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Abstract 
A new speech intelligibility improvement method for near-end listening enhancement in noisy environments is 

proposed. This method improves speech intelligibility by optimizing energy correlation of one-third octave bands of clean 

speech and enhanced noisy speech without power increasing. The energy correlation is determined as a cost function 

based on frequency band gains of the clean speech. Interior-point algorithm which is an iterative procedure for the 

nonlinear optimization is used to determine the optimal points of the cost function because of nonlinearity and complexity 

of the energy correlation function. Two objective intelligibility measures, speech intelligibility index and short-time 

objective intelligibility measure, are employed to evaluate the noisy enhanced speech intelligibility. Furthermore, the 

speech intelligibility scores are compared with unprocessed speech and a baseline method under various noisy conditions. 

The results show large intelligibility improvements with the proposed method over the unprocessed noisy speech. 
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1. Introduction 

Mobile phones often deliver speech output to listener 

in noisy environments. The background noise such as 

traffic or babble noise reduces speech intelligibility for the 

near-end listener. Several preprocessing algorithms have 

been proposed to improve speech intelligibility for the 

near-end listener in noisy environment. In speech 

improvement methods which focus on speech 

intelligibility enhancement for near-end listener in 

background noise, the far-end speech is considered as a 

clean speech with good intelligibility. As the far-end 

speech is played for near-end listener in noisy environment, 

its intelligibility is degraded by background noise; thus, 

these methods manipulate the clean speech (i.e., the far-

end speech) before it is corrupted by the background noise 

to improve the intelligibility of noisy speech. Therefore, 

the clean speech and noise are available signals in the 

intelligibility enhancement methods and the aim is 

improvement of the audibility of degraded speech, as 

illustrated in Figure 1. Near-end speech intelligibility 

improvement methods have been classified to noise-

independent and noise-dependent methods. 

Noise-independent modification algorithms include 

detecting and boosting the features of speech that have an 

important role in speech perception. Charturong used 

hidden Markov model for detecting the consonant and 

transient regions [1], and Raset and Motlotle applied 

wavelet transform for extracting these regions in clean 

speech [2]. Demol et al. also used non-uniform time 

scaling to slow down the speech and redistributed 

available time between the vowels and consonants to 

emphasis on these regions [3]. In addition, Ekramul et al. 

presented a speech intelligibility improvement process in 

which speech is modified based on an inverse Wiener 

filter on the vowel and consonant regions [4]. 

Since the speech intelligibility in noisy environments 

usually depends on the noise conditions, noise-dependent 

algorithms may be applied to speech intelligibility 

enhancement in application scenario where the noise-

statistics are available. Noise-dependent algorithms have 

been carried out using estimates of the noise signal. These 

methods are usually based on the signal to noise ratio 

(SNR) modification or optimization of an objective 

intelligibility measure. For example, Sauert and Enzner 

modified the local SNR of time-frequency cells based on 

the global SNR [5], and Tang and Cooke presented 

several strategies including the time and frequency 

segmentation and frequency selected boost to reach the 

global SNR [6]. Premananda and Uma also improved the 

near-end speech intelligibility focusing on the selective 

audible speech samples by considering the threshold of 

hearing and auditory properties of the human ear [7]. 
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Fig. 1. Intelligibility enhancement of speech delivered in noisy 

environments. (Noise-independent/ Noise-dependent enhancement 

approach without/with extra microphone.) 

Speech intelligibility enhancement based on 

maximization of speech intelligibility index (SII) measure [8], 

[9], and minimization of a perceptual distortion measure [10] 

are noise-dependent approaches which are considered as 

optimization algorithms. Tang and Cooke used a genetic 

algorithm-based optimization procedure, with glimpse 

proportion as the objective intelligibility metric to enhance the 

speech intelligibility in background noise [11], and Valentini-

Botinhao et al. also increased the glimpse proportion measure 

by modifying mel-cepstral coefficients to improve the 

intelligibility of the synthetic speech in noise [12]. 

In the proposed algorithm, speech intelligibility is 

improved by optimizing the energy correlation between 

clean and noisy enhanced speeches in one-third octave 

frequency bands subjected to a power constraint. The 

fundamental idea behind the proposed method is that 

maximization of the cross correlation between speech 

degraded by noise and clean speech with good 

intelligibility would yield an improved speech intelligibility 

for the near-end listener. Hence, a cost function based on 

the energy correlation between the clean and noisy 

speeches is introduced to determine the cross correlation. 

Since the obtained cost function is complicated and 

nonlinear, the routine optimization methods (i.e., the 

derivative methods and Lagrange multiplier) cannot lead to 

an analytical solution. Therefore, an iterative algorithm is 

applied to optimize the cost function.  

The paper is organized as follows: details of the 

proposed algorithm are described in three phases, namely, