both gray-scale and color test sequences where in both 

cases ME is implemented on the luminance component. 

Good experimental results are obtained with M=3. 

However, a larger M provides more smoothness at the 

expense of more tracking delay and vice versa. 

Performance evaluation of the proposed DVS system are 

assessed according to the accuracy and computational 

complexity cost of the GMV estimation and also assessed 

according to the smoothness of the resultant global 

motion compared to the original sequence and the gross 

movement preservation capability.  

 
(a)                                   (b) 

 
(c)                                   (d) 

Fig. 7 Images taken by a camera (a-c) held by a hand; (d) in a moving vehicle 

In this article, we propose a DVS algorithm with new 

features in ME and MC units. The ME unit estimates a 

GMV based on the BMVs which are estimated by the 

video encoder. Therefore, the computational complexity 

of the DVS is very low and the accurate motion 

information is used without extra computation cost. 

Moreover, in order to improve the accuracy of GMV 

estimation task an adaptive thresholding algorithm is used 

to remove the noisy invalid LMVs. It is notable that the 

adaptive thresholding algorithm uses MAD and MAD is 

computed during ME by encoder. Therefore, the adaptive 

thresholding algorithm have no additional computational 

complexity cost for the proposed DVS system. Regarding 

the mentioned modifications, we believe the ME unit of 

the proposed DVS outperforms the ME unit of the anchor 

systems, such as presented algorithms in [38,40], in terms 

of accuracy and computational cost. Therefore, only the 

performance of MC unit of proposed DVS system was 

compared with that of presented algorithms in [38,40] 

which are the most relevant known competitors. Fuzzy 

systems and adaptive Kalman filters are utilized for MC 

unit in [38,40]. The algorithms were applied on several 

data sets to simulate various scenarios. Since the 

performance of proposed algorithm in [38] depends on 

the value of Q parameter (process noise variance) of 

Kalman filter, so it was tuned with two different values of 

noise variance including Q=0.1 and Q=0.01. Some 

graphical comparison results are presented in Fig. 8. 

According to the results, the competitor algorithm 

proposed in [38] with small Q provides expand 

stabilization but reduces the capability of close tracking 

the intentional camera motion. Moreover, with a large Q, 

it enables close tracking of intentional camera movements 
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but at the cost of slightly reduced stabilization capabilities. 

On the other hand,  

 

 

Fig. 8 Comparison results of proposed DVS algorithm with presented 
algorithm in [38] by two different Kalman filters: Q=0.1, Q=0.01, and 

presented algorithm in [40]. 

according to the comparison results, the proposed 

algorithm in [40] provides expand stabilization but 

reduces the capability of close tracking the intentional 

camera motion. Whereas results demonstrate that this 

article provides good stabilization and close tracking of 

intentional camera movements at the same time for all 

cases by adaptive tuning of the noise variance value. 

Numerical performance assessment of MC unit of a DVS 

system is a difficult task since the ground truth of 

unwanted motions as reference is not available. To solve 

this problem, we produced a synthetic signal as reference. 

The reference signal includes three parts corresponding to 

intentional camera movements with positive, negative, 

and zero value accelerations. Moreover, a sequence of 

normal random numbers was generated and the random 

numbers were rounded to integer values to simulate the 

unwanted camera motion in terms of pixel displacement. 

Provided sequence was added to the reference signal to 

obtain a synthetic signal including both the intentional 

and the unwanted camera motions. Two copies of the 

synthetic signal (y1,y2) were generated to be processed by 

MC units of the proposed DVS algorithm and also by the 

anchor algorithms presented in [38,40]. While the 

reference signal is known that the performance of 

compared algorithms can be evaluated numerically by 

computing a distance measure such as mean square error 

(MSE) between the reference signal as GMVs of the 

reference and the processed signals as smoothed GMVs. 

The MSE measure is computed between the smoothed 

GMVs and  

the GMVs as:         

      
 

 
∑ [    ( )     ( )] 

  
         (17) 

Where GMVR(n) and SMV(n) denote n
th

 GMV of the 

reference and the smoothed video sequence, respectively. 

It is noted the performance of proposed algorithm in [38] 

depends on the value of Q parameter (process noise 

variance) of Kalman filter, so it cannot provide a well 

daptation. Therefore, the two copies of the synthetic 

signal were processed by two values of Q (0.005 and 0.6) 

and graphical simulation results are presented in Fig.9 and 

Fig. 10, respectively. Moreover, numerical comparison 

results in term of MSE for the synthetic signals are 

presented in table 4. 

According to the graphical results as shown in Fig.9 and 

Fig.10, the proposed algorithm in [38], depending on the Q 

value, performs only good filtering of the unwanted camera 

motion or only the tracking of intentional camera movement. 

On the other hand, the proposed algorithm  

 

Fig. 9 Synthetic camera movement path y1 processed by MC units of 

different DVSs 

 

Fig. 10 Synthetic camera movement path y2 processed by MC units of 

different DVSs 

Table 4: MSE resulted by MC units of different DVSs 

Motions 

Signal 

Adaptive Fuzzy 

Kalman Filter 

(proposed) 

Fuzzy Kalman 

Filter, [38] 

Adaptive Kalman 

Filter, [40] 

y1

 
0.9941 2.3239 1.5509 

y2 0.6045 1.0499 1.0579 

in [40] provides expand stabilization but reduces the 

capability of close tracking the intentional camera motion, 

respectively. Whereas the proposed algorithm in this 

article shows a high performance in both the removing of 

unwanted motion and the tracking of intentional camera 

movement. Furthermore, the numerical results presented 

in Table4 confirm the graphical results shown in Fig. 9 

and Fig.10. The least MSE for our proposed algorithm 

means the best performance. A small-scale subjective 

quality test also demonstrated that human eyes have better 

visual perception to the stabilized videos by the proposed 

DVS system than the original videos in all cases. 
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4. Conclusions 

In this article, we proposed a computationally efficient 

DVS algorithm using motion information obtained from a 

hybrid block-based video encoder. Since some of the 

obtained MVs are not valid, an adaptive thresholding was 

developed to filter out valid MVs and to compute an 

accurate GMV for each frame. The GMVs are 

smoothened with a kalman filter that is tuned adaptively 

to unwanted and intentional camera movements. The 

filter is adjusted by a fuzzy system with two inputs which 

quantify the unwanted and intentional camera movements. 

The proposed method fulfills two apparently conflicting 

requirements: close follow-up of the intentional camera 

movement and removal of the unwanted camera motion. 

In order to improve the stabilization performance, inputs 

MFs of the fuzzy system are continuously adapted 

according to the motion properties of a number of 

recently received video frames. Simulation results show a 

high performance for the proposed algorithm. With a low 

degree of computational complexity, the proposed scheme 

can effectively be used for the mobile video 

communications as well as for the conventional video 

coding applications to improve the visual quality of 

digital video and to provide a higher compression 

performance. 
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