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Abstract  
Reliability of data transmission in wireless sensor networks (WSN) is very important in the case of high lost packet rate 

due to link problems or buffer congestion. In this regard, mechanisms such as middle cache points and congestion control 

can improve the performance of the reliability of transmission protocols when the packet is lost. On the other hand, the 

issue of energy consumption in this type of networks has become an important parameter in their reliability. In this paper, 

considering the energy constraints in the sensor nodes and the direct relationship between energy consumption and the 

number of transmissions made by the nodes, the system tries to reduce the number of transmissions needed to send a packet 

from source to destination as much as possible by optimal selection of the cache points and packet caching. In order to 

select the best cache points, the information extracted from the network behavior analysis by deep learning algorithm has 

been used. In the training phase, long-short term memory (LSTM) capabilities as an example of recurrent neural network 

(RNN) deep learning networks to learn network conditions. The results show that the proposed method works better in 

examining the evaluation criteria of transmission costs, end-to-end delays, cache use and throughput. 
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1- Introduction 

Wireless sensor networks also are used for the collection 

data for monitoring of environmental information. 

Reliability of data transmission in wireless sensor 

networks is very important in the case of a high lost packet 

rate due to link problems of buffer congestion. "Internet of 

Things" (IoT) is a modern technology in which any 

creature (human, animal, or object) can send data through 

communication networks, whether the Internet or intranet. 

The data sending process between IoT devices is 

automatic according to the configuration at specific times 

(usually permanently and instantaneously), without 

demanding the "human-to-human" or "human-to-

computer" inter-action. Wireless Sensor Networks (WSNs) 

can play a significant role in promoting to cast the cheap 

and straightforward network for connecting IoT devices [5, 

6]. However, battery-powered sensor nodes impose nodes 

to have a limited energy resource. Charging or replacing 

the sensor battery may be unpleasant or impossible in a 

work setting based on WSNs. Therefore, when the node 

loses its energy, it may not be efficient for assessment and 

monitoring [3, 4]. Therefore, one of IoT-based wireless 

sensor networks' critical problems is severe energy 

limitation [7]. Since these networks' efficiency depends a 

lot on the network's life span and network coverage, it is 

necessary to consider energy-saving algorithms to design 

IoT-based wireless sensor networks with long life.  

Nowadays, researchers have developed dynamic 

management methods to overcome the energy consumption 

issues in IoT-based WSN's [8,9]. However, the increasing 

reliability rate is an essential concern for the dynamic 

management energy resources methods [10,11]. The 

reliability rate is relevant to the successful data transfer in 

IoT-based WSNs. In General, two mechanisms are used to 

be confident in IoT-based WSNs in practice: pack-based 

reliability and event-based reliability. Pack-based reliability 

requires sending all received data by sensor nodes to well, 

which could waste limited energy resources of nodes while 

event-based reliabilities do not need sending all received 

data, and it depends on sending the data covering the event. 

The areas related to sensor nodes are mostly interfering with 

each other, and for this reason, they are similar to each other 

in higher levels of sensed data. In monitoring applications, 
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the sensor network is in an environment that is supposed to 

monitor events such as fire or flood. This is possible with the 

application of small, cheap and smart sensor nodes. The 

sensors are equipped with low-power wireless interfaces 

used to communicate with each other. In environmental 

applications such as temperature and humidity monitoring, 

agricultural applications, urban life, 90 to 95% reliability is 

sufficient. But much more reliability is needed in military 

applications. Reliability means that all packets sent from the 

source must reach their destination and lost packets must be 

recovered by a secure schema. Reliability is calculated by the 

number of packets that reach the sink, not the reliability of 

individual packets. Reliability is directly related to energy 

efficiency. Sensor networks are a vital component of the 

Internet of Things (IoT) and are known as limited networks 

due to limited memory, computations, and energy 

capabilities.  

One way to improve the reliability is to use local 

retransmission through interface caching. Data caching is 

an effective way for reducing the number of end-to-end re-

transmissions, thereby reducing interference and 

overcoming variable channel conditions. Cache increases 

data access because it provides fast storage and retrieval of 

future information [1]. Caching techniques have a major 

impact on the transmission protocol proposed for WSN [2]. 

The development of the transport protocol should be 

independent of the other layers. A secure transport layer 

protocol is required in many wireless sensor network 

applications that provide different levels of reliability for 

different applications. Since congestion is one of the major 

causes of packet loss, congestion control mechanisms are a 

key component of the transport layer protocol. Congestion 

occurs when packets generated by sensor nodes exceed the 

network capacity. When congestion occurs in the network, 

the middle nodes destroy packets and this leads to the 

retransmission of packets and wasted energy in the 

network. Packet loss occurs not only due to congestion due 

to memory overload, but also for other reasons such as 

node mobility, node failure, collision, interference, and 

poor radio links. Hop-by-hop transmission is commonly 

used due to the short-range of sensor nodes in sensor 

networks. This increases the likelihood of packet loss and 

wasted energy to resend lost packets. To detect packet loss, 

explicit notification of lost packets has been proposed, 

which can be implemented as distributed (on sensor nodes) 

and centralized (on the sink). In the distributed model, 

sensor nodes use packet sequence numbers to identify lost 

packets. When a packet is lost, a middle node requests a 

re-transmission from its other neighbors. The sensor nodes 

detect the congestion from the buffer overflow. Therefore, 

to ensure the reliability of the network, the need for 

retrieval mechanisms such as retransmission and 

redundancy is felt. 

