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Abstract 
Due to the completely random and dynamic nature of the cloud environment, as well as the high volume of jobs, one of 

the significant challenges in this environment is proper online job scheduling. Most of the algorithms are presented based 

on heuristic and meta-heuristic approaches, which result in their inability to adapt to the dynamic nature of resources and 

cloud conditions. In this paper, we present a distributed online algorithm with the use of two different learning automata for 

each scheduler to schedule the jobs optimally. In this algorithm, the placed workload on every virtual machine is 

proportional to its computational capacity and changes with time based on the cloud and submitted job conditions. In 

proposed algorithm, two separate phases and two different LA are used to schedule jobs and allocate each job to the 

appropriate VM, so that a two phase adaptive algorithm based on LA is presented called TPALA. To demonstrate the 

effectiveness of our method, several scenarios have been simulated by CloudSim, in which several main metrics such as 

makespan, success rate, average waiting time, and degree of imbalance will be checked plus their comparison with other 

existing algorithms. The results show that TPALA performs at least 4.5% better than the closest measured algorithm. 
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1- Introduction 

Cloud computing is a computer model that attempts to 

facilitate user access based on the type of demand they 

have from information and computing resources. This 

model tries to respond to the needs of users by reducing 

the need for human resources and costs as well as 

enhancing the speed of access to information [1]. By 

increasing the demand for running applications in the 

cloud, especially large and shared applications, Scheduling 

strategies for cloud requests have become very important. 

The key issue and challenge in cloud computing is 

ensuring the satisfaction of all users with cloud services. 

The scheduling plan consists of a scheduling algorithm 

that should plan the jobs and applications, so that users are 

satisfied and not harm the cloud manager at the same 

time[2]. Job scheduling is a key process in the IaaS layer 

that aims to execute logged requests to the system on the 

resources, in an efficient way by considering other features 

of the cloud environment. Job scheduling considers virtual 

machines as computing units to allocate heterogeneous 

physical resources for job execution. Each virtual machine 

is a unit containing computing and storage capabilities 

provided in the cloud[3]. Job scheduling in the cloud 

environment is NP-Hard due to its dynamic characteristics, 

heterogeneity, and varying workloads of users. In such a 

system, the scheduling algorithm must be done automatic 

and very quickly [4]. In cloud environments, according to 

the different needs of users, the workload of each user and 

as a result the computing resources required by them, 

which in our discussion are virtual machines, is different. 

Some users need more computing resources and others 

need fewer computing resources. In case of improper 

allocation of resources in any of the situations, the 

efficiency of the system will decrease significantly. 

Therefore, it is not possible to assign the same resources to 

all users. In addition, due to the dynamism of the cloud 

environment, the workload of users may change over time. 

Therefore, an efficient scheduling algorithm should 

dynamically allocate the most appropriate resource (virtual 

machine) to the jobs, according to the user's workload. 

Various algorithms have been presented for the job 

scheduling problem, but according to the review of the 

previous algorithms, it can be said that those algorithms 
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have not been able to fully adapt themselves to the 

dynamics of the cloud conditions and the diversity of 

resources [5]. 

The purpose of this paper is to propose an efficient 

algorithm for finding a near-optimal solution to the job 

scheduling problem in the cloud environment. Considering 

factors such as the fully dynamic environment of the cloud, 

the different capacity of virtual machines (VMs), the 

complexity and largeness of the requested jobs, the 

efficiency of cloud computing will be completely 

dependent on the existence of an effective scheduling 

algorithm. 

The main difference between our proposed approach and 

previous methods that have used learning automata is in 

the way learning automata are employed and the type of 

learning automata used. Our proposed algorithm uses two 

different learning automata (LAs) for each scheduler to 

schedule the jobs optimally, because there are two main 

challenges for scheduling jobs generally. One challenge is 

choosing the proper job among the submitted jobs from 

users based on the priority and specific conditions of each 

job, and the other challenge is assigning that job to the 

most appropriate VM. Actually, according to these two 

challenges, our algorithm uses the two mentioned LA in 

two phases. The important contributions of this paper are 

as follows: 

 Using two different learning automata (LAs) for 

each scheduler to optimally schedule the jobs 

 Creating a list of ready-to-use virtual machines 

simultaneously with the first phase of the 

algorithm. 

 Applying the variable learning automaton in the 

second phase increases the speed of convergence. 

