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Abstract 
This paper presents a new active steganalysis method to break the transform domain steganography. Most of 

steganalysis techniques focus on detecting the presence or absence of a secret message in a cover (passive steganalysis), 

but in some cases we need to extract or estimate a hidden message (active steganalysis). Despite the importance of 

estimating the message, little research has been conducted in this area. In this study, a new active steganalysis method 

based on Spars Component Analysis (SCA) technique is presented. Here, the sparsity property of the cover image and 

hidden message has been used to extract the hidden message from a stego image. In our method, the transform domain 

steganography is formulated mathematically as a linear combination of sparse sources. Thus, the active steganalysis can 

be presented as a SCA problem. The feasibility of the SCA problem solving is confirmed by Linear Programming 

methods. Then, a fast algorithm is proposed to decrease the computational cost of steganalysis and still maintains the 

accuracy. The accuracy of the proposed method has been confirmed in different experiments on a variety of transform 

domain steganography methods. According to these experiments, our method not only reduces the error rate, but also 

decreases the computational cost compared to the previous active steganalysis methods in the literature. 

 

Keywords: Sparse Component Analysis (SCA); Active Steganalysis; Blind Source Separation (BSS); Transform Domain 

steganography. 
 

 

1. Introduction 

After the seminal study of Johnson and Jajodia [1], [2], 

steganalysis has attracted growing attention [3]–[7]. 

Different types of steganalysis techniques (STs), mostly 

passive, have been proposed [4]–[7]. While 

Steganography deals with hiding information by 

embedding a message in another object (cover) such as an 

image, steganalysis focuses on revealing those hidden 

messages from the cover. Steganalysis has gained 

prominence in the international security since the 

detection of hidden messages can lead to the prevention 

of catastrophic events, such as terrorist attacks. 

Current STs focus on detecting the presence of a 

hidden message in the cover (passive manner). An in-

depth review of passive STs has been presented by Nissar 

et al. [5]. They attempted to classify various approaches. 

They have categorized STs into signature and statistical 

techniques. Their categorization is either based on the 

signature of the applied technique or the image statistics 

which is used to detect the presence of hidden messages. 

Furthermore, in their classification, each category is sub-

divided into specific and universal approaches. 

Specific steganalysis targets a particular 

steganographic technique [4], [7], [8]. These methods 

analyze the embedding operation and concentrate on 

some image features or statistics. As a result, it may fail if 

any other steganography method is used or simply a 

change occurs in the steganography algorithm. 

Consequently, universal STs [9]–[11], were introduced to 

overcome the deficiency of specific STs. These methods 

could detect embedded messages using any type of 

steganographic technique even in the absence of prior 

knowledge of embedding technique. Most of them train a 

classifier with cover and stego images in the detection 

procedure.  

Following the detection procedure, sometimes it is 

necessary to extract and determine the content of the 

hidden message (active steganalysis). In fact, by revealing 

the hidden messages, active steganalysis complements the 

passive one. Most STs deal with passive techniques and 

little attention has been paid to active methods [12]–[16]. 

In this scope, some researchers focus on active STs based 

on the blind sources separation (BSS) [3], [15]–[19]. This 

study focuses on this class of active STs and discusses 

advantages and disadvantages of these methods.  

It is worth mentioning that most BSS-based active STs 

take advantage of the independency property of the image 

without using sparsity property of the hidden message to 

achieve better results. Moreover,  all active STs, which 

use only one stego image to extract the hidden message,  

[15]–[17], [19] increase the  computational cost. They 

need at least two observed signals and use a denoising 

algorithm to generate them. This algorithm usually 
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increases the computational complexity and making ST as 

time-consuming algorithm.  

In this paper, a new active ST with only one stego 

image is introduced which does not require a denoising 

algorithm. Eliminating the denoising algorithm makes this 

ST more efficient than the previous BSS-based STs. Our 

method uses sparsity property of sources to separated 

cover and hidden message. It is enough to cover and 

hidden message be sparse in two different dictionaries. 

Based on sparsity property, an optimization problem is 

proposed and the feasibility of solving it with linear 

programming methods is examined. Then, a fast 

algorithm based on fast transforms is proposed to solve 

the problem and extract the hidden message. 

