

 Javad Akbari Torkestani

j-akbari@iau-arak.ac.ir

Journal of Information Systems and Telecommunication
Vol.12, No.1, January-March 2024, 29-40

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

1.
Department of Computer Engineering, Arak Branch, Islamic Azad University, Arak, Iran.

Received: 30Aug 2022/ Revised: 04 Sep 2023/ Accepted: 21 Oct 2023

Abstract
Due to the completely random and dynamic nature of the cloud environment, as well as the high volume of jobs, one of

the significant challenges in this environment is proper online job scheduling. Most of the algorithms are presented based

on heuristic and meta-heuristic approaches, which result in their inability to adapt to the dynamic nature of resources and

cloud conditions. In this paper, we present a distributed online algorithm with the use of two different learning automata for

each scheduler to schedule the jobs optimally. In this algorithm, the placed workload on every virtual machine is

proportional to its computational capacity and changes with time based on the cloud and submitted job conditions. In

proposed algorithm, two separate phases and two different LA are used to schedule jobs and allocate each job to the

appropriate VM, so that a two phase adaptive algorithm based on LA is presented called TPALA. To demonstrate the

effectiveness of our method, several scenarios have been simulated by CloudSim, in which several main metrics such as

makespan, success rate, average waiting time, and degree of imbalance will be checked plus their comparison with other

existing algorithms. The results show that TPALA performs at least 4.5% better than the closest measured algorithm.

Keywords: Cloud Computing; Job scheduling; Learning Automata; Virtual Machine; CloudSim; Simulation.

1- Introduction

Cloud computing is a computer model that attempts to

facilitate user access based on the type of demand they

have from information and computing resources. This

model tries to respond to the needs of users by reducing

the need for human resources and costs as well as

enhancing the speed of access to information [1]. By

increasing the demand for running applications in the

cloud, especially large and shared applications, Scheduling

strategies for cloud requests have become very important.

The key issue and challenge in cloud computing is

ensuring the satisfaction of all users with cloud services.

The scheduling plan consists of a scheduling algorithm

that should plan the jobs and applications, so that users are

satisfied and not harm the cloud manager at the same

time[2]. Job scheduling is a key process in the IaaS layer

that aims to execute logged requests to the system on the

resources, in an efficient way by considering other features

of the cloud environment. Job scheduling considers virtual

machines as computing units to allocate heterogeneous

physical resources for job execution. Each virtual machine

is a unit containing computing and storage capabilities

provided in the cloud[3]. Job scheduling in the cloud

environment is NP-Hard due to its dynamic characteristics,

heterogeneity, and varying workloads of users. In such a

system, the scheduling algorithm must be done automatic

and very quickly [4]. In cloud environments, according to

the different needs of users, the workload of each user and

as a result the computing resources required by them,

which in our discussion are virtual machines, is different.

Some users need more computing resources and others

need fewer computing resources. In case of improper

allocation of resources in any of the situations, the

efficiency of the system will decrease significantly.

Therefore, it is not possible to assign the same resources to

all users. In addition, due to the dynamism of the cloud

environment, the workload of users may change over time.

Therefore, an efficient scheduling algorithm should

dynamically allocate the most appropriate resource (virtual

machine) to the jobs, according to the user's workload.

Various algorithms have been presented for the job

scheduling problem, but according to the review of the

previous algorithms, it can be said that those algorithms

Esfandi, Akbari, Karimi & Zarafshan, TPALA: Two Phase Adaptive Algorithm based on Learning Automata for job Scheduling …

30

have not been able to fully adapt themselves to the

dynamics of the cloud conditions and the diversity of

resources [5].

The purpose of this paper is to propose an efficient

algorithm for finding a near-optimal solution to the job

scheduling problem in the cloud environment. Considering

factors such as the fully dynamic environment of the cloud,

the different capacity of virtual machines (VMs), the

complexity and largeness of the requested jobs, the

efficiency of cloud computing will be completely

dependent on the existence of an effective scheduling

algorithm.

The main difference between our proposed approach and

previous methods that have used learning automata is in

the way learning automata are employed and the type of

learning automata used. Our proposed algorithm uses two

different learning automata (LAs) for each scheduler to

schedule the jobs optimally, because there are two main

challenges for scheduling jobs generally. One challenge is

choosing the proper job among the submitted jobs from

users based on the priority and specific conditions of each

job, and the other challenge is assigning that job to the

most appropriate VM. Actually, according to these two

challenges, our algorithm uses the two mentioned LA in

two phases. The important contributions of this paper are

as follows:

 Using two different learning automata (LAs) for

each scheduler to optimally schedule the jobs

 Creating a list of ready-to-use virtual machines

simultaneously with the first phase of the

algorithm.

 Applying the variable learning automaton in the

second phase increases the speed of convergence.

 Providing an online adaptive job scheduling

method for cloud environment by using the two

different LAs in two phases.

 Dynamically assigning workload to each virtual

machine based on the VM's status and the

submitted job's conditions.

 Using a hybrid set of jobs for simulations based

on two factors: data volume and computational

volume.

 Simulating the proposed algorithm using the

CloudSim toolkit under different scenarios and

comparing it to other scheduling algorithms.

Regarding the paper structure, Section 2 will first provide

a comprehensive overview of the relevant and existing

works in job scheduling concept in cloud. Then, Section 3

discusses the learning automata and its features. Section 4

describes our new proposed algorithm, and then, the

implementation as well as experimental results of the

simulation with the CloudSim toolkit and comparing it

with other existing algorithms is shown in Section 5.