Reliability can be divided into two levels [4]: 

Packet or event confidence level 

Hop-by-hop or end-to-end confidence level 

data transmission in wireless sensor networks is in the case 

of a high lost packet rate due to link problems or buffer 

congestion. In this regard, mechanisms such as middle 

cache points and congestion control can improve the 

performance of the reliability of transmission protocols 

when the packet is lost. On the other hand, the issue of 

energy consumption in this type of networks has become 

an important parameter in their reliability 

The contributions of this paper are as follows:  

(1) Designing a reliable transport protocol using active 

cache management based on a deep learning algorithm and 

various cache management policies to improve cache 

performance. 

(2) Providing a simulation and an analytical model to 

evaluate the performance of the cache-aware congestion 

control mechanism in the presence of lost packets in the 

WSN. 

The rest of the paper is organized as follows: in section 2, the 

previously presented methods on sensor networks' reliability 

will be studied. Section 3 expresses the proposed method, 

section 4 evaluates the proposed method and studies its 

function, and finally, section 5 will give the overall 

conclusion. 

2- Related Works 

The data sending process between IoT devices is 

automatic according to the configuration at specific times 

(usually permanently and instantaneously), without 

demanding the "human-to-human" or "human-to-

computer" inter-action. Wireless Sensor Networks (WSNs) 

can play a significant role in promoting to cast the cheap 

and straightforward network for connecting IoT devices 

In [12], a new method has been presented for clustering 

wireless sensor nodes to reduce energy consumption named 

EAC. EAC is a clustering algorithm based on energy and 

distance; that means, sensor nodes are chosen as cluster 

head based on remaining energy. Meanwhile, non-cluster 

head nodes chose their cluster head based on distance from 

neighbor cluster heads. EAC algorithm increases the life 

span of network via balancing energy load among network 

nodes.  

In [13], has presented a hierarchical clustering method for 

reducing energy consumption in wireless sensor network. 

This algorithm divides network to circles with different 

power levels in sinks and each circle has different nodes. 

Simulations and results obtained from using three scales of 

network life span, number of clusters and consuming 

energy of cluster heads showed that the efficiency of this 

method is better that LEACH in terms of energy 

consumption of cluster head, number of clusters and life 

span of network. In fact, this method reduces the number 

of dead node and energy consumption and increases the 
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life span of network. This algorithm includes three phases 

of launching, cluster launching and routing among clusters. 

In [14], another hierarchical algorithm has been presented 

for reducing energy consumption in wireless sensor 

network. The presented method in this papers uses a 

mechanism to prioritize clusters and packs of data. This 

protocol provides a route without congestion for optimal 

energy consumption for necessary data packs via 

prioritizing. Therefore, the best route always remains for 

transferred vital and necessary data. Therefore, the 

proposed algorithm in this paper minimizes the delay and 

consuming energy and maximizes the life span of network 

and operational power.   

BLAC algorithm [15] used combination of battery level 

and other criteria like node density and rank for choosing 

cluster head. For balancing in energy consumption, the 

cluster head is taken frequently by each node. In BLAC, 

the cluster heads gather data from his cluster sensor nodes 

and sends them via GPRS links. 

In 2012, some researchers [16] studied the manner of 

forming clustering and especially a primary schema entitled 

fuzzy logic cluster formation protocol where fuzzy logic is 

used in clustering process. Several changes on several 

parameters related to fuzzy logic and clustering reduces the 

energy consumption and therefore increases the life span of 

network.    

In [17], the optimization algorithm of single cluster network 

and multi-cluster networks are proposed where node energy 

harvesting are allocated to strengthening nodes chosen as 

cluster head and therefore, it leads to more survival of 

network. As it was said, the energy production resource in 

sensors is battery and this resource has less capacity. None 

of the above works could minimize the energy consumption 

and therefore the life span of wireless sensor networks will 

be less such that some of sensors will be eliminated after 

some time.  

In [18], the neural networks were used for dynamic 

management of power (maximizing life span of sensor 

nodes after placement and for scheduling the cycle of the 

duties of sensor nodes (determining which node should be 

slept and which one should be alive). In this method, next 

event time is a non-fixed series which are predicted by 

wavelet neural network precisely. The mentioned neural 

network is a three-layer network which uses Morlt wavelet 

transform in hidden layer. The nodes which are in deeper 

sleeping modes consume less energy while it causes more 

delay and high energy consumption for waking.   