To this end, the paper has been organized as follows: 

in section II, a brief overview of the current BSS-based 

active STs is presented and their advantages and 

disadvantages are discussed. Section III explains the 

sparse component analysis and source separation problem 

briefly. In the next section, the details of our active 

steganalysis method are presented. Finally, a discussion 

of the experimental evaluation is made in section VI and 

conclusions are drawn in section VII. 

2. A Brief History on Active STs 

Chandramouli [3] developed the first active ST based 

on the BSS model to challenge the  linear steganography. 

His proposed method was based on the BSS model with a 

hypothesis that the cover image and hidden message were 

independent. However, his proposed method needed at 

least two stego images with the same message, cover and 

key but different embedding strength factor. However, 

these conditions are not practical since steganalyst can 

usually access one stego image only. 

Fan et al. [15] tried to apply a method to realize active 

steganalysis when there was only one stego image copy. 

Their method was based on Independent Component 

Analysis (ICA) [20] and Hidden Morkov Tree (HMT) 

model[21]. The former is a popular BSS technique and 

the latter is mainly applied to denoise an image in the 

transform domain. They adopted HMT model to obtain 

the second copy of stego image and then the optimized 

ICA was applied to achieve the active steganalysis. 

Another study with the view of active steganalysis as 

BSS problem was presented in [16]. It solely used a single 

copy of stego image. The maximum a posteriori (MAP) 

estimator was adopted to provide an estimate of the cover 

image. Two active steganalysis schemes was introduced 

in this method; the first scheme was similar to [15] which 

considered the estimated version as another stego image. 

In the second scheme, besides the original stego image, 

two other stego images were generated from the estimated 

image. All the three images provide an input to the ICA 

algorithm. These schemes were applied to extract 

messages from the least significant bit (LSB) 

steganography in spatial, discrete cosine transform (DCT), 

and discrete wavelet transform (DWT) domains. The 

results indicated that the second scheme has a better 

performance than the first one. The method proposed in 

[17] was similar to that of [16]. However, HMT model 

was applied in [17] while the MAP estimator was used in 

[16] to gain an estimate of the cover image. 

All these active steganalysis methods (ICA-based 

active steganalysis) use ICA technique to separate 

message from image. This technique is an inherently high 

computational cost technique. Ambalavanan and 

Chandramouli, on the other hand, introduced another 

active steganalysis based on a different BSS technique 

[22] in order to reduce the computational cost and to 

improve the performance of message extraction [18]. 

However, their efforts were not successful.  

Modaghegh et al. [19] introduced an active ST that 

reduced the computational cost and error rate . Their 

method was basically a combination of the blind source 

separation technique and MAP estimator. Additionally, 

they presented a new geometrical BSS method based on 

the minimum range of mixed sources which reduced the 

computational cost of their active ST. Their experiments 

showed that their active ST not only reduced the error rate, 

but also decreased the computational cost compared to the 

previous active STs. Nevertheless, all of these methods 

involve a denoising algorithm which increase the 

computational cost required to generate an estimated 

version of the cover. 

3. Preliminary: Sparse Component Analysis 

and Blind Source Separation 

A brief overview of the sparse component analysis 

and blind source separation problems and the possible 

solutions [23] are given in this section. The goal of the 

source separation is to retrieve an unknown source signals 

S from observed signals X where X and S are row vectors.  

The observed signals are often assumed to be a linear 

instantaneous mixture of source signals. Thus, it can be 

written as X= A×S, where A denotes the unknown 

mixture matrix. Since A and S are unknown, some 

assumptions are needed to solve this problem. Basically, 

it is necessary to have prior knowledge of the source 

properties such as its independency, sparsity, 

bounded/unbounded states and so on. The methods based 

on the property of source independency are called 

independent component analysis [20]. On the other hand, 

the sparse component analyses (SCAs) are based on the 

property of the source sparsity [24], meaning that each 

source is seldom active and mostly (nearly) zero. Let us 

consider a sparsity model for the probability distribution 

function of the sources as follows,  

( ) ( ) (1 ) ( )
k k k ks k s k s S kP s p s p f s  

 
(1) 