Finally, Section 6 concludes the paper.

2- Related Works

From the birth of cloud computing to this day, there has

always been extensive research into scheduling, and as a

result, different methods and algorithms have been

introduced. Some methods use heuristic algorithm such as

Scheduling based on Min-Min [6] or Min-Max [7]

Strategy. Researchers in [8] and [9] have investigated that

in methods based on meta-heuristics optimization

algorithms such as GA. papers [10-12] was presented its

methods based on GA. In paper [13], the ant colony

optimization algorithm (ACO) is used, in which several

artificial ants generate distinct responses randomly based

on the amount of pheromones. In [14], the ACO search

method with GA was used for the job scheduling problem.

In ref [15] an optimization strategy is proposed by using

improved ACO algorithm for task scheduling in cloud. In

paper [16] a metaheuristics method named GWOA is

described that firstly proposed to overcome the early

convergence problem and then create a balance between

the local and the global search. A hybrid method

combining the bee optimization and whale optimization

model is proposed in the paper [17]. A fuzzy clustering

method is used in [18] as a pre-processing operation to

classify cloud resources; then directed graphs are used to

schedule jobs to run on distinct clusters of hardware

resources. In paper [19] was used fuzzy control theory for

accomplish system accessibility between user

requirements and users resources availability. In [20], the

particle swarm optimization (PSO) has been used as an

optimal answer searching method for the optimization

problem and paper [21] was proposed hybrid task

scheduling method by PSO and GA. Also paper [22] is

presented a survey of scheduling algorithms based on PSO

in cloud computing. In paper [23] a Hybrid Particle Swarm

Optimization (HPSO) based scheduling was presented to

optimal job scheduling in the cloud. HPSO against PSO

was improved the performance of job scheduling issue by

changing the various factors. paper [24] was proposed a

hybrid job scheduling algorithm based on Fuzzy system

and Modified PSO technique to improve load balancing

and throughput in cloud environment. Also paper [25] by

using integrated particle swarm algorithm and ant colony

algorithm, proposed a efficiency algorithm for task

scheduling. In paper [26] was used A Bidirectional Search

Algorithm for Flow Scheduling in Cloud Data Centers.

This approach was used for static scheduling and reduced

makespan. In paper [27], a hybrid method named FUGE

based on the fuzzy and GA was presented that reduce the

execution time and costs. A combined method of the

cellular automata and the bat algorithm (BatCL) was

Journal of Information Systems and Telecommunication, Vol.12, No.1, January-March 2024

31

presented in paper [28] which aimed to reduce the cost and

time of completion of tasks. Paper [29] proposes a hybrid

approach for job scheduling in cloud computing, utilizing

a combination of sparrow search algorithm and differential

evolution optimization. A combination of the genetic

algorithm and the gravitational emulation local search is

presented in [30] for task scheduling in the cloud. In [31],

a new method was proposed based on LA for energy-

aware task scheduling to minimize energy consumption

and task completion time in cloud environment. This paper

presented a scheduling architecture by LA for optimal job

assignment. The paper [32] described a new LA-based

scheme in which load distribution was performed in such a

way that the level of efficiency in different nodes was

almost the same which also used paradigm of two-time

scales to achieve its purpose. A LA Based algorithm for

container cloud was presented in [33] which designed a

task load monitoring framework for usage in real-time

monitoring of resource and scheduling evaluation

feedback, develop an intelligent scheduling technique, and

enhance the performance.

Articles, [34-38], had a brief overview on existed

scheduling algorithms.

In table 1, the related works have been categorized into

four groups and their general advantages and

disadvantages have been stated for each category.

Table 1: Job scheduling algorithms comparison

References Category Advantages Disadvantages

[6, 7]

H
eu

ristic

A
lg

o
rith

m
s

 simplicity of

the algorithm

structure

 static

scheduling

 low

compatibility

with dynamic

environments

 single goal

[18, 19, 24,

27]

F
u

zzy

T
h

eo
ry

 making best

decision based

on inputs

 mostly using in

combination

 using for static

environments

[13, 15-17,

20, 23, 29,

30]

M
eta-h

eu
ristic

O
p

tim
izatio

n

 searching

optimal

solution from

all solution

space

 obtain better

optimization

effect

 complexity

scheduling

 long

optimization

time

 getting caught

in local optimal

solutions

[31-33]

A
u

to
m

ata T
h

eo
ry

 proper for

dynamic

environments

 global

optimization

ability

 suitable for

large-scale job

scheduling

 weak

directivity in

optimal

solution

searching

 Easy to fall into

the local

optimum

3- Learning Automata theory

Learning automaton is one of the reinforcement learning

techniques in artificial intelligence. Learning automata’s

learning ability in unknown environments is a useful

technique for modeling, controlling, and solving many real

problems in the distributed and decentralized

environments[39]. The environment responds to the action

taken in turn with a reinforcement signal. The action

probability vector is updated based on the reinforcement

signal back from the environment. The purpose of a LA is

finding the optimal action from the action set so it was

received minimized average penalty from the

environment[40].

Figure 1 illustrates interactive between a learning

automaton and its random environment that vector α(n) is

an action vector, vector β(n) is a reinforcement signal and

vector x(n) is called context vector. In nth iteration, an

automaton receives x(n) from the environment. Depending

on x(n), LA chooses one of its possible actions[41].

Fig. 1: interactive between a LA and its random environment

The environment can be mathematically modeled by

quintuple where:

 : is the set of context vectors

 : is the set of inputs

 : is the set of values that can be taken by the

reinforcement signal

 : is the set of probability distributions

 : is the probability distributions defined over which is

assumed to be unknown.

 and denote the input and output of environment

at discrete time n ()[42].