In [19], a self-organizing neural network was used for 

reducing and classifying similar patterns. They used SOM 

in a hierarchical network architecture (based on the cluster) 

where nodes are an organization in several clusters and 

cluster head or sinks of data combinations. This self-

organizing neural network reduces the transferring of data 

and classifies similar patterns. 

Wireless sensor networks are widely used to perform the 

automations in many applications. The WSN is used in 

both attended and unattended environment such as Internet 

of Things, smart phones, health monitoring, surveillance, 

volcano monitoring, boarder surveillance and more The 

IoT based WSN are emerging rapidly because of its 

versatility and economic nature [20,22]. 

In many applications of wireless sensor networks, providing 

reliability and healthy delivery of packet to the destination is 

of great importance. Reliability is one of the tasks of the 

transport layer in these networks, which gives the network 

the ability to deliver data sent to the receiver securely 

[23.24].  

3- The Proposed Method 

Because WSNs are cost-effective and modular, they can be 

used to secure smart cities by providing remote monitoring 

and sensing for a variety of critical scenarios. In [1], a new 

framework for remote sensing and monitoring in smart 

cities using WSNs is proposed. In their proposal, they 

suggested using Unmanned Aerial Vehicles to act as a data 

mule to offload the sensor nodes and transfer monitoring 

data securely to the remote control center for further 

analysis and decision-making. Additionally, the paper 

provides insights into the implementation challenges of the 

proposed framework. 

Machine learning technique is used in the proposed 

method of this paper to train the network based on various 

factors, such as buffer capacity, number of hops, energy 

node, speed of node, popularity and number of successful 

deliveries. The machine learning algorithm is trained 

based on previous network routing data to generate an 

equation, which examines the probability used, whether 

the communication node is able to deliver the message to 

the intended destination. To better understand the formula 

of this proposed method in Table 1 the notation of the 

formula is explained. This value is then used to decide on 

the next hop for the buffered message. In the training 

phase, long-term short-term memory capabilities are used 

to learn network conditions.  The schema of this proposed 

method is shown in Figure 1. 

Table 1: The notation of the formula 

Notation Description 

   Probability of failure due to failure 

   Probability of failure due to congestion 

   Probability of failure due to noise 

    Probability of success to the destination 

   Bit loss probability 

   The probability of packet loss  
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 Probability of progress of flow packets 

PERj, j + 1 Probability of losing the packet on the link 

between nodes j and j + 1 

 

 

Fig. 1 Schema of the proposed method 

 Long Short Term Memory (LSTM) Cell 

LSTM is an artificial recurrent neural network (RNN) 

architecture [1] used in the field of deep learning. Unlike 

standard feed forward neural networks, LSTM has 

feedback connections. It can process not only single data 

points (such as images), but also entire sequences of data 

(such as speech or video). For example, LSTM is 

applicable to tasks such as un-segmented, connected 

handwriting recognition speech recognition and anomaly 

detection in network traffic or IDSs (intrusion detection 

systems). A common LSTM unit is composed of a cell, an 

input gate, an output gate and a forget gate. The cell 

remembers values over arbitrary time intervals and the 

three gates regulate the flow of information into and out of 

the cell. LSTM networks are well-suited to classifying, 

processing and making predictions based on time series 

data, since there can be lags of unknown duration between 

important events in a time series. LSTMs were developed 

to deal with the vanishing gradient problem that can be 

encountered when training traditional RNNs. Relative 

insensitivity to gap length is an advantage of LSTM over 

RNNs, hidden Markov models and other sequence 

learning methods in numerous applications. 

Table 2: LSTM with a forget gate [2] 

     (              ) 

     (              ) 

     (              ) 

  ̃    (              ) 

                   ̃  

          (  ) 

Variables 

      
                                          

     (   )                                     

     (   )                                           

    (   )                                    

    (    )                                     

                                                      

 ̃ (    )                                   

      
                              

                                                      

                                              

3-1- Input Parameters of the Training Phase 

The proposed method uses machine learning techniques to 

select the next cache points. When a connection is 

established between two nodes and the buffer of one node 

contains a message to be transmitted, a decision must be 

made as to which node the message should be transmitted 

(as the next point selection). Normally, the message should 

only be sent from the sender to the adjacent recipient node, 

provided that the middle node has a sufficient probability 

of direct or indirect transmission to the destination node. 

Repeated message transmission can lead to packet loss and 

higher buffer overflow and higher power consumption. On 

the other hand, reducing frequent transmissions increases 

the number of unsuccessful delivery of messages. The 

probability of successful delivery depends on various 

factors that indicate the recent background and the ability 

of the nodes to deliver the message successfully. The 

probability of delivery in the next selected cache is 

Network Topology 

Data cache and management policies 

Allocation of cache space to passing traffic flows 

 

Inserting in cache 

Cache removal policy 

Probability of progress 

Probability of receiving 

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Long_short-term_memory#cite_note-lstm1997-1
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Handwriting_recognition
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Classification_in_machine_learning
https://en.wikipedia.org/wiki/Computer_data_processing
https://en.wikipedia.org/wiki/Predict
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://en.wikipedia.org/wiki/Hidden_Markov_models
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calculated using a trained ML model, which includes the 

following features: delivery probability, buffer capacity, 

successful deliveries, success rate, source and destination 

node speed, distance from message source, distance to 

message destination, number of hops to current node, and 

message life time. The message life time parameter provides 

the duration from the creation of the message to the present. 