Where psk is the sparsity factor of the source and fsk  

denotes the distribution of sk when the corresponding 

source is active. 
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In the general sparse representation framework, a 

signal vector      is modeled in the dictionary Ф as 

the linear combination of T elementary waveforms φi 

(atoms of dictionary):  

1

T

i i

i

X  


 α

 

(2) 

In the case of overcomplete representation, the 

number of waveforms or atoms            that constitute 

columns of the dictionary Ф is greater than the space 

dimension in which X lies: T>N , or even T>>N for 

highly redundant dictionaries. The separation problem of 

a signal or image in Ф is concerned with recovering the 

coefficient vector α in Eq.(2). However, as there are N 

equations and T unknowns, the problem has no unique 

solution. The solution to the underdetermined system of 

linear equations X = Фα can be achieved by reducing the 

space of candidate solutions.  In the SCA problem, 

sparsity imposes constraints on the solutions, meaning 

that among all solutions of X = Фα, the sparsest one is 

preferred (with the least number of nonzero entries αi). In 

other words, the sparse decomposition problem entails 

solving the following minimization problem: 

0
min . .

T
s t X




α
α α

 
(3) 

As can be seen, Eq.(3) is a combinatorial optimization 

problem that requires enumerating all collections of atoms 

in Ф to find the smallest set that synthesizes X. This made 

authors turn to approximations or relaxations of Eq. (3). 

Donoho and Huo [25] proposed a method to relax the 

non-convex ℓ0 sparsity measure by substituting the 

problem in Eq.(3) with the convex problem: 

1
min . . .

T
s t X




α
α α

 
(4) 

This problem is called Basis Pursuit (BP) [26]. Unlike 

Eq.(3), Eq.(4) is a computationally tractable convex 

optimization problem that can be solved efficiently by 

linear programming methods [27]. However, BP is not 

able to find a general solution for Eq.(2). Under 

appropriate conditions on Ф and X, nonetheless, BP can 

offer a general optimal solution of  Eq.(2).  

On the other hand, some authors have attempted to 

provide a more effective solution for problem Eq.(2) [28], 

[29]. The morphological diversity concept introduces a 

new data modeling framework that allows having both a 

sparse representation and a fast algorithm that exploits the 

structure of the dictionary. Morphological diversity 

assumes that the signal X can be modeled as the sum of K 

components sk that are morphologically different: 

1

K

k

k

X s



 

(5) 

Where sk is a morphological component. Each sk is 

sparse in a given dictionary Фk, which is associated with 

implicit fast analysis/synthesis transforms such as wavelet 

and DCT. 

 

 

4. The Proposed Active Steganalysis Method 

In this section, we introduce our active steganalysis 

method that can be used for breaking the transform 

domain steganography techniques [30]–[34]. In the first 

subsection, transform domain steganography is 

formulated mathematically as a linear combination of 

sparse sources. Then, active steganalysis is formulated as 

a new SCA problem. In the next subsection, the feasibility 

of solving the new SCA problem is discussed. Finally, 

with the goal of reducing computational cost, a fast 

algorithm for solving the new SCA problem is proposed.  

At this point, we are ready to illustrate the details of our 

proposed method. 

4.1 SCA as Active Steganalysis 

Common steganography techniques can be modeled as 

an additive embedding, i.e. the sum of image features and 

hidden message. Transform domain steganography 

methods use transform coefficients as image features to 

embed hidden message [34]. Thus, these methods can be 

formulated as follows:  

Yx=Yc+W (6) 

Where Yx denotes the transform coefficients of stego 

image,  is the embedding coefficient and W and Yc are 

respectively the hidden message and transform 

coefficients of cover image.  To obtain the stego image, 

we need to apply inverse transform to Yx, so we have: 

X=C+invTrans(W)=C+Sw (7) 

To perform active steganalysis, we need to extract 

hidden message W from stego image X. In this paper, we 

formulate active steganalysis as a source separation 

problem. From a BSS viewpoint, the cover image and 

inverse transform of the message are sources mixed to 

form the stego image as an observation. In this case, since 

the number of observations is less than the number of 

sources, the problem is underdetermined, and therefore 

there is an infinite number of solutions. As a result, in 

order to select one solution among all available solutions 

it is necessary to impose certain additional constraints 

based on the prior knowledge. In previous BSS-based 

active STs, the independency of image and hidden 

message was used as an additional constraint [3], [15]–

[19]. However, in this paper, we show that both sources in 

the stego image are sparse in their dictionaries and use 

sources sparsity as an additional constraint to solve the 

BSS problem.  