 Providing an online adaptive job scheduling 

method for cloud environment by using the two 

different LAs in two phases. 

 Dynamically assigning workload to each virtual 

machine based on the VM's status and the 

submitted job's conditions. 

 Using a hybrid set of jobs for simulations based 

on two factors: data volume and computational 

volume. 

 Simulating the proposed algorithm using the 

CloudSim toolkit under different scenarios and 

comparing it to other scheduling algorithms. 

Regarding the paper structure, Section 2 will first provide 

a comprehensive overview of the relevant and existing 

works in job scheduling concept in cloud. Then, Section 3 

discusses the learning automata and its features. Section 4 

describes our new proposed algorithm, and then, the 

implementation as well as experimental results of the 

simulation with the CloudSim toolkit and comparing it 

with other existing algorithms is shown in Section 5. 

Finally, Section 6 concludes the paper. 

2- Related Works 

From the birth of cloud computing to this day, there has 

always been extensive research into scheduling, and as a 

result, different methods and algorithms have been 

introduced. Some methods use heuristic algorithm such as 

Scheduling based on Min-Min [6] or Min-Max [7] 

Strategy. Researchers in [8] and [9] have investigated that 

in methods based on meta-heuristics optimization 

algorithms such as GA. papers [10-12] was presented its 

methods based on GA. In paper [13], the ant colony 

optimization algorithm (ACO) is used, in which several 

artificial ants generate distinct responses randomly based 

on the amount of pheromones. In [14], the ACO search 

method with GA was used for the job scheduling problem. 

In ref [15] an optimization strategy is proposed by using 

improved ACO algorithm for task scheduling in cloud. In 

paper [16] a metaheuristics method named GWOA is 

described that firstly proposed to overcome the early 

convergence problem and then create a balance between 

the local and the global search. A hybrid method 

combining the bee optimization and whale optimization 

model is proposed in the paper [17]. A fuzzy clustering 

method is used in [18] as a pre-processing operation to 

classify cloud resources; then directed graphs are used to 

schedule jobs to run on distinct clusters of hardware 

resources. In paper [19] was used fuzzy control theory for 

accomplish system accessibility between user 

requirements and users resources availability. In [20], the 

particle swarm optimization (PSO) has been used as an 

optimal answer searching method for the optimization 

problem and paper [21] was proposed hybrid task 

scheduling method by PSO and GA. Also paper [22] is 

presented a survey of scheduling algorithms based on PSO 

in cloud computing. In paper [23] a Hybrid Particle Swarm 

Optimization (HPSO) based scheduling was presented to 

optimal job scheduling in the cloud. HPSO against PSO 

was improved the performance of job scheduling issue by 

changing the various factors. paper [24] was proposed a 

hybrid job scheduling algorithm based on Fuzzy system 

and Modified PSO technique to improve load balancing 

and throughput in cloud environment. Also paper [25] by 

using integrated particle swarm algorithm and ant colony 

algorithm, proposed a efficiency algorithm for task 

scheduling. In paper [26] was used A Bidirectional Search 

Algorithm for Flow Scheduling in Cloud Data Centers. 

This approach was used for static scheduling and reduced 

makespan. In paper [27], a hybrid method named FUGE 

based on the fuzzy and GA was presented that reduce the 

execution time and costs. A combined method of the 

cellular automata and the bat algorithm (BatCL) was 
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presented in paper [28] which aimed to reduce the cost and 

time of completion of tasks. Paper [29]  proposes a hybrid 

approach for job scheduling in cloud computing, utilizing 

a combination of sparrow search algorithm and differential 

evolution optimization. A combination of the genetic 

algorithm and the gravitational emulation local search is 

presented in [30] for task scheduling in the cloud. In [31], 

a new method was proposed based on LA for energy-

aware task scheduling to minimize energy consumption 

and task completion time in cloud environment. This paper 

presented a scheduling architecture by LA for optimal job 

assignment. The paper [32] described a new LA-based 

scheme in which load distribution was performed in such a 

way that the level of efficiency in different nodes was 

almost the same which also used paradigm of two-time 

scales to achieve its purpose. A LA Based algorithm for 

container cloud was presented in [33] which designed a 

task load monitoring framework for usage in real-time 

monitoring of resource and scheduling evaluation 

feedback, develop an intelligent scheduling technique, and 

enhance the performance. 

Articles, [34-38], had a brief overview on existed 

scheduling algorithms. 