Esfandi, Akbari, Karimi & Zarafshan, TPALA: Two Phase Adaptive Algorithm based on Learning Automata for job Scheduling …

32

The learning algorithm used to update the action

probability based on a recurrence relation. Let

denotes the action selected by LA and P(n) denotes the

probability vector defined over at instant n. Let a and b

denote the reward and penalty parameters and r be shown

the number of actions that can be taken by LA. At each

instant n, if the selected action is rewarded by

random environment, the action probability vector P(n) is

modified by the linear learning algorithm given in Eq.1

and if the taken action is penalized, it is modified as given

in Eq.2.

 (1)

 (2)

If a and b be equal, Eq.1 and Eq.2 are called a linear

reward-penalty () algorithm, if a be more greater than

b those equations are called linear reward-Ɛ penalty

() and if b=0 they are named linear reward-inaction

()[41]. A variable action-set learning automaton

(VLA) is a LA that the number of its actions maybe varies

with time. If be action-set of VLA,

 is the set of action subsets and

 denote the subset of all the available actions for

choose by the VLA, at instant n.

The special action subsets are chosen randomly by an

external agency according to the probability distribution

 so that
].

Let ̂ be the

probability of selecting action if the action subset A(n)

has already been selected and . That is defined

as:

 ̂ ⁄ (3)

Where and K(n) is the sum of

the probabilities of the actions in subset A(k) which

defined as:

 ∑ (4)

The function of a VLA is as follows: Before selecting an

action from the selected subset, the probabilities of all the

actions in the A(n) are calculated as defined in Eq.(3).

Then VLA randomly selects one of actions of the A(n)

based on the scaled action probability vector ̂ .

Depending on the response received from the

environment, the VLA updates its scaled action probability

vector (only the available actions). Finally, the probability

vector of the actions of the A(n) is rescaled as:

 ̂ (5)

for more details and Proof refer to [43].

4- Proposed Algorithm

As mentioned, various algorithms have been proposed

for job scheduling in the cloud environment so far.

However, most of them are not efficient enough due to the

dynamic nature of the cloud environment, such as resource

dynamics and network conditions. To represent our

proposed method, First, we explain the cloud environment,

the desired scheduling structure, and the general method of

our algorithm, then we describe how each of the LA and

the two mentioned phases work.

Let cloud contains several hosts that each of them has

multiple virtual machines (VMs), so that the sum of all

virtual machines in all Hosts is considered as m virtual

machines. The intended resources are in the form of these

virtual machines. We also consider k schedulers for

scheduling submitted users jobs, each scheduler is

associated with one or more VMs and each virtual

machine can also be connected to one or more

schedulers. Also, each virtual machine has set of

processing element so that each processing element

 (k) has different processing powers. In this algorithm,

two separate phases and two different LA are used to

schedule jobs and allocate each job to the appropriate VM,

so that a two phase adaptive algorithm based on LA is

presented, which we call TPALA. In our algorithm, each

scheduler has two LA. The first LA (

) has the

task of selecting and receiving the submitted jobs by users

with different workloads, and the second LA (
) has

the task of optimal allocating the jobs to proper VMs

based on their computing capacity. To better understand

the proposed algorithm, in the Table 2, the list of most

symbols used and their meaning is brought.

Table 2: Symbols specifications

Symbols Description

 First LA on scheduler for selecting the jobs

 Second LA on scheduler Si for optimal

allocating the job to proper VM

RUi
List of ready-to-use virtual machines on
scheduler

 Selected job by

 on scheduler

 Selected VM by
 on scheduler

 The action-set of learning automaton

 Corresponding action of

 to user jth

 The action probability vector of

 Set of processing elements of

 Kth processing elements of

Journal of Information Systems and Telecommunication, Vol.12, No.1, January-March 2024

33

 lth task of job

 The action-set of learning automaton

 Corresponding action of

 to for
allocating to task

 .

 The required capacity for the task

 The available capacity of the processing unit

 ̅ The average available capacities of all VM
which have related to scheduler

Now, according to what that has mentioned, we are going

to describe TPALA algorithm step by step. As shown in

the flowchart in Figure 3, in each stage, first, each VMs

corresponding to the scheduler , which has completed its

previous work or is idle (has ready PE to work), generates

a “request” signal for a new job, including its own

characteristic, and send it for Si. In fact, in this way, a list

of ready-to-use virtual machines is created, which we call

RUi. Also, in RUi, the usable computing capacity of the

VMs corresponding to the scheduler is specified.

As it will be said in the explanations of the second phase,

the existence of this list (RUi) reduces the number of

action-set used in the second phase and increases the rate

and speed of convergence. After send request signal, VM

waits for receive proper job or “retry” signal.

Fig. 2: Pseudo code of create RUi for scheduler

Fig. 3: General Flowchart of TPALA algorithm

Simultaneously with this event, in the first phase, for each

scheduler by using

 that its operation will be

explained later (see pseudo code of Figure 4), one of the

jobs sent by users to scheduler is selected (
). In the

second phase of TPALA algorithm, for scheduler ,

According to the selected job (

) in the first phase and

the list RUi, by using
 that its operation will be

explained later (see pseudo code of Figure 5), based on the

characteristics of the VMs and their computational

capacity against the required computational capacity of

selected job,
 is assigned to the most suitable VM.

After selecting the proper VM (

),
 is assigned to

 and a retry signal is sent to other VMs. These steps

are repeated until all the users' jobs are serviced.