The hidden message is sparse because imperceptibility 

is a fundamental requirement of steganographic methods. 

This means that embedding a hidden message should not 

significantly change the cover so the hidden messages 

remain indiscernible to the human eye. Because of this 

feature, a hidden message needs to have short length and 

low amplitude. In other words, most of elements of a 

hidden message vector W are zero and the embedding 

coefficient β is also small. In this regard, the message 

source can be viewed as a sparse source in transform 

domain (Ф1 dictionary).   
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On the other hand, images and practical signals are not, 

in general, strictly sparse. Though they may be 

compressible or weakly sparse in transform domains (Ф2 

dictionary) such as wavelet or DCT. This means that most 

αis in Eq.(2) are near zero, and one can neglect all but 

perhaps a small fraction of the coefficients without 

significant loss. Thus, the image source can be viewed as 

a sparse source in Ф2 dictionary. 

Since the two sources are sparse, the original image 

can be separated from the hidden message if the stego 

image is searched smartly for sparse component, meaning 

that active steganalysis can be viewed as a SCA problem. 

As stated in Section 3, we can formulate SCA problem as 

an optimization problem Eq.(3). As our SCA problem is 

underdetermined and there are an infinite number of 

solutions, we need to use our prior knowledge to find the 

accurate answer (cover and hidden message), including 

the knowledge of α1i amplitude in dictionary Ф1 which is 

corresponding to the hidden message. As α1i is small due 

to imperceptibility feature of the steganography method, 

Eq.(3) can be written as follows: 

1 2

0 0
1

min( ) . .
T

i th

x
s t

 

 


i

1 2

1 2
α

α α
α α

     
2

1

k

k

and


  

 

(8) 

Where Ф2 and α2 are dictionary and coefficient vector 

of the cover respectively. This optimization problem has 

an extra constraint |   |      which helps separate 

hidden message from the cover. 

4.2 Feasibility Problem  

The extra constraint distinguishes this problem from 

normal SCA problems. Since it is a complex non-convex 

problem, we can simplify this problem by converting l0 

norm to l1 norm, formulating this problem like Basis 

Pursuit as follows: 

1 2

1 1
1

min( ) . .
T

i th

X
s t

 

 


i

1 2

1 2
α

α α
α α

 

(9) 

This extra constraint also distinguishes this problem 

from BP. However, this is a linear programming problem 

which can be solved by LP methods. To do so, we need to 

convert Eq.(9) to a canonical form of LP problem as 

stated below: 

min . . 0TB s t D b and α α α
 

(10) 

Where B and b are vectors of (known) coefficients and 

D is a (known) matrix of coefficients. The inequalities 

Dα ≤ b and α ≥ 0 are the constraints which specify a 

convex polytope over which the objective function is to 

be optimized. Clearly, Eq.(9) can be converted into the 

canonical form Eq.(10) by adding extra unknowns [27]. 

Then, this LP problem can be solved using simplex or 

interior point method[27].  

However, Eq.(9) does not provide a solution for Eq.(8) 

in general. But under appropriate conditions on Ф and X, 

BP can provide the globally optimal solution for Eq.(8). 

Thus, practical algorithms can solve problems that seem 

computationally intractable on the surface. Many studies 

have focused on sufficient (and sometimes necessary) 

conditions under which the problem BP recovers the 

sparsest solution of an underdetermined system of linear 

equations. For instance, sufficient conditions based on the 

mutual coherence of Ф were introduced by several 

authors (see, for example, [25], [35]–[37]). The mutual 

coherence μФ of Ф is defined as:  

max ,i j
i j

  



 

(11) 

This quantity can be viewed as a worst-case measure 

of the resemblance between all pairs of atoms. Donoho 

and Huo [25] showed that for dictionaries with small μФ, 

the solution of  BP is unique and this unique solution is a 

point of equivalence of Eq.(3) and Eq.(4). It can be shown 

that these conditions are available for our active 

steganalysis problem Eq.(9). Thus, we can easily solve 

Eq.(9) instead of non-convex Eq.(8) and obtain the hidden 

message. In the case Eq.(9), if the mutual coherence 

between atoms of two dictionaries Ф1 and Ф2 is low, this 

condition is met. Since in steganography, Ф1 and Ф2 

correspond to transform domains, the cover and hidden 

message need to be sparse in two different transforms to 

acquire a small μФ. Under this condition, the active 

steganalysis problem is feasible, and it can be solved with 

LP methods.   

4.3 Proposing Fast Algorithm 

In many cases, BP-like synthesis algorithms are 

computationally expensive. In this subsection, an 

alternative to these approaches has been proposed. We 

have chosen an approximation to our true minimization 

task to find a simplified optimization problem which is 

computationally effective. Our proposed method is 

similar to Morphological Component Analysis (MCA) 

method, which can be seen as a kind of Basis Pursuit 

method [26] called MCA steganalysis (MCAS). The 

algorithm is based on the Block-Coordinate-Relaxation 

method[38], with some changes made by the properties of 

the active steganalysis such as the hidden message 

amplitude constraint imposed on the reconstructed 

components.  

In our algorithm, we assumed that a dictionary can be 

built by amalgamating two subdictionaries (Ф1, Ф2) such 

that for each k, the representation of sk in Фk is sparse and 

not sparse – or at least not as sparse –  in other Фl , l≠ k. In 

other words, the subdictionaries Фk must be mutually 

incoherent. Thus, the dictionary Фk plays the role of a 

discriminant between the hidden message and cover, 

preferring the component sk over the other part. This is a 

key observation for the success of the separation algorithm. 

If this condition is not satisfied and the hidden message 

and cover sources are sparse in the same dictionary, other 

active steganalysis methods can be used [19].  

Since most transform domain steganography methods 

[30]–[34] use fast transforms, in our algorithm, the matrix 

Фk and its transpose   
  corresponding to each transform 

http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Convex_polytope
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are never explicitly constructed in the memory. Instead, 

they are implemented as a fast implicit analysis and 

synthesis transforms taking a signal vector X and 

returning   
         (analysis side), or taking a 

coefficient vector αk and returning        
      

(synthesis side). In the case of a simple orthogonal basis, 

the inverse of the analysis transform is trivially   
     . 

The use of this transformation instead of the dictionary is 

what makes our method computationally efficient. 

One of the important ingredients of our algorithm is 

the coordinate relaxation. If all component coefficients αl 

but the kth are fixed, then a solution can be achieved 

through thresholding the coefficients of the marginal 

residuals      ∑         in Фk. The other 

components are relieved of these marginal residuals rk 

and are likely to contain mainly the salient information of 

sk. This intuition dictates a coordinate relaxation 

algorithm that cycles through the components at each 

iteration and applies a thresholding to the marginal 

residuals. MCAS algorithm is summarized as follows: 

Algorithm 1: 

1. Initialize iteration number j=1, Niter the number of 

iterations, threshold δ0, and step size λ= δ0/ Niter. 

2. Calculate the residual r1=X-s2, r2=X-s1 . 

3. Calculate the transform Tk of rk and obtain αk = Tk(rk) 

for k=1,2. 

4. Apply hard threshold to the coefficient αk with the δj 

threshold and obtain  ̂  for k=1,2 . 

5. Reconstruct sk by sk=T
-1

( ̂ ) for k=1,2.  

6. Apply the constraint correction if l0(  ̂ )≤Nmsg/K1 , 

s1=0. 

7. Update the threshold by δj=δj-1-λ. 

8. If l0( ̂ )≤Nmsg , update the j=j+1 and return to Step 2, 

else , finish. 

Unlike BP, the MCAS is stage wise and exploits the 

fact that the dictionary is structured (union of transforms), 

and the atoms enter the solution by groups, rather than 

individually. As such, MCAS is a salient-to-fine process 

in which the most salient content of each morphological 

component is iteratively computed at each iteration. 

These estimates are then progressively refined as the 

threshold δ evolves toward δmin. In the above algorithm, 

we use hard thresholding instead of soft thresholding due 

to our formulation of the l0 sparsity penalty term and  the 

fact that hard thresholding provides better results [39].   