In table 1, the related works have been categorized into 

four groups and their general advantages and 

disadvantages have been stated for each category. 

 
Table 1: Job scheduling algorithms comparison 

References Category Advantages Disadvantages 

[6, 7] 

H
eu

ristic 

A
lg

o
rith

m
s 

 simplicity of 

the algorithm 

structure 

 static 

scheduling 

 low 

compatibility 

with dynamic 

environments 

 single goal 

[18, 19, 24, 

27] 

F
u

zzy
 

T
h

eo
ry

 
 making best 

decision based 

on inputs 

 mostly using in 

combination 

 using for static 

environments 

[13, 15-17, 

20, 23, 29, 

30] 

M
eta-h

eu
ristic 

O
p

tim
izatio

n
 

 searching 

optimal 

solution from 

all solution 

space 

 obtain better 

optimization 

effect 

 complexity 

scheduling 

 long 

optimization 

time 

 getting caught 

in local optimal 

solutions 

[31-33] 

A
u

to
m

ata T
h

eo
ry

 

 proper for 

dynamic 

environments 

 global 

optimization 

ability 

 suitable for 

large-scale job 

scheduling 

 weak 

directivity in 

optimal 

solution 

searching 

 Easy to fall into 

the local 

optimum 

 

3- Learning Automata theory 

Learning automaton is one of the reinforcement learning 

techniques in artificial intelligence. Learning automata’s 

learning ability in unknown environments is a useful 

technique for modeling, controlling, and solving many real 

problems in the distributed and decentralized 

environments[39]. The environment responds to the action 

taken in turn with a reinforcement signal. The action 

probability vector is updated based on the reinforcement 

signal back from the environment. The purpose of a LA is 

finding the optimal action from the action set so it was 

received minimized average penalty from the 

environment[40]. 

Figure 1 illustrates interactive between a learning 

automaton and its random environment that vector α(n) is 

an action vector, vector β(n) is a reinforcement signal and 

vector x(n) is called context vector. In nth iteration, an 

automaton receives x(n) from the environment. Depending 

on x(n), LA chooses one of its possible actions[41]. 

 
Fig. 1: interactive between a LA and its random environment 

 

The environment can be mathematically modeled by 

quintuple             where: 

  : is the set of context vectors 

  : is the set of inputs 

  : is the set of values that can be taken by the 

reinforcement signal   

  : is the set of probability distributions 

  : is the probability distributions defined over    which is 

assumed to be unknown. 

     and      denote the input and output of environment 

at discrete time n (   )[42]. 
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The learning algorithm used to update the action 

probability based on a recurrence relation. Let         

denotes the action selected by LA and P(n) denotes the 

probability vector defined over   at instant n. Let a and b 

denote the reward and penalty parameters and r be shown 

the number of actions that can be taken by LA. At each 

instant n, if the selected action       is rewarded by 

random environment, the action probability vector P(n) is 

modified by the linear learning algorithm given in Eq.1 

and if the taken action is penalized, it is modified as given 

in Eq.2. 

 
                                    

                                                (1) 

 
                          

        
 

   
                                   (2) 

 
If a and b be equal, Eq.1 and Eq.2 are called a linear 

reward-penalty (    ) algorithm, if a be more greater than 

b those equations are called linear reward-Ɛ penalty 

(     ) and if b=0 they are named linear reward-inaction 

(     )[41]. A variable action-set learning automaton 

(VLA) is a LA that the number of its actions maybe varies 

with time. If                 be action-set of VLA, 

               is the set of action subsets and 

       denote the subset of all the available actions for 

choose by the VLA, at instant n. 

The special action subsets are chosen randomly by an 

external agency according to the probability distribution 

                          so that        
                        ]. 

Let  ̂                                be the 

probability of selecting action    if the action subset A(n) 

has already been selected and        . That is defined 

as: 

 ̂              ⁄                            (3) 

Where                     and K(n) is the sum of 

the probabilities of the actions in subset A(k) which 

defined as: 

     ∑                                       (4) 

The function of a VLA is as follows: Before selecting an 

action from the selected subset, the probabilities of all the 

actions in the A(n) are calculated as defined in Eq.(3). 

Then VLA randomly selects one of actions of the A(n) 

based on the scaled action probability vector  ̂ . 

Depending on the response received from the 

environment, the VLA updates its scaled action probability 

vector (only the available actions). Finally, the probability 

vector of the actions of the A(n) is rescaled as: 

 

         ̂                               (5) 

for more details and Proof refer to [43]. 