The message is transmitted from the transmitter node, if 

Pm> Pr this point is considered as the cache point of this 

flow. In this expression, Pm is the probability of final 

delivery at the node and has been calculated using ML 

techniques. Pr is the current reliability rate at the transmitter 

node. 

In the initial phase of the learning phase of this 

dissertation, the aim is to collect data related to network 

behavior analysis and then more effective items on 

network traffic management are selected by creating a 

database in the preprocessing phase. Then, in the second 

phase, the prediction accuracy increased by using the deep 

learning model based on long-short-term memory 

feedback neural networks (LSTM), we present a deep 

learning model so that we can improve the learning depth 

by deepening the time windows (short-term daily and 

long-term annual). In the third phase, the output of the 

deep model is given to the extreme learning machine 

(ELM), which can calculate the estimated delivery time of 

each packet instantaneously according to other input data. 

In the proposed method, we intend to use a stack of 

LSTMs due to the high sensitivity of time series data. The 

output of these networks is the probability of success to 

the destination. 

 Calculation of the Probability of Final Delivery 

Based on Machine Learning 

LSTM network: In the proposed method, the LSTM 

recursive neural network model with multiple hidden 

layers has been studied. Where (x1,…., X16) are the input 

parameters. Each training data sample provides input 

values (x1,…, x16) for selecting the next cache point, and 

the obtained output determines the probability of 

successful delivery of sent message to the destination. 

Prior to training, a sample network has been provided, that 

is, it has been quantified at random values and then the 

deep network is learned by repetition in the training set, 

thus it provides the desired predictions about whether the 

delivery will be successful or not. To calculate different p 

values, the machine learning model must first be prepared, 

trained, or constructed based on the training scenario data. 

Relevant data is called training data, and a specific data 

input is a training example. Then, during the next point 

selection process, the trained LSTM network is used to 

calculate P(Y) based on the input parameters (x16, ..., x1, 

x2), which are obtained in real time. The probability of 

successful sending by each node is denoted by Psu and is 

calculated by the following equation: 

                           (1) 
 

                      (2) 
 

Where,    is the probability of failure due to failure,    is 

the probability of failure due to congestion,   represents 

the probability of failure due to noise, and     denotes the 

probability of success to the destination. 

 Calculation of the Probability of Packet Loss Due to 

Noise 

Assume that the wireless network has a bit loss probability 

equal to   . If the average length of packets is S bits, the 

probability of packet loss    can be calculated as follows: 

     (    )
     (3) 

The probability of packet loss due to channel noise Pn is 

equal to Pp. 

 Calculation of the Probability of Packet Loss Due to 

Failure 

Another cause of packet loss in wireless sensor network 

nodes is hardware failures of the node. Assume that Pf 

represents the probability of loss due to hardware failure 

of the node. The failure rate of a sensor node depends on 

its external and internal factors. External factors affecting 

a node can be considered through the MIL-HDBK 

documentation. But internal factors need to be included in 

the final formula somehow. In the first step, the 

components of the system must be thoroughly examined in 

order to provide a series or parallel model or other modes 

that can be considered for it. The series mode for a system 

is the state in which the failure of each component of the 

system causes the failure of the entire system, and the 

parallel mode of a system is the state in which if all the 

components of a system fail, the entire system will fail. It 

is clear that the essential components of a node 

(microcontroller, memory, battery, communication device, 

sensor component, and ADC) form the system series; 

because the failure of each component causes the failure of 

the entire system. But the optional components, including 

the actuators and the number of sensors, form a parallel 

system. The probability of the proper function of a part or 

the reliability in the general case is obtained from the 

following equation. 

 ( )      (        (4) 

Given the above relation, the function f(t) must be 

specified. Given that the lifespan of most electronic 

components follows an exponential relationship, with the 

reliability of sensor node (R(t)), the probability of packet 

loss can be obtained as follows: 

      ( )     (5) 