Besides fast transforms and coordinate relaxation, 

another important ingredient of MCAS is iterative 

thresholding with varying threshold. The way the 

threshold is decreased along the iterations of the MCAS 

algorithm is significant in terms of separation quality. 

There are two types of decreasing threshold strategy: 

prefixed decreasing threshold strategy and adaptive 

strategy. Given the information we have about the 

amplitude of α1, the prefixed decreasing threshold is 

selected. In our study, the threshold is decreased linearly 

so the threshold δ sequence is as follows: 

δj = δ0 − j× (δ0 − δmin) /Niter (12) 

The first threshold δ0 can be set automatically to a 

sufficiently large value which is greater than  ̂  (the 

estimate of the message embedding coefficient), e.g. 

δ0 =K1 ̂ where K1 can be a number between 1.5 and 3. 

For an exact representation of the data with the 

morphological components, δmin must be set to zero. In 

our algorithm, considering the information we have about 

the message embedding rate (Nmsg) the algorithm can be 

repeated until the number of  non-zero element of  ̂ , i.e. 

l0(  ̂ ), become equal to Nmsg. Since some passive 

steganalysis methods [40]–[45] can estimate the message 

embedding rate, it is practical to use this prior information 

in our algorithm.  

The key part of our algorithm is step 6. In regular 

SCA method [28], [29], [46] all sk are updated in every 

iteration. In our algorithm, however, the hidden message 

source has low and almost equal amplitude. Thus, we use 

this prior information to update the message source in 

case the number of extracted hidden message is greater 

than Nmsg/K2 (where K2 is a number between 3 and 5). 

Otherwise, the extracted data does not belong to the 

hidden message source and s1 is not updated. Under ideal 

circumstances where mutual coherence is zero, this step 

would be unnecessary. In practical conditions, however, 

the mutual coherence between Ф1 and Ф2 is not zero and 

the image source s2 also produces some large elements in 

α2. Under these conditions, some elements of α1 acquire 

large amplitudes, not corresponding to hidden message s1 

and should be discarded. Fortunately, since the number of 

these large amplitude samples in hidden message 

coefficient vector α1 is low, it can be discarded in step 6. 

Another challenge facing our active steganalysis 

method is the message dictionary selection, i.e. the 

detection of the dictionary used in steganography 

algorithm. To do so, first a proposition based on the 

central limit theorem is presented and then it is used to 

detect the embedding dictionary. 

Proposition 1: suppose that Ф1 and     are 

uncorrelated dictionaries which correspond to orthogonal 

transforms. Furthermore, α1 and     are defined as 

follows: 

1 1 1 1 1

1

1 1 1 1 1

1

T

i i

i

T

i i

i

s

s

 

 





  

     





α

α

 

(13) 

Now if s1 is sparse in Ф1 with sparsity factor ps1=1-

L/T and |α1i|1<i<L<T =β, then the probability distribution of 

 ́    is normal and  ́      . 

Proof: 

Since Ф1 and     are orthogonal transform, we have: 

11 11 1 11

1 1 1

...

... ... ...

T

T T TT T

e e

e e

 

 

     
     

 
     
            

(14) 

Thus, each atom φ1i can be written as             
         .Now, substituting φ1i in Eq.(13) : 
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α

 

(15) 

Thus: 

1 1( ... )i i iTe e     
 (16) 

In the case of orthogonal transforms, if we suppose 

that eij is an independent random variable with identical 

distribution (i.i.d), then  ́   will be the sum of a large 

number of i.i.d random variables. Therefore, according to 

the central limit theorem in the probability theory,  ́   will 

have approximately normal distribution. Since  ́   is a 

normally distributed random variable, most of  ́   s are 

non-zero and therefore  ́   will be less than ps1. 

According to this proposition, if signal s1 is sparse in 

dictionary Ф1 then it would be less sparse in another 

dictionary    . Thus, if a message is embedded in the 

transform domain Ф1 and the hidden message is searched 

in another dictionary    , the extracted message will be 

less sparse. This property is used to detect the embedding 

dictionary. To do so, we need to run algorithm 1 until the 

condition stated in step 6 is met. Then, the corresponding 

threshold δ is saved for each dictionary. This process is 

executed for all transforms that might be used in 

steganography and the dictionary with the greatest 

threshold is selected. The results of running algorithm for 

some transforms will be presented in the next section.  