Now that the general structure of the TPALA algorithm

has been explained, we will describe the details of the

operation of each of the phases, that is, the operation of the

two LAs related to each of schedulers.

As it was said, in the first phase for schedule , learning

automaton

 is used to select
 . Scheduler Si may

receive jobs from several users. Let
be the set of users that corresponded to scheduler .

The action-set of learning automaton

 has R actions

(one action for any user). That is defined as:

 {

 | } (6)

If action

 be selected, it is means that scheduler

allows user Uj to submits its job. Also the action

probability vector of

 is defined as:

Input:

Output: list of ready-to-use VMs (RUi)

01: For each VMs corresponding to do

02: If .IsReady(PE) == True then

03: .Send(“request”,)

04: .Wait(response,)

05: End If

06: End For

07: .Collects(“request”)

08: RUi .Create(list of ready-to-use VMs)

09: Return RUi

Esfandi, Akbari, Karimi & Zarafshan, TPALA: Two Phase Adaptive Algorithm based on Learning Automata for job Scheduling …

34

 {

 | } (7)

Since we have R actions, all Actions will have same

probability ⁄ . Therefore all users in starting point have

the same chance to send their jobs to cloud. If priority is

considered for user jobs, instead of considering the equal

probability for all actions, different values can be

considered according to the priority of jobs and the initial

probability of jobs with higher priority can be considered

slightly higher. But in any case, the sum of the possibilities

must be equal to one, that is:

 ∑

 (8)

For scheduler at any stage,

 as per its action

probability vector select one of its actions randomly. Let

action

 be selected, then scheduler Si checks user Uj

that it has a ready job to send. If user Uj could be submit a

job (
), selected action

 gets rewards and

increases action

 by Eq.(1). Otherwise selected

action

 gets penalty and decreases action

 by

Eq.(2). Pseudo code of first phase is shown in Figure 4. In

any case (reward/penalty) after updating the internal state

of

, this stage will be end and start next stage and

repeat same method. By applying of this method,

effectively workload on users can be balanced.

Fig. 4: Pseudo code of one round of first phase of TPALA algorithm

After
 determined, second phase by learning automaton

 can be run. In this phase

 find a near optimal

solution to allocate
 to proper VM based on their

computational capacities.

Scheduler has related to several VMs on cloud

environment. Let be the set of VMs

that corresponded to scheduler Si.

Every virtual machine VMj have set of processing

elements so that each processing element has

different processing powers. This set defined as:

 { | } (9)
Other hand, each job

 divided to several

tasks
 . In this phase, purpose of

learning automaton
 is to find optimal scheduling

method to allocate a processing element (k) from RUi

to any task
 . The used learning automaton

 is

a VLA and its action-set is defined as:

 {

 | } (10)
If action

 be selected, it is means that scheduler

 chooses processing element (k) to allocated to any

task
 . As mentioned, we use a VLA in the second

phase. The reason is that due to the non-constant number

of actions in this type of automata, the rate and speed of

convergence increases and it has a more dynamic

structure.

To bound the action-set of
 , let

 be the

required capacity for the task
 and is the

available capacity of the processing unit , if

 is less than or equal to , then can

be allocated to the
 . Otherwise, there is no

possibility of allocation. Therefore, the existence of the

action
 is not useful and it can be deleted from

the action-set of
 as explained in section 3.

Therefore for each task
 , action-set Learning

automaton
 will be updated as:

 {
 |

 } (11)
Let be the sum of available capacities of virtual

machine that is defined as:

 ∑

 (12)
Where is the number of process elements in . Also,

let ̅ be the average available capacities of all VM

which have related to scheduler . It’s defined as:

 ̅
∑

⁄ (13)

Learning automaton

 chooses one of actions as per

its updated probability vector. Let action
 be

selected, then scheduler checks to see if is greater

than ̅ . If so, selected action
 gets rewards

and increases its choice probability by Eq.1. Otherwise

selected action
 gets penalty and decreases its

choice probability by Eq.2. Pseudo code of second phase

is shown in Figure 5.

Input: jobs queue

Output: a job form jobs queue of (
)

01:

.Initial()

02:

. Select-Action(

)

03: If .HasReady-job == True then

04: update

 by Eq.1 //reward

05:
 .Selected-job()

06:

07: Else

08: update

 by Eq.2 //penalty

09: End If

Journal of Information Systems and Telecommunication, Vol.12, No.1, January-March 2024

35

Fig. 5: Pseudo code of one round of second phase of TPALA algorithm

In any case, scheduler allocate process element

to task
 and send a “retry” signal for any other

VMs. Finally, at the finish of each allocation, all deleted

actions must be added as explained in sec 3. By using this

method, the submitted workloads will be distributed on

different VMS based on its computational capacity and it

is minimized the average running time of user’s jobs.

5- Simulation and Experimental Results

In this section, we describe CloudSim Toolkit, our

simulation parameters and experimental results of

comparing our proposed algorithm with three algorithms

BatCL, FUGE, and HPSO on several evaluation metrics.

The reason for choosing these algorithms to compare with

our algorithm is that FUGE is a hybrid method based on

fuzzy logic and genetic algorithms, HPSO is a

metaheuristic algorithm, and BatCL is a cellular automata

scheduling method. Therefore, these algorithms were

selected from various algorithm categories.