4- Proposed Algorithm 

As mentioned, various algorithms have been proposed 

for job scheduling in the cloud environment so far. 

However, most of them are not efficient enough due to the 

dynamic nature of the cloud environment, such as resource 

dynamics and network conditions. To represent our 

proposed method, First, we explain the cloud environment, 

the desired scheduling structure, and the general method of 

our algorithm, then we describe how each of the LA and 

the two mentioned phases work. 

Let cloud contains several hosts that each of them has 

multiple virtual machines (VMs), so that the sum of all 

virtual machines in all Hosts is considered as m virtual 

machines. The intended resources are in the form of these 

virtual machines. We also consider k schedulers for 

scheduling submitted users jobs, each scheduler      is 

associated with one or more VMs and each virtual 

machine        can also be connected to one or more 

schedulers. Also, each virtual machine has set of 

processing element      so that each processing element 

   (k) has different processing powers. In this algorithm, 

two separate phases and two different LA are used to 

schedule jobs and allocate each job to the appropriate VM, 

so that a two phase adaptive algorithm based on LA is 

presented, which we call TPALA. In our algorithm, each 

scheduler      has two LA. The first LA (   
   

) has the 

task of selecting and receiving the submitted jobs by users 

with different workloads, and the second LA (   
  ) has 

the task of optimal allocating the jobs to proper VMs 

based on their computing capacity. To better understand 

the proposed algorithm, in the Table 2, the list of most 

symbols used and their meaning is brought. 

Table 2: Symbols specifications 

Symbols Description 

   
   

  First LA on scheduler    for selecting the jobs 

   
   Second LA on scheduler Si for optimal 

allocating the job to proper VM 

RUi 
List of ready-to-use virtual machines on 
scheduler    

  
    Selected job by    

   
 on scheduler    

   
   

 Selected VM by    
   on scheduler    

  
   

 The action-set of learning automaton    
   

 

  
   

    Corresponding action of    
   

 to user jth 

  
   

 The action probability vector of    
   

 

    Set of processing elements of     

       Kth processing elements of     
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       lth task of job   

    

  
   The action-set of learning automaton    

   

  
          Corresponding action of    

   to        for 
allocating to task   

      . 

   
       The required capacity for the task   

       

       The available capacity of the processing unit 
       

 ̅      The average available capacities of all VM 
which have related to scheduler    

 

Now, according to what that has mentioned, we are going 

to describe TPALA algorithm step by step. As shown in 

the flowchart in Figure 3, in each stage, first, each VMs 

corresponding to the scheduler   , which has completed its 

previous work or is idle (has ready PE to work), generates 

a “request” signal for a new job, including its own 

characteristic, and send it for Si. In fact, in this way, a list 

of ready-to-use virtual machines is created, which we call 

RUi. Also, in RUi, the usable computing capacity of the 

VMs corresponding to the scheduler    is specified.  

As it will be said in the explanations of the second phase, 

the existence of this list (RUi) reduces the number of 

action-set used in the second phase and increases the rate 

and speed of convergence. After send request signal, VM 

waits for receive proper job or “retry” signal. 

 

 
Fig. 2: Pseudo code of create RUi for scheduler    

 

 
Fig. 3: General Flowchart of TPALA algorithm 

 

Simultaneously with this event, in the first phase, for each 

scheduler      by using    
   

 that its operation will be 

explained later (see pseudo code of Figure 4), one of the 

jobs sent by users to scheduler    is selected (  
   ). In the 

second phase of TPALA algorithm, for scheduler    , 

According to the selected job (   
   

) in the first phase and 

the list RUi, by using    
   that its operation will be 

explained later (see pseudo code of Figure 5), based on the 

characteristics of the VMs and their computational 

capacity against the required computational capacity of 

selected job,   
    is assigned to the most suitable VM. 

After selecting the proper VM (   
   

),   
    is assigned to 

   
   

 and a retry signal is sent to other VMs. These steps 

are repeated until all the users' jobs are serviced. 

Now that the general structure of the TPALA algorithm 

has been explained, we will describe the details of the 

operation of each of the phases, that is, the operation of the 

two LAs related to each of schedulers. 

As it was said, in the first phase for schedule   , learning 

automaton    
   

 is used to select   
   . Scheduler Si may 

receive jobs from several users. Let                
be the set of users that corresponded to scheduler   . 