 Calculation of the Probability of Packet Loss Due to 

Congestion 

Each node has a buffer or queue. Its length and size can be 

a simple and good sign for congestion. The size of the 
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buffer can be considered as a threshold. The proposed 

method uses a fixed threshold and if the buffer size 

exceeds the threshold, the congestion is detected. In some 

methods, the buffer size is periodically checked at the 

beginning of each period and the congestion is signaled 

instantaneously. The remaining length of the overall buffer 

size, or the difference between the remaining space and the 

traffic rate, can be used as a possible indicator of 

congestion. In the proposed method, by monitoring the 

average buffer queue length, a series of times is obtained 

that can use time delay neural network (TDNN) to predict 

its future values, which is actually the future status of the 

buffer of the cache point. For this purpose, we first design a 

suitable neural network and train it through the above time 

series. It then implements the trained neural network into 

the buffer point buffer to predict the future value of the 

average length of the buffer queue at a few time periods, 

called the forecast horizon, based on current and previous 

values of the average buffer queue length. Then, based on 

the result of this prediction, we introduce a mechanism 

called ML-RED, which operates on the basis of the RED 

algorithm, and the transmitters are notified before the 

congestion starts and reduce their transmission rate. One of 

the advantages of this method is that the determination of 

the cache points by the nodes is done locally and completely 

dynamically. This is done by comparing the transmission 

rate of each node with the required reliability interval for 

each stream. It should be noted that at the beginning of the 

network, before entering the learning stage, the cache points 

are randomly selected. In order to learn this, the cache 

points are selected or removed independently and locally by 

the middle nodes. Disclaimer of previous cache points only 

includes not inserting new entries and they are responsible 

for resending until deleted from the cache as a point cache. 

In the proposed method, congestion control is done globally 

and end-to-end and the selection of cache points is done 

locally by each node. 

3-2- Data Cache and Management Policies 

The PRM-DDCLAM (Deep PRM) protocol is a DTSN
1
 

protocol with sender side changes. This protocol uses both 

ACK and NACK messages that the recipient asks the 

sender to send through explicit acknowledgment request. 

The EAR signal is mounted on the data packet. After 

sending the EAR, the source launches the EAR timer. If 

the EAR timer expires before receiving the ACK/NACK, 

the source sends the EAR packet again. After adopting the 

EAR on the node of the receiver, a NACK, containing a 

bit map of the lost packets, is generated and sent to the 

sender. During the transport of such NACKs, cache points 

learn the lost packets and check if there are packets in the 

cache. If this is true, the cache points resend packets to the 

                                                           
1
 Distributed Transport for Sensor Networks 

receiver and change the NACK bitmap before sending it to 

the sender. These implicit ACK and NACK notifications 

are a cache removal policy which are for removing all 

packets that have already been ACKed and also creating 

space for new incoming packets. Similarly, ML-PRM 

adapts a NACK repair mechanism so that cache points can 

output the NACK signal to speed up the repair process. In 

addition to receivers that can identify lost packets, cache 

points can also find lost packets and signal the node of the 

previous steps through the Repair Non- Acknowledgment 

Control Packet (RNACK), which includes a counter of lost 

packets. After receiving the RNACK, the node of the 

previous step, if it finds a copy in the cache, resends the lost 

packet to the destination. Otherwise, RNACK will be 

broadcast to the source. Assuming the route is always 

constant, RNACK transmission is not based on a timer, but 

occurs as soon as an out-of-row packet (outside the packet 

sequence) is detected. This capability further reduces the 

risk of packet loss by the accelerated recovery, thus it 

promotes instant transport. 

3-3- Allocation of Cache Space to Passing Traffic 

Flows 

In [16] and [17], the cache segmentation method has been 

used to manage the cache capacity. In this method, a cache 

point divides its cache capacity among the flows passing 

through the node in its route according to the cache 

segmentation policy in the network. To explain this 

method, suppose that ci represents the capacity of the node 

i and   
  is the total number of the flows passing through 

node i in its route. Using the cache segmentation policy, 

the weight   
  is assigned to each of these streams, which 

actually determines the part of the node cache i, which is 

assigned to flow f. By determining the weight of all the 

flows passing through node i, the true share of each flow 

from ci is determined by Equation (6): 

  
  

  
 

∑  
 
   

 

   

     (6) 

In this method, a packet of flow f can only be placed in the 

part of node i, which belongs to flow f, whose size is equal 

to   
 

    

In the proposed method, after determining the optimal 

cache points of traffic flows passing through the network, 

considering the limited memory space of each middle node, 

the cache space of each node should be divided according 

to a specific policy between traffic flows passing through 

each node. The simplest cache segmentation policy is a 

uniform distribution policy in which the entire cache space 

is equally distributed between each traffic stream passing 

through it. This is certainly not a good policy. Our 

proposed solution in this section is to allocate the cache 

space of each node to the traffic flows passing through it 

based on various criteria such as: the requested reliability 
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of the traffic flows and the distance of the node to the 

destination and the priority of the flow. In this way, traffic 

flows with high reliability and high distance of the nodes 

from the destination and have a higher flow priority, take 

up more space of the cache memory. The goal is to provide 

an exploratory algorithm based on effective parameters. To 

calculate the weighting coefficient of cache space 

allocation   
 , fuzzy systems with three inputs, the required 

reliability of traffic flows and the distance between the 

node and the destination and flow priority are used. As a 

result, the actual share of each flow from ci is determined 

by the following equation: 

  
 

 
  

 
  

 

∑  
 
   

 

   

      (7) 

3-4- Inserting in Cache 

Considering the limited resources in wireless sensor 

networks, it is crucial to provide designs that try to make 

optimal use of these resources. Transport layer protocols use 

cache in the middle nodes to counteract the inefficiency of 

the end-to-end retransmission method, enabling middle 

nodes to store packets received from different flows in their 

cache and resend them when needed. The purpose of storing 

packets in the middle nodes and locally retransmitting them 

is to minimize end-to-end retransmission, thereby reducing 

the number of transfers needed to send a packet from source 

to destination, energy consumption, and packet delay. To 

meet this goal, given the cache memory limitations, middle 

nodes must adopt appropriate policies to manage their cache 

space. Certainly one of the most important of these policies 

is the policy of selecting packets to be stored in the middle 

nodes.  