5-1- CloudSim Toolkit

In this paper, the CloudSim Simulator was used to

modeling and evaluation our proposed algorithm, because

CloudSim simulator is top of simulator tools for cloud

computing, that was developed in the Department of

Software Engineering and Computer Science at the

University of Melbourne [44]. This simulator is used in

many industries and famous universities in the world to

simulate cloud-based algorithms. Main limited of

CloudSim is the lack of proper graphical user interface

(GUI). CloudSim architecture has four layers which at

now SimJava and GridSim layers are combined and it has

changed to three layers architecture. In this version of

CloudSim, uses SimJava as distinct event simulation

engine that provides several services and process like:

event and queuing processing, progression of cloud system

elements e.g. hosts, datacenters, brokers and virtual

machines[45].

5-2- Simulation Parameters

To simulate our proposed method and compare it with

several others scheduling algorithms, we have used

different structures and resources distributions in our cloud

model which is implemented in the CloudSim simulator

environment. We use five different scenarios with

different numbers of jobs that in the smallest case we will

have 100 input jobs and in the largest case we will have

500 input jobs. In addition, in each of these cases, for a

more accurate comparison, jobs are based on two factors:

data volume and computational volume. According to

Figure 6, generated jobs are divided into three different

categories: Set1: jobs with high data volume and low

computational volume. Set2: jobs with low data volume

and high computational volume. Set3: jobs which have a

high data and computational volume.

Fig. 6: Three different categories for generated jobs

It should be noted that there is a fourth case in which

works have a low data volume and low computational

volume, which we have not considered in our simulations

because in general in small cases (whether in terms of

number The jobs and in terms of data volume and

computational volume) performance of most scheduling

algorithms are the same and are not worth examining and

cannot be used as an acceptable criterion. An example of a

combination of these three sets of jobs used with their

specifications is given in Table 3. For our simulation, we

randomly generated the required number of cases in each

case from this set of jobs.

Input:

Output: Allocate

01:
 .Initial(RUi)

02: For each
 action-set(

 do

03: If
 then

04:
 .Remove(

)

05: End If

06: End For

07:

 . Select-Action(
)

08: If ̅ then

09: update
 by Eq.1 //reward

10: Else

11: update
 by Eq.2 //penalty

12: End If

13:
 .Allocate()

14: For each VM do

15: .Send(“retry”)

16: End For

17:
 .Restore-Actions()

Esfandi, Akbari, Karimi & Zarafshan, TPALA: Two Phase Adaptive Algorithm based on Learning Automata for job Scheduling …

36

Table 3: Typical jobs characteristics

Type Job

ID

Length

(MI)

Num

CPUs

File

Size

Output

Size

Set 1 0 5000 1 6000 500

Set 1 1 10000 1 8000 550

Set 1 2 20000 1 12000 650

Set 1 3 25000 1 14000 700

Set 2 5 60000 2 600 100

Set 2 5 65000 2 700 120

Set 2 6 75000 3 900 160

Set 2 7 80000 3 1000 180

Set 3 8 25000 1 4000 150

Set 3 9 30000 1 4500 160

Set 3 10 35000 2 5000 170

Set 3 11 45000 2 6000 190

In the simulation, three datacenters each with several hosts

were used. The characteristics of datacenters and hosts are

listed in Table 4 and Table 5 respectively. VMM and OS

of all datacenters are Xen and Linux respectively. It is

important to note that another very important class used in

the CloudSim simulator is the Processing Element (PE),

which is related to the hosts and this class represents the

processing units or CPUs. This feature is expressed by the

millions instructions per second (MIPS) factor and it’s

listed in the hosts characteristics table.

Table 4: Datacenters characteristics

Where DS is datacenter and BW is bandwidth. Each host

has 10 to 20 virtual machines that typical VMs

characteristics were shown in table 6.

Table 5: Hosts characteristics
Host

ID

DC_Name MIPS RAM

(MB)

Storage

(GB)

BW

(Mbps)

0 DataCenter_0 6200 2048 500 500

1 DataCenter_0 7500 1024 1000 500

2 DataCenter_0 8000 4096 1000 500

3 DataCenter_1 4200 4096 500 500

4 DataCenter_1 5000 8192 1500 500

5 DataCenter_1 12100 8192 1500 500

6 DataCenter_2 7100 2048 1500 500

7 DataCenter_2 9495 2048 1500 500

8 DataCenter_2 8500 8192 1500 500

9 DataCenter_2 11900 2048 1500 500

10 DataCenter_2 12100 4096 1000 500

Table 6: Typical VMs characteristics

VM_ID MIPS Num

CPUs

RAM

(MB)

BW

(Mbps)

Size

0 600 1 256 50 8000

1 1200 1 1024 50 15000

2 1000 2 512 50 10000

3 800 2 1024 50 20000

4 1200 2 512 50 12000

5-3- Experimental Results

To evaluate and compare the performance of scheduling

algorithms, there are various metric that we have used here

some of the main and important metric in this field to

show the advantage of our proposed algorithm compared

to the three algorithms: FUGE [27], HPSO [23] and

BatCL[28] that we mentioned in Section 2. In the

following, we first describe each of the metrics which used

and then express the results of our simulation in the cloud

environment using the CloudSim simulator. The four

metrics used in this article are: makespan, success rate,

average waiting time and degree of imbalance.

5-3-1- Makespan

Makespan is the most common measurement parameter

of the optimization methods. This metric is defined as the

maximum running time between submitted jobs. In other

words, it indicates when the last job was completed.