5. Experimental Results 

At this point, the simulation results of our active 

steganalysis method are presented so that we can evaluate 

its performance. The simulation was done in MATLAB 

environment. To evaluate the steganalysis method, we 

used Berkeley Segmentation Data Set and Benchmarks 

500 (BSDS500) [47], a dataset consisting of 500 natural 

color images. These color images, span a range of indoor 

and outdoor scenes, are in JPEG compressed format with 

a quality of 75%. We converted these images into 

grayscale images using only the central 256×256 region 

of each image.  

Quality factor 75 has been selected because the default 

quality setting on most digital cameras and image editors 

is 75, which provides a good tradeoff between the file size 

and the perceived quality. With this quality factor, the 

sparsity factor of DCT coefficient (ps2) for our dataset is 

about 0.8. The sparsity factor of the embedded message 

(ps1) is set to 0.1 (i.e. the message is embedded in 10% of 

DWT coefficients) in the first simulation (Table 1), while 

different embedding rates are selected in the next 

simulation (Table 2). For example, in an image of 

256×256 pixels, the number of DWT (Haar Wavelet) 

coefficients is 256×256. Thus, when data is embedded in 

10% of coefficients, the capacity of data hiding will be 

0.1 bit/pixel. In other words, the number of bits embedded 

in the image is 256×256×0.1=6553.6 with a data hiding 

capacity of 6553.6 bit/image. Binary message bits ( 1 ) 

are randomly embedded in the DWT coefficients with 

β=4. As an example, the original, extracted and stego 

images with 0.1 bit/pixel embedded message rate have 

been shown in Fig. 1.  

a 

 

  

b 

 

  

c 

 

Fig. 1. Original Lena image (a) stego image (b) extracted image (c).  

The results of extracting message from 500 stego 

images using the proposed steganalysis method, ICA-

http://photo.net/learn/jpeg/#qual
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based active steganalysis methods [15][16][17] and 

Modaghegh et al.’s method [19] are shown in Table 1. In 

this table, for ease of comparison and preparation of 

similar conditions for all methods, ICA-based active 

steganalysis methods are simulated by “Bayesian Least 

Squares-Gaussian Scale Mixture” (BG) denoising 

algorithm [48], which has been employed in Modaghegh 

et al.’s steganalysis method [19]. This algorithm is one of 

the most effective denoising algorithms for removing 

homogeneous additive noise from natural images.  

 It is important to note that the results of ICA-based 

active steganalysis are for steganography methods with 

the message embedded in block-DCT coefficient 

[15][16][17] [19] not the DWT coefficient. Nonetheless, 

because there is no similar study in active steganalysis, 

these methods have been compared in general.   

Table 1. A comparison between the proposed active steganalysis 

(message in DWT coefficient) and the ICA-based active steganalysis 

methods (message in DCT Coefficient) for the message extracted from 
500 stego images. 

Active steganalysis method 
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Our proposed active 
steganalysis 

5521.27 1021.34 % 15.64 

Modaghegh et al.’s active 

steganalysis [19] 
5121.96 1551.96 % 23.29 

ICA-based active 
steganalysis 

4785.52 1638.48 % 25.51 

 

In Table 1, false extracted message bits are embedded 

message bits that their sign of detected samples is not 

equal to the embedded ones. Moreover, the error rate is 

defined as follows:  

Falseextracted bits
Error rate

Allembedded message bits


 
(17) 

As noted earlier, in above simulations, it is supposed 

that the message embedding rate is known. This, however, 

should not be considered as a restrictive assumption 

because there are passive steganalysis methods [40], [45], 

[49] which can precisely estimate the message embedding 

rate.  

As shown in Table 1, our proposed method has lower 

error rate and higher true detected bits compared to that of 

ICA-based active steganalysis methods. 

Table 2 also shows the comparative error rate of 

steganalysis methods for different message embedding 

rates. The results confirm that our method has almost 

similar performance in all low embedding rates, but when 

the embedding rate increases, the error rate is increased 

gradually. It is not surprising since the embedding 

message was supposed to be sparse, i.e. steganography 

has low embedding rate. 