A middle node decides to save a copy of the packet in its 

cache before sending it according to the packet selection 

policy. In an optimal packet selection policy, it should be 

tried that the packets with the experience of more difficult 

conditions in their downstream nodes as a result, lower 

probability of being received, have a higher chance of 

being stored in the middle node cache, so that they do not 

have to spend a lot of money to recover if they are lost 

along the route. On the other hand, a middle node in its 

packet selection policy should store packets with a lower 

probability of progress in the upstream nodes with a higher 

probability in its cache to prevent end-to-end 

retransmission. Undoubtedly, having a high cache capacity 

such that all incoming packets can be stored is the best 

option for middle nodes. However, given the limited 

resources (including memory) in sensor nodes, a middle 

node can only select a limited number of packets to store in 

its cache. On the other hand, providing a suitable policy for 

selecting packets depends on having a proper approach in 

determining the weight or in other words, the priority of 

each received packet in the middle nodes so that a suitable 

policy for selecting packets can be adopted through the 

weight of a packet. Therefore, in the following, we will 

examine the effective parameters in determining the weight 

of packets. 

3-5- Effective Parameters 

The purpose of examining the effective parameters in 

determining the weight of packets is to provide appropriate 

policies for selecting packets to be placed in the middle 

node cache. In such a way that these policies can serve the 

purpose of using cache in the middle nodes. To determine 

the effective parameters in packet selection, according to 

Figure (1), a middle node is considered as a destination for 

packets received from downstream nodes and, on the other 

hand, a source for the packets sent to the upstream nodes 

in the following route. 

3-6- Probability of Receiving 

In this section, we consider a middle node as the destination 

for packets received from downstream nodes. Therefore, we 

will examine the parameter affecting packet transport in the 

downstream nodes of a middle node. It should be noted that 

due to the nature of the message transmission in hop-by-hop 

form in a wireless sensor network, if a node sends a message 

to a destination in n farther hop, the probability of receiving 

the message by the destination is determined using Equation 

(8). 
 

     ∏ (          )
   
       (8) 

 

In an end-to-end retransmission scheme, if a message is 

lost along the route between sender and receiver, the 

source resends the message to the destination. In this case, 

the probability of receiving a message at least one time in 

the destination after sending for t times by the source is 

determined based on Equation (9): 
 

   ∑ (       )
      

   
       (9) 

 

In Equation (2), (1- PoRn)
k
 is the probability of not 

receiving a packet after k times of sending, and PoRn is the 

probability of successfully receiving a packet after (k + 1) 

attempts. This equation shows that, after t times of sending 

a message by the source, it is expected that the message 

will be received with minimum reliability r at a destination 

with a distance of n hops. Lem (1) shows the geometric 

series introduced in Equation (10) as an equation of degree 

t. 

    ∑(       )      
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Equation (4), using Equation (3) obtained from Lemma 

(1), calculates the maximum number of transports required 

to achieve end-to-end reliability r: 

     (      )                
 

     (      )  
 

      (       )(   )                   (11) 

Equation (11) shows that in an end-to-end message 

transport design, a maximum of t (including 

retransmission) end-to-end transports by the source is 

required to provide a certain reliability (r) in delivering a 

message. As mentioned earlier, the use of cache in middle 

nodes tries to minimize end-to-end retransmission. 

Therefore, packet selection policies for caching in the 

middle nodes should select packets to be stored in the 

cache among the received packets, which will cause the 

greatest reduction in the number of end-to-end 

retransmissions (t). 

3-7- Probability of Progress 

The policy of selecting packets in a mid-node in addition 

to considering the conditions experienced by the received 

packets in downstream nodes, should also consider the 

status of packets in the route. In fact, a middle node, as the 

source of packets that it sends to upstream nodes, should 

try to store packets with low probability of placement in 

the cache of the upstream nodes or reaching their 

destination before being sent. In this section, we use the 

progress probability parameter to examine the condition of 

the received packets in the upstream nodes of a middle 

node. That is, the probability of storing packets of a flow 

in the cache of the upstream nodes of a middle node or 

reaching the destination. Equation (12) calculates the 

probability of progress of flow packets such as f in the 

upstream nodes of the middle node simplifies the 

description of Equation (12). 