Minimizing this parameter indicates that things are not

done in a long time. In our work, makespan is measured in

milliseconds. The lower the value of this metric, it means

Cost per

Storage

Cost per

Memory

Archit

ect

DC_Name DC_ID

0.001 0.05 x64 DataCenter_0 0

0.0015 0.06 x64 DataCenter_1 1

0.002 0.04 x64 DataCenter_2 2

Journal of Information Systems and Telecommunication, Vol.12, No.1, January-March 2024

37

that it has a better scheduling algorithm and the algorithm

was able to process the jobs and deliver them to the users

sooner. The value of this metric can be calculated based on

the Eq.(14) [46]:

 (14)

Where, n is number of jobs and Ci is completion time of

job ith. In Figure 7 shows the average makespan of our

algorithm and three other algorithms under different

number of jobs. As the number of jobs increases, so does

the makespan. When the number of jobs is low, the

makespan of all scheduling algorithms is almost close to

each other, and as the number of input jobs increases, the

difference between the results increases and the TPALA

algorithm will have more improvements, in which case the

advantage of our proposed method becomes more apparent

due to the use of LA. The results show that the TPALA

improved the makespan by an average of 4.53% when

compared with BatCA and respectively by an average of

10.88% and 19.62% when compared with FUGE and

HPSO.

Fig. 7: makespan under number of jobs

5-3-2- Success Rate

Success rate is the fraction or percentage

of success among a number of attempts therefore success

rate in job scheduling is the ratio of number of

successfully completed job to the all number of submitted

jobs. So success rate is calculated based on the Eq.(15) [8]:

 (15)

The higher value of this metric shows the more successful

the scheduling.

In Figure 8 shows the success rate under different numbers

of jobs. As can be seen, with increasing the number of

jobs, the success rate decreases. Especially in the case of

500 input jobs, there is a more significant reduction of this

metric in all scheduling algorithms. The results show that

the TPALA has been better performance in large number

of jobs than other algorithms and HPSO had the worst

performance, So that the success rate of TPALA was on

average 20.59% better than HPSO.

Fig. 8: success rate under number of jobs

5-3-3- Average Waiting time

The waiting time (WTi) is the amount of time that a

process waits in i
th

 run of scheduling algorithm for

completion from its submission to completion. The

average waiting time is the mean of waiting times in

several run of scheduling. One of the goals of the

scheduling algorithms is to reduce the waiting time. This

metric is calculated based on the Eq.(16) [47]:

∑

 (16)

Where, n is number of jobs and WTi is waiting time for

process i
th

. In Figure 9 shows the average waiting time

under different numbers of jobs. As expected, it shows that

in all scheduling algorithms, the average waiting time

increases as the number of jobs increases. When the

number of jobs is low, the average waiting time of all

scheduling algorithms is acceptable and almost close to

each other, But as the number of jobs increases, time

differences in different algorithms become apparent. The

results show that the TPALA has least average waiting

time compare to other algorithms and BatCA performance

is better than FUGE. The average waiting time of TPALA

was on average 5.22% better than BatCA and BatCA was

on average 7.25% better than FUGE.

Fig. 9: average waiting time under number of jobs

Esfandi, Akbari, Karimi & Zarafshan, TPALA: Two Phase Adaptive Algorithm based on Learning Automata for job Scheduling …

38

5-3-4- Degree of Imbalance

Degree of imbalance is the metric for measuring the

imbalance among virtual machines. It is a measure that is

inversely related to the load balance of the system. If value

of this metric was been lower, it shows that the distributed

job among the virtual machines is more balanced. Degree

of imbalance is computed based on the Eq.(17) [5]:

 (17)

Where, Jmax, Jmin and Javg respectively show the maximum,

minimum and average Ji between all virtual machines.

Also for calculating of Ji, the Eq.(18) is used.

 (18)

Where, Length_jobs is the total length of jobs which sent

to the VMi, Num_PE shows the number of PE and

PE_MIPS is the capability of corresponding PE. In Figure

10 shows the average waiting time under different number

of jobs. As can be seen, with increasing the number of

jobs, the degree of imbalance increases. From the results

shown in this figure, it can be seen that the proposed

algorithm performed better than other algorithms. The

degree of imbalance of TPALA and BatCA was somewhat

closer to each other and is clearly better than the HPSO

and FUGE, so that the degree of imbalance of TPALA was

on average 4.13% better than BatCA algorithm but was on

average 22.29% better than HPSO.

Fig. 10: degree of imbalance under number of jobs

6- Conclusions

In this paper, a new online algorithm based on LA for

job scheduling in cloud environment, called TPALA was

presented. Our proposed algorithm uses two different LAs

for each scheduler to schedule jobs, as there are generally

two main challenges in job scheduling. The first challenge

is selecting the appropriate job from the submitted jobs

based on their priority and specific conditions, while the

second challenge is assigning the selected job to the most

suitable virtual machine. To address these challenges, our

algorithm employs two LAs in separate phases. In first

phase a fixed action-set learning automaton was used and

in second phase a variable action-set learning automaton

was used. To prove the performance of the proposed

method, several simulation case based on different

scenarios have been simulated by CloudSim toolkit, in

which several metric in job scheduling such as: makespan,

success rate, average waiting time and degree of imbalance

and compared to the three algorithms FUGE, HPSO and

BatCL. In contrast to most job scheduling algorithms that

use a single job type, we considered a combination of jobs

based on two factors in our simulations: data volume and

computational volume. In future work, we plan to explore

learning automata-based methods for multi-objective job

scheduling in cloud computing.

References
 [1] B. Varghese, and R. Buyya, “Next generation cloud

computing: New trends and research directions,” Future

Generation Computer Systems, vol. 79, pp. 849-861, 2018.