The action-set of learning automaton    
   

 has R actions 

(one action for any user). That is defined as: 

 

  
   

 {  
   

   |              }             (6) 

If action   
   

    be selected, it is means that scheduler    

allows user Uj to submits its job. Also the action 

probability vector of    
   

 is defined as: 

 

Input:  

Output: list of ready-to-use VMs (RUi) 

01: For each      VMs corresponding to    do 

02:         If    .IsReady(PE) == True then 

03:                      .Send(“request”,   ) 

04:                      .Wait(response,   ) 

05:        End If 

06: End For 

07:   .Collects(“request”) 

08: RUi     .Create(list of ready-to-use VMs) 

09: Return RUi 
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 {  
   

   |              }             (7) 

Since we have R actions, all Actions will have same 

probability   ⁄ . Therefore all users in starting point have 

the same chance to send their jobs to cloud. If priority is 

considered for user jobs, instead of considering the equal 

probability for all actions, different values can be 

considered according to the priority of jobs and the initial 

probability of jobs with higher priority can be considered 

slightly higher. But in any case, the sum of the possibilities 

must be equal to one, that is: 

 

                   ∑   
         

              (8) 

For scheduler     at any stage,    
   

 as per its action 

probability vector select one of its actions randomly. Let 

action   
   

    be selected, then scheduler Si checks user Uj 

that it has a ready job to send. If user Uj could be submit a 

job (   
   ), selected action   

   
    gets rewards and 

increases action   
   

    by Eq.(1). Otherwise selected 

action   
   

    gets penalty and decreases action   
   

    by 

Eq.(2). Pseudo code of first phase is shown in Figure 4. In 

any case (reward/penalty) after updating the internal state 

of    
   

, this stage will be end and start next stage and 

repeat same method. By applying of this method, 

effectively workload on users can be balanced. 

 

 
 

Fig. 4: Pseudo code of one round of first phase of TPALA algorithm 

 

After   
    determined, second phase by learning automaton 

   
   can be run. In this phase    

   find a near optimal 

solution to allocate   
    to proper VM based on their 

computational capacities. 

Scheduler    has related to several VMs on cloud 

environment. Let                 be the set of VMs 

that corresponded to scheduler Si. 

Every virtual machine VMj have set of processing 

elements      so that each processing element        has 

different processing powers. This set defined as: 

 

    {      |              }             (9) 
Other hand, each job   

    divided to several 

tasks   
                       . In this phase, purpose of 

learning automaton    
   is to find optimal scheduling 

method to allocate a processing element    (k) from RUi 

to any task   
      . The used learning automaton    

   is 

a VLA and its action-set is defined as: 

 

  
   {  

         |            }            (10) 
If action   

          be selected, it is means that scheduler 

   chooses processing element    (k) to allocated to any 

task   
      . As mentioned, we use a VLA in the second 

phase. The reason is that due to the non-constant number 

of actions in this type of automata, the rate and speed of 

convergence increases and it has a more dynamic 

structure. 

To bound the action-set of     
  , let    

       be the 

required capacity for the task   
       and        is the 

available capacity of the processing unit        , if 

   
       is less than or equal to       , then        can 

be allocated to the    
      . Otherwise, there is no 

possibility of allocation. Therefore, the existence of the 

action   
          is not useful and it can be deleted from 

the action-set of    
   as explained in section 3. 

Therefore for each task    
      , action-set Learning 

automaton    
   will be updated as: 

  
     

   {  
         |   

             }    (11) 
Let     be the sum of available capacities of virtual 

machine     that is defined as: 

    ∑       
  

                          (12) 
Where    is the number of process elements in    . Also, 

let  ̅      be the average available capacities of all VM 

which have related to scheduler   . It’s defined as: 

 ̅      
∑    

 
   

 
⁄                        (13) 

Learning automaton    
   

 chooses one of actions as per 

its updated probability vector. Let action   
          be 

selected, then scheduler    checks to see if     is greater 

than  ̅     . If so, selected action   
          gets rewards 

and increases its choice probability by Eq.1. Otherwise 

selected action   
          gets penalty and decreases its 

choice probability by Eq.2. Pseudo code of second phase 

is shown in Figure 5. 