    
 

    ∑    ∏ (            ) (  
   
   

    

   

   
 
)                 (12) 

In this equation   ∏ (            ) (     
 ) 

   
     

represents the probability of reaching a packet of flow f is 

from node i to node j, in the case that none of the middle 

nodes between i and j are stored in the cache, and PERj, j + 1 

is the probability of losing the packet on the link between 

nodes j and j + 1. Node j can be any of the nodes upstream 

of node i (except destination). 

Therefore; 

{ ∑    ∏ (            ) (     
 ) 

   
   

    

            } is 

the probability of non-progress of the flow packets f among 

all upstream nodes of node i. A packet selection policy used 

in middle nodes should store packets that have a low 

probability of progress in the middle nodes. Because these 

packets are likely to need to be resent and, the chances of 

upstream nodes being able to retrieve and resend these 

packets from their cache is low. On the other hand, storing 

packets in the middle node cache that have a high 

probability of progress will waste the cache capacity. 

Because these packets are most likely to be received by the 

destination or stored in the upstream middle nodes. In the 

first case, there is no need to resend the cached packets, and 

in the second case, if there is a need to resend, the middle 

nodes closer to the destination (due to receiving the lost 

message list sooner or faster timer expiration) will send the 

lost packets faster. 

 Local Variables and Packet Headers 

Implementing the proposed cache management system 

requires several local variables in the middle nodes, one 

field in the data packet header, and one field in the 

acknowledgment packet header. 

To calculate the parameter of the probability of receiving 

each packet, we use the PoR field in the packet header. To 

explain the function of this method, let PERi, i + 1 be the 

probability of lost packets on the link between nodes i and 

i + 1. Considering Equation (2), node i multiplies the value 

in the PoR field by (1- PERi,i+1) before sending the data 

packet to node i + 1 so that node i+1 is likely to receive 

this packet. Therefore, each middle node, given the PoR 

value of a packet, finds out the probability of receiving 

that packet again. The initial value of the PoR field is 1. 

To calculate the probability of progress of the packets of a 

flow, each node must store three local variables for each 

flow that passes through that node in its route. For 

example these variables for flow f are: 

1. pep_flow (f): This variable specifies the probability of 

effective progress of the packets of flow f in the upstream 

nodes. 

2. received_packet (f): This variable specifies the number 

of packets received from flow f. 

3. cached_packet (f): This variable specifies the number 

of packets of flow f that have been successfully cached. 

Calculating the effective progress probability parameter in 

addition to the variables mentioned will require a PEP 

field in the acknowledgement packet header. Given that 

the effective progress probability parameter for packets of 

a flow is calculated in the upstream nodes of a middle 

node. Therefore, we have mentioned the recursive form of 

Equation (12) in Equation (13) so that the 

acknowledgement packets that move in the opposite 

direction of the data packets from the destination to the 

source can calculate the probability of progress using the 

local variables of the middle nodes in the PEP field of 

their header. It should be noted that, like Equation (4-5), to 

calculate the effective progress probability, we use its 

opposite, that is, the probability of effective progress. 

    
    [         (          )        
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        (15) 

    
 
represents the probability of progress of the packets of 

flow f among the upstream nodes of node i and      
 

 is 

the probability that the packets of flow f will not progress 

among the upstream nodes of node i and will not be stored 

on the cache of node i. Specifically, the probability of non-

progress of the packets of a flow in the upstream nodes of the 

destination (h) and non-caching on the destination node is 

zero. In each node, as the acknowledgment message is 

received and after calculating     
 
, this value is placed in 

the local variable pep_flow (f) corresponding to the flow f, 

then      
 
 is calculated and an acknowledgment message 

is placed in the PEP field and sent to the next node in the 

direction of source. Therefore, after receiving an 

acknowledgment message from a flow such as f in a middle 

node such as i, the value        
 

 will be in its PEP field, 

and this value will be changed to      
 
 before sending for 

node i-1. Each middle node to calculate     
 
 requires the 

calculation of    
 

, which is obtained based on Equation 

(16): 

   
 

       ( )        ( )⁄    (16) 

In this method, each middle node updates the probability of 

the progress of the packets by receiving an acknowledgment 

message from a flow such as f. The packet selection policy in 

the proposed cache management system, in addition to the 

parameters of probability of receipt and effective progress, 

also requires the parameter distance from the source. To 

calculate this parameter, we use the ttl field in the data packet 

header. 

3-8- Cache Removal Policy 

Any packet stored in the cache of a middle node will be 

deleted from the cache only by replacing or receiving an 

acknowledgment message. But if the cache does not have 

enough space to store the new packet and the input packet 

weighs more than the packet in the cache can be selected 

from the packets stored in the cache of the packet whose 

remaining lifespan is ending to be replaced.  

4- Experimental Results 

In this section, we will evaluate the proposed cache 

management system. The network topology intended for 

evaluation is a 10×10 grid topology, which is shown in the 

figure 2. In this topology, each of the nodes at the end of the 

communication links sends a flow of data to the 

corresponding nodes on the opposite side. Hence each of 

these nodes sends a data flow and receives a data flow. This 

approach allows four data flows to pass through each middle 

node. The direction of these flows and the number of flows 

passing through the middle nodes have been specified in the 

figure 2. 