[2] N. Moganarangan, R. Babukarthik, S. Bhuvaneswari et al.,

“A novel algorithm for reducing energy-consumption in

cloud computing environment: Web service computing

approach,” Journal of King Saud University-Computer and

Information Sciences, vol. 28, no. 1, pp. 55-67, 2016.

[3] A. Ghaffari, and A. Mahdavi, “Embedding Virtual Machines

in Cloud Computing Based on Big Bang–Big Crunch

Algorithm,” Journal of Information Systems and

Telecommunication (JIST), vol. 28, no. 7, pp. 305-315, 2020.

[4] L. F. Bittencourt, A. Goldman, E. R. Madeira et al.,

“Scheduling in distributed systems: A cloud computing

perspective,” Computer science review, vol. 30, pp. 31-54,

2018.

[5] N. Mansouri, and M. M. Javidi, “Cost-based job scheduling

strategy in cloud computing environments,” Distributed and

Parallel Databases, pp. 1-36, 2019.

[6] U. Bhoi, and P. N. Ramanuj, “Enhanced max-min task

scheduling algorithm in cloud computing,” International

Journal of Application or Innovation in Engineering and

Management (IJAIEM), vol. 2, no. 4, pp. 259-264, 2013.

[7] Y. Mao, X. Chen, and X. Li, "Max–min task scheduling

algorithm for load balance in cloud computing." pp. 457-465,

2014.

[8] S. A. Hamad, and F. A. Omara, “Genetic-based task

scheduling algorithm in cloud computing environment,”

International Journal of Advanced Computer Science and

Applications, vol. 7, no. 4, pp. 550-556, 2016.

[9] A. Kaleeswaran, V. Ramasamy, and P. Vivekanandan,

“Dynamic scheduling of data using genetic algorithm in

cloud computing,” International Journal of Advances in

Engineering & Technology, vol. 5, no. 2, pp. 327, 2013.

[10] H. Aziza, and S. Krichen, “Bi-objective decision support

system for task-scheduling based on genetic algorithm in

cloud computing,” Computing, vol. 100, no. 2, pp. 65-91,

2018.

[11] B. Keshanchi, A. Souri, and N. J. Navimipour, “An

improved genetic algorithm for task scheduling in the cloud

environments using the priority queues: formal verification,

Journal of Information Systems and Telecommunication, Vol.12, No.1, January-March 2024

39

simulation, and statistical testing,” Journal of Systems and

Software, vol. 124, pp. 1-21, 2017.

[12] H. Y. Shishido, J. C. Estrella, C. F. M. Toledo et al.,

“Genetic-based algorithms applied to a workflow scheduling

algorithm with security and deadline constraints in clouds,”

Computers & Electrical Engineering, vol. 69, pp. 378-394,

2018.

[13] M. A. Tawfeek, A. El-Sisi, A. E. Keshk et al., "Cloud task

scheduling based on ant colony optimization." pp. 64-69,

2013.

[14] C. Z. a. P. W. C. Liu, “A Task Scheduling Algorithm Based

on Genetic Algorithm and Ant Colony Optimization in Cloud

Computing,” in 13th International Symposium on Distributed

Computing and Applications to Business, Engineering and

Science, Xi'an, China, 2014, pp. 68-72.

[15] X. Wei, “Task scheduling optimization strategy using

improved ant colony optimization algorithm in cloud

computing,” Journal of Ambient Intelligence and Humanized

Computing, 2020/10/21, 2020.

[16] F. Hemasian-Etefagh, and F. Safi-Esfahani, “Dynamic

scheduling applying new population grouping of whales

meta-heuristic in cloud computing,” The Journal of

Supercomputing, vol. 75, no. 10, pp. 6386-6450, 2019.

[17] N. Manikandan, N. Gobalakrishnan, and K. Pradeep, “Bee

optimization based random double adaptive whale

optimization model for task scheduling in cloud computing

environment,” Computer Communications, vol. 187, pp. 35-

44, 2022/04/01/, 2022.

[18] Z. Liu, W. Qu, W. Liu et al., “Resource preprocessing and

optimal task scheduling in cloud computing environments,”

Concurrency and Computation: Practice and Experience, vol.

27, no. 13, pp. 3461-3482, 2015.

[19] V. Priya, and C. N. K. Babu, “Moving average fuzzy

resource scheduling for virtualized cloud data services,”

Computer Standards & Interfaces, vol. 50, pp. 251-257, 2017.

[20] S. Zhan, and H. Huo, “Improved PSO-based task scheduling

algorithm in cloud computing,” Journal of Information &

Computational Science, 2012.

[21] A. Kamalinia, and A. Ghaffari, “Hybrid Task Scheduling

Method for Cloud Computing by Genetic and PSO

Algorithms,” Journal of Information Systems and

Telecommunication (JIST), vol. 16, no. 4, pp. 1-10, 2016.

[22] M. Masdari, F. Salehi, M. Jalali et al., “A survey of PSO-

based scheduling algorithms in cloud computing,” Journal of

Network and Systems Management, vol. 25, no. 1, pp. 122-

158, 2017.

[23] G. Babu, and K. Krishnasamy, “Task scheduling algorithm

based on Hybrid Particle Swarm Optimization in cloud

computing environment,” Journal of Theoretical and Applied

Information Technology, vol. 55, pp. 33-38, 2013.

[24] N. Mansouri, B. M. H. Zade, and M. M. Javidi, “Hybrid task

scheduling strategy for cloud computing by modified particle

swarm optimization and fuzzy theory,” Computers &

Industrial Engineering, vol. 130, pp. 597-633, 2019.