 

Input: jobs queue 

Output: a job form jobs queue of    (  
   ) 

01:    
   

.Initial() 

02:   
           

   
. Select-Action(  

   
) 

03: If    .HasReady-job == True then 

04:         update    
   

 by Eq.1 //reward 

05:           
       .Selected-job() 

06:                  
    

07: Else 

08:          update    
   

 by Eq.2 //penalty 

09: End If 
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Fig. 5: Pseudo code of one round of second phase of TPALA algorithm 

 

In any case, scheduler    allocate process element        

to task   
       and send a “retry” signal for any other 

VMs. Finally, at the finish of each allocation, all deleted 

actions must be added as explained in sec 3. By using this 

method, the submitted workloads will be distributed on 

different VMS based on its computational capacity and it 

is minimized the average running time of user’s jobs. 

5- Simulation and Experimental Results 

In this section, we describe CloudSim Toolkit, our 

simulation parameters and experimental results of 

comparing our proposed algorithm with three algorithms 

BatCL, FUGE, and HPSO on several evaluation metrics. 

The reason for choosing these algorithms to compare with 

our algorithm is that FUGE is a hybrid method based on 

fuzzy logic and genetic algorithms, HPSO is a 

metaheuristic algorithm, and BatCL is a cellular automata 

scheduling method. Therefore, these algorithms were 

selected from various algorithm categories. 

5-1- CloudSim Toolkit 

In this paper, the CloudSim Simulator was used to 

modeling and evaluation our proposed algorithm, because 

CloudSim simulator is top of simulator tools for cloud 

computing, that was developed in the Department of 

Software Engineering and Computer Science at the 

University of Melbourne [44]. This simulator is used in 

many industries and famous universities in the world to 

simulate cloud-based algorithms. Main limited of 

CloudSim is the lack of proper graphical user interface 

(GUI). CloudSim architecture has four layers which at 

now SimJava and GridSim layers are combined and it has 

changed to three layers architecture. In this version of 

CloudSim, uses SimJava as distinct event simulation 

engine that provides several services and process like: 

event and queuing processing, progression of cloud system 

elements e.g. hosts, datacenters, brokers and virtual 

machines[45]. 

5-2- Simulation Parameters 

To simulate our proposed method and compare it with 

several others scheduling algorithms, we have used 

different structures and resources distributions in our cloud 

model which is implemented in the CloudSim simulator 

environment. We use five different scenarios with 

different numbers of jobs that in the smallest case we will 

have 100 input jobs and in the largest case we will have 

500 input jobs. In addition, in each of these cases, for a 

more accurate comparison, jobs are based on two factors: 

data volume and computational volume. According to 

Figure 6, generated jobs are divided into three different 

categories: Set1: jobs with high data volume and low 

computational volume. Set2: jobs with low data volume 

and high computational volume. Set3: jobs which have a 

high data and computational volume. 

 

 
Fig. 6: Three different categories for generated jobs 

 

It should be noted that there is a fourth case in which 

works have a low data volume and low computational 

volume, which we have not considered in our simulations 

because in general in small cases (whether in terms of 

number The jobs and in terms of data volume and 

computational volume) performance of most scheduling 

algorithms are the same and are not worth examining and 

cannot be used as an acceptable criterion. An example of a 

combination of these three sets of jobs used with their 

specifications is given in Table 3. For our simulation, we 

randomly generated the required number of cases in each 

case from this set of jobs. 

 

 

Input:   
            

Output: Allocate   
    

01:    
  .Initial(RUi) 

02: For each   
           action-set(   

   do 

03:           If    
              then 

04:                           
  .Remove(  

         ) 

05:           End If 

06: End For 

07:   
               

  . Select-Action(  
  ) 

08: If       ̅      then 

09:           update    
   by Eq.1 //reward 

10: Else 

11:            update    
   by Eq.2 //penalty 

12: End If 

13:   
      .Allocate(        ) 

14: For each      VM do 

15:                .Send(“retry”) 

16: End For 

17:    
  .Restore-Actions() 



    

Esfandi, Akbari, Karimi & Zarafshan, TPALA: Two Phase Adaptive Algorithm based on Learning Automata for job Scheduling … 

 

 

36 

Table 3: Typical jobs characteristics 

Type Job 

ID 

Length 

(MI) 