 

Fig. 2 10 × 10 grid topology for simulation 

The simulation was used by ns-2 simulator to evaluate the 

proposed cache management system. This simulator, 

which is based on a discrete and object-oriented event 

simulation method, was designed and implemented by 

Berkeley University and, it is one of the best tools 

available to researchers to simulate wired and wireless 

networks. 

In the scenario considered for the simulation, the source of 

each flow sends 250 packets to the destination, which due 

to the presence of 40 flows, a total of 10000 packets have 

been sent in each time of the simulation run in this 

network. The start time of each flow was randomly ranged 

from 1 to 1 second and the data transmission rate is fixed. 

The results of the evaluations have been presented for the 

proposed method and the comparative method presented in 

[24] as the Based Method.Two different scenarios have 

been used to compare the results of the two methods. In 

the first scenario, the error rate between nodes is 

considered between 0.2 and 0.6 with intervals of 0.05, 

while the cache size of the middle nodes has been 

considered to be 25. But in the second scenario, the error 

rate between the links is fixed and between 0.2 and 0.3, 

but the cache size of the middle nodes is between 5 to 40 

with intervals of 5 units. In both scenarios, the goal was to 

achieve reliability between 0.8 and 0.9. The results of 

these two scenarios have been presented in the form of 

evaluation.  

4-1- Transmission Cost 

Given the energy constraints on sensor nodes and the 

direct relationship between energy consumption and the 

number of transmissions made by the nodes, a cache 
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management system should try to minimize the number of 

transmissions needed to send a packet from source to 

destination. We define the transmission cost as the average 

number of transmissions required to send a packet from 

source to destination. In this subsection, we will examine 

the transmission cost in the proposed methods. Figure 3 

and Figure 4 show the transmission cost in comparative 

methods for different error rates and cache sizes.  

 

Fig. 3 Investigation of transmission costs in the proposed method and the 

based method with different error rates 

 

Fig. 4 Investigation of transmission costs in the proposed method and the 

based method with different cache sizes 

4-2- End-to-end Delay 

The delay calculated in this section is based on the 

definition of end-to-end delay. End-to-end delay is the 

time between the first sending of a packet and the 

successful receipt of the packet sent to the destination. 

Figure 5 and Figure 6 illustrates the end-to-end delay. 

 

Fig. 5 Delay of sent packets at different error rates 

 

Fig. 6 Delay of sent packets with different sizes 

 

4-3- Cache Use 

Figure 7 and Figure 8 show the cache use in the middle 

nodes for different scenarios in the proposed methods. 

 

Fig. 7 Cache use with different error rates 
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Fig. 8 Cache use with different cache sizes 

4-4- Throughput 

Throughput as another service quality parameter, plays an 

important role in determining the quality of the compared 

methods. Therefore, in this section, the throughput is 

examined. In Figure 9 and Figure 10, the throughput of 

each method is reported for different scenarios. 

 

Fig. 9 Throughput with different error rates 

 

Fig. 10 Throughput with different cache sizes 

 

5- Conclusion and Future Works 

Wireless sensor networks are widely used to perform 

automation in many applications. The WSN is used in both 

attended and unattended environments such as the Internet 

of Things, smartphones, health monitoring, surveillance, 

volcano monitoring, border surveillance, and more The 

IoT-based WSN is emerging rapidly because of its 

versatility and economic nature.In many applications of 

wireless sensor networks, providing reliability and healthy 

delivery of the packet to the destination is of great 

importance. Reliability is one of the tasks of the transport 

layer in these networks, which gives the network the 

ability to deliver data sent to the receiver securely. In this 

paper, a protocol for providing statistical reliability for 

multiple traffic flows using dynamic caching capability is 

presented. In order to make optimal use of memory and 

energy, distributed dynamic caching methods have been 

considered. On the other hand, in many applications of 

wireless sensor networks, providing 100% reliability is not 

considered and statistical reliability is also required. In this 

dissertation, a new protocol for recovering lost packets in 

these networks has been presented, which has the following 

features: 

• Suitable for applications that need to provide statistical 

reliability. Naturally, this protocol can also be used for 

applications with 100% reliability. 

• Ability to support various flows with different 

characteristics (different packet lengths). 

• Act in caching mode to balance energy consumption and 

memory. 

• In calculating the probability of loss, all the factors that 

produce loss, including channel noise, node failure, and 

congestion, are considered as the input of the deep 

learning network. 

• Caching points are dynamic and are dynamically 

determined according to the needs of traffic flows and 

network conditions. 

• Has the ability to support different traffic classes. 

• Can be extended to heterogeneous wireless sensor 

networks. Implementations of different scenarios in the 

results show that the proposed method works better in 

examining the evaluation criteria of transmission costs, 

end-to-end delays, cache use, and throughput. 
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