[25] X. Chen, and D. Long, “Task scheduling of cloud

computing using integrated particle swarm algorithm and ant

colony algorithm,” Cluster Computing, vol. 22, no. 2, pp.

2761-2769, 2019/03/01, 2019.

[26] H. Naseri, S. Azizi, and A. Abdollahpouri, “BSFS: A

Bidirectional Search Algorithm for Flow Scheduling in Cloud

Data Centers,” Journal of Information Systems and

Telecommunication (JIST), vol. 27, no. 7, pp. 175-183, 2020.

[27] M. Shojafar, S. Javanmardi, S. Abolfazli et al., “FUGE: A

joint meta-heuristic approach to cloud job scheduling

algorithm using fuzzy theory and a genetic method,” Cluster

Computing, vol. 18, no. 2, pp. 829-844, 2015.

[28] Y. Shi, L. Luo, and H. Guang, "Research on Scheduling of

Cloud Manufacturing Resources Based on Bat Algorithm and

Cellular Automata." pp. 174-177, 2019.

[29] M. I. Khaleel, “Efficient job scheduling paradigm based on

hybrid sparrow search algorithm and differential evolution

optimization for heterogeneous cloud computing platforms,”

Internet of Things, vol. 22, pp. 100697, 2023/07/01/, 2023.

[30] H. G. S. Phani Praveen, Negar Shahabi, Fatemeh Izanloo,

“A Hybrid Gravitational Emulation Local Search-Based

Algorithm for Task Scheduling in Cloud Computing,”

Mathematical Problems in Engineering, 2023.

[31] S. Sahoo, B. Sahoo, and A. K. Turuk, "An Energy-Efficient

Scheduling Framework for Cloud Using Learning

Automata." pp. 1-5, 2018.

[32] A. Yazidi, I. Hassan, H. L. Hammer et al., “Achieving Fair

Load Balancing by Invoking a Learning Automata-Based

Two-Time-Scale Separation Paradigm,” IEEE Transactions

on Neural Networks and Learning Systems, vol. 32, no. 8, pp.

3444-3457, 2021.

[33] L. Zhu, K. Huang, Y. Hu et al., “A Self-Adapting Task

Scheduling Algorithm for Container Cloud Using Learning

Automata,” IEEE Access, vol. 9, pp. 81236-81252, 2021.

[34] S. A. Murad, A. J. M. Muzahid, Z. R. M. Azmi et al., “A

review on job scheduling technique in cloud computing and

priority rule based intelligent framework,” Journal of King

Saud University - Computer and Information Sciences, vol.

34, no. 6, Part A, pp. 2309-2331, 2022/06/01/, 2022.

[35] M. Masdari, and M. Zangakani, “Efficient task and workflow

scheduling in inter-cloud environments: challenges and

opportunities,” The Journal of Supercomputing, vol. 76, no.

1, pp. 499-535, 2020.

[36] A. Arunarani, D. Manjula, and V. Sugumaran, “Task

scheduling techniques in cloud computing: A literature

survey,” Future Generation Computer Systems, vol. 91, pp.

407-415, 2019.

[37] M. A. Rodriguez, and R. Buyya, “A taxonomy and survey on

scheduling algorithms for scientific workflows in IaaS cloud

computing environments,” Concurrency and Computation:

Practice and Experience, vol. 29, no. 8, pp. e4041, 2017.

[38] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a

survey,” The Journal of Supercomputing, vol. 71, no. 9, pp.

3373-3418, 2015.

[39] J. Kazemi Kordestani, M. Razapoor Mirsaleh, A. Rezvanian

et al., "An Introduction to Learning Automata and

Optimization," Advances in Learning Automata and

Intelligent Optimization, J. Kazemi Kordestani, M. R.

Mirsaleh, A. Rezvanian et al., eds., pp. 1-50, Cham: Springer

International Publishing, 2021.

[40] K. S. Narendra, and M. A. Thathachar, “Learning automata-a

survey,” IEEE Transactions on systems, man, and

cybernetics, no. 4, pp. 323-334, 1974.

[41] K. S. Narendra, and M. A. Thathachar, Learning automata: an

introduction: Courier corporation, 2012.

[42] A. Rezvanian, A. M. Saghiri, S. M. Vahidipour et al., Recent

advances in learning automata: Springer, 2018.

Esfandi, Akbari, Karimi & Zarafshan, TPALA: Two Phase Adaptive Algorithm based on Learning Automata for job Scheduling …

40

[43] M. A. L. Thathachar, and B. R. Harita, “Learning automata

with changing number of actions,” IEEE Transactions on

Systems, Man, and Cybernetics, vol. 17, no. 6, pp. 1095-

1100, 1987.

[44] R. N. Calheiros, R. Ranjan, C. A. De Rose et al., “Cloudsim:

A novel framework for modeling and simulation of cloud

computing infrastructures and services,” arXiv preprint

arXiv:0903.2525, 2009.

[45] R. N. Calheiros, R. Ranjan, A. Beloglazov et al., “CloudSim:

a toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning

algorithms,” Software: Practice and experience, vol. 41, no.

1, pp. 23-50, 2011.

[46] R. D. Lakshmi, and N. Srinivasu, “A dynamic approach to

task scheduling in cloud computing using genetic algorithm,”

Journal of Theoretical & Applied Information Technology,

vol. 85, no. 2, 2016.

[47] J. Blazewicz, K. H. Ecker, E. Pesch et al., Scheduling

Computer and Manufacturing Processes: Springer Science &

Business Media, 2013.