Num 

CPUs 

File 

Size 

Output 

Size 

Set 1 0 5000 1 6000 500 

Set 1 1 10000 1 8000 550 

Set 1 2 20000 1 12000 650 

Set 1 3 25000 1 14000 700 

Set 2 5 60000 2 600 100 

Set 2 5 65000 2 700 120 

Set 2 6 75000 3 900 160 

Set 2 7 80000 3 1000 180 

Set 3 8 25000 1 4000 150 

Set 3 9 30000 1 4500 160 

Set 3 10 35000 2 5000 170 

Set 3 11 45000 2 6000 190 

 
In the simulation, three datacenters each with several hosts 

were used. The characteristics of datacenters and hosts are 

listed in Table 4 and Table 5 respectively. VMM and OS 

of all datacenters are Xen and Linux respectively. It is 

important to note that another very important class used in 

the CloudSim simulator is the Processing Element (PE), 

which is related to the hosts and this class represents the 

processing units or CPUs. This feature is expressed by the 

millions instructions per second (MIPS) factor and it’s 

listed in the hosts characteristics table. 

 
Table 4: Datacenters characteristics 

 
Where DS is datacenter and BW is bandwidth. Each host 

has 10 to 20 virtual machines that typical VMs 

characteristics were shown in table 6. 

 

 

 

 

 

 

 

Table 5: Hosts characteristics 
Host 

ID 

DC_Name MIPS RAM 

(MB) 

Storage 

(GB) 

BW 

(Mbps) 

0 DataCenter_0 6200 2048 500 500 

1 DataCenter_0 7500 1024 1000 500 

2 DataCenter_0 8000 4096 1000 500 

3 DataCenter_1 4200 4096 500 500 

4 DataCenter_1 5000 8192 1500 500 

5 DataCenter_1 12100 8192 1500 500 

6 DataCenter_2 7100 2048 1500 500 

7 DataCenter_2 9495 2048 1500 500 

8 DataCenter_2 8500 8192 1500 500 

9 DataCenter_2 11900 2048 1500 500 

10 DataCenter_2 12100 4096 1000 500 

 
Table 6: Typical VMs characteristics 

VM_ID MIPS Num 

CPUs 

RAM 

(MB) 

BW 

(Mbps) 

Size 

0 600 1 256 50 8000 

1 1200 1 1024 50 15000 

2 1000 2 512 50 10000 

3 800 2 1024 50 20000 

4 1200 2 512 50 12000 

5-3- Experimental Results 

To evaluate and compare the performance of scheduling 

algorithms, there are various metric that we have used here 

some of the main and important metric in this field to 

show the advantage of our proposed algorithm compared 

to the three algorithms: FUGE [27], HPSO [23] and 

BatCL[28] that we mentioned in Section 2. In the 

following, we first describe each of the metrics which used 

and then express the results of our simulation in the cloud 

environment using the CloudSim simulator. The four 

metrics used in this article are: makespan, success rate, 

average waiting time and degree of imbalance. 

5-3-1- Makespan 

Makespan is the most common measurement parameter 

of the optimization methods. This metric is defined as the 

maximum running time between submitted jobs. In other 

words, it indicates when the last job was completed. 

Minimizing this parameter indicates that things are not 

done in a long time. In our work, makespan is measured in 

milliseconds. The lower the value of this metric, it means 

Cost per 

Storage 

Cost per 

Memory 

Archit

ect 

DC_Name DC_ID 

0.001 0.05 x64 DataCenter_0 0 

0.0015 0.06 x64 DataCenter_1 1 

0.002 0.04 x64 DataCenter_2 2 



    

Journal of Information Systems and Telecommunication, Vol.12, No.1, January-March 2024 
 

  

 

 

37 

that it has a better scheduling algorithm and the algorithm 

was able to process the jobs and deliver them to the users 

sooner. The value of this metric can be calculated based on 

the Eq.(14) [46]: 

 

                                     (14) 

 

Where, n is number of jobs and Ci is completion time of 

job ith. In Figure 7 shows the average makespan of our 

algorithm and three other algorithms under different 

number of jobs. As the number of jobs increases, so does 

the makespan. When the number of jobs is low, the 

makespan of all scheduling algorithms is almost close to 

each other, and as the number of input jobs increases, the 

difference between the results increases and the TPALA 

algorithm will have more improvements, in which case the 

advantage of our proposed method becomes more apparent 

due to the use of LA. The results show that the TPALA 

improved the makespan by an average of 4.53% when 

compared with BatCA and respectively by an average of 

10.88% and 19.62% when compared with FUGE and 

HPSO. 