 

 

 

Table 2. Mean error rate for messages extracted from 100 stego images. 

Message embedding rate varies from 0.02 to 0.25 bits/pixel. 
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We have also drawn the comparative figure for 

different embedding rates (Fig. 2).  
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message embedding rate(bit/pixel) 

Fig. 2. Mean error rate for messages extracted from 100 stego images. 

Additionally, our steganalysis method is simulated for 

different wavelet transform such as Symlet, Haar and 

Coiflet in Table 3. The condition of message embedding 

and steganalysis is similar to Table 1. The mean error rate, 

as shown in Table 3, is about 15% for different wavelet 

transforms.  

Table 3. Mean error rate for messages extracted from 500 stego images. 

The message is embedded with different transforms.  

Transform (Dictionary) Mean error rate 

Coiflet Wavelet 15.89% 

Reverse Biorthogonal Wavelet 15.34% 

Haar Wavelet 15.64% 

Biorthogonal Wavelet 15.33% 

Symlet Wavelet 15.40% 
 

As mentioned earlier, our active ST does not need to 

know the transform domain in which the message is 

embedded, as it is determined by the authors. To do so, we 

embed the message in the DWT domain with Coiflet 

Wavelet, trying to extract it by another Wavelet. Then, the 

error rate and threshold of these Wavelets are compared 

(Table 4). As can be seen, the threshold of Coiflet Wavelet 

is greater than the other wavelets, suggesting that the 

message is probably embedded in this transform. 

Additionally, for two wavelets with great threshold, it can 

be concluded that two dictionaries are mutually coherent, 

so either of them can be used for extraction. For example, 

the results of data extracted by Meyer Wavelet correspond 

to Coiflet Wavelet as they are mutually coherent.  
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Table 4. Mean error rate and threshold for message extraction from 500 

stego images. Message is embedded in Coiflet Wavelet and extracted 
with different dictionary.  

Transform 

(Dictionary) 

Mean error 

rate 

Mean of 

threshold 

Variance of 

threshold 

Coiflet Wavelet 15.89% 3.97 0.0062 

Haar Wavelet 38.77% 3.50 0.0410 

Meyer Wavelet 22.87% 3.93 0.0181 

Biorthogonal Wavelet 38.77% 3.5 0.0410 

Symlet Wavelet 78.30% 3.2 0.0001 
 

Finally, we compare the computational time of ICA-

based active steganalysis methods with our proposed 

steganalysis method on 2.00 GHz Pentium 4 workstation. 

The computational time of applying steganalysis methods 

to stego image with different random messages have been 

shown in Table 5. Here, the calculated times are greater 

than the ones shown in [19] because the time of common 

parts of two methods such as denoising algorithm and 

DCT calculations have not been included in [19]. 

Table 5. the computational time of extracting message from 500 stego 

images by our steganalysis and ICA-based active steganalysis 

Steganalysis method 
Computational Time (second) 

Mean Variance 

Our proposed active steganalysis 2.0327 0.7120 

ICA-based active steganalysis 8.1985 1.4202 
 

As expected, the computational time of our proposed 

active ST is lower than that of ICA-based active STs 

since our ST, does not have the denoising algorithm and 

works with only one image.  

6. Conclusions 

In this paper, a new active steganalysis method based 

on sparsity property of signals was proposed. Our method 

provided satisfactory performance on stego images in 

which the cover and hidden messages were sparse in 

different dictionaries.  We first formulated the active 

steganalysis method as an SCA problem. Then, the 

feasibility of solving the SCA problem was demonstrated 

mathematically. Since fast transforms are employed in 

most transform domain steganography methods, in this 

study a fast algorithm was presented to solve our SCA 

problem.   

The results of experiments showed that nearly 85% of 

the message bits could be estimated when the sparsity 

factor of message was 10%. Additionally, experiments 

confirmed that the computational cost of our method was 

approximately one fourth of the previous ICA-based 

active STs.  

Overall, the comparison between our proposed 

method and the previous active steganalysis schemes 

revealed that the use of sparsity property of signals 

improved the steganalysis performance (computational 

cost and error rate). 
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