 

 
Fig. 7: makespan under number of jobs 

5-3-2- Success Rate 

Success rate is the fraction or percentage 

of success among a number of attempts therefore success 

rate in job scheduling is the ratio of number of 

successfully completed job to the all number of submitted 

jobs. So success rate is calculated based on the Eq.(15) [8]: 

 

             
                           

                 
             (15) 

 

The higher value of this metric shows the more successful 

the scheduling. 

In Figure 8 shows the success rate under different numbers 

of jobs. As can be seen, with increasing the number of 

jobs, the success rate decreases. Especially in the case of 

500 input jobs, there is a more significant reduction of this 

metric in all scheduling algorithms. The results show that 

the TPALA has been better performance in large number 

of jobs than other algorithms and HPSO had the worst 

performance, So that the success rate of TPALA was on 

average 20.59% better than HPSO. 

 

 
Fig. 8: success rate under number of jobs 

5-3-3- Average Waiting time 

The waiting time (WTi) is the amount of time that a 

process waits in i
th

 run of scheduling algorithm for 

completion from its submission to completion. The 

average waiting time is the mean of waiting times in 

several run of scheduling. One of the goals of the 

scheduling algorithms is to reduce the waiting time. This 

metric is calculated based on the Eq.(16) [47]: 

 

     
∑    

 
   

 
                              (16) 

 

Where, n is number of jobs and WTi is waiting time for 

process i
th

.  In Figure 9 shows the average waiting time 

under different numbers of jobs. As expected, it shows that 

in all scheduling algorithms, the average waiting time 

increases as the number of jobs increases. When the 

number of jobs is low, the average waiting time of all 

scheduling algorithms is acceptable and almost close to 

each other, But as the number of jobs increases, time 

differences in different algorithms become apparent. The 

results show that the TPALA has least average waiting 

time compare to other algorithms and BatCA performance 

is better than FUGE. The average waiting time of TPALA 

was on average 5.22% better than BatCA and BatCA was 

on average 7.25% better than FUGE. 

 
Fig. 9: average waiting time under number of jobs 
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5-3-4- Degree of Imbalance 

Degree of imbalance is the metric for measuring the 

imbalance among virtual machines. It is a measure that is 

inversely related to the load balance of the system. If value 

of this metric was been lower, it shows that the distributed 

job among the virtual machines is more balanced. Degree 

of imbalance is computed based on the Eq.(17) [5]: 

 

                 
         

    
                (17) 

 

Where, Jmax, Jmin and Javg respectively show the maximum, 

minimum and average Ji between all virtual machines. 

Also for calculating of Ji, the Eq.(18) is used. 

 

   
           

                     
                        (18) 

 

Where, Length_jobs is the total length of jobs which sent 

to the VMi, Num_PE shows the number of PE and 

PE_MIPS is the capability of corresponding PE. In Figure 

10 shows the average waiting time under different number 

of jobs. As can be seen, with increasing the number of 

jobs, the degree of imbalance increases. From the results 

shown in this figure, it can be seen that the proposed 

algorithm performed better than other algorithms. The 

degree of imbalance of TPALA and BatCA was somewhat 

closer to each other and is clearly better than the HPSO 

and FUGE, so that the degree of imbalance of TPALA was 

on average 4.13% better than BatCA algorithm but was on 

average 22.29% better than HPSO. 

 
Fig. 10: degree of imbalance under number of jobs 

6- Conclusions 

In this paper, a new online algorithm based on LA for 

job scheduling in cloud environment, called TPALA was 

presented. Our proposed algorithm uses two different LAs 

for each scheduler to schedule jobs, as there are generally 

two main challenges in job scheduling. The first challenge 

is selecting the appropriate job from the submitted jobs 

based on their priority and specific conditions, while the 

second challenge is assigning the selected job to the most 

suitable virtual machine. To address these challenges, our 

algorithm employs two LAs in separate phases. In first 

phase a fixed action-set learning automaton was used and 

in second phase a variable action-set learning automaton 

was used. To prove the performance of the proposed 

method, several simulation case based on different 

scenarios have been simulated by CloudSim toolkit, in 

which several metric in job scheduling such as: makespan, 

success rate, average waiting time and degree of imbalance 

and compared to the three algorithms FUGE, HPSO and 

BatCL. In contrast to most job scheduling algorithms that 

use a single job type, we considered a combination of jobs 

based on two factors in our simulations: data volume and 

computational volume. In future work, we plan to explore 

learning automata-based methods for multi-objective job 

scheduling in cloud computing.  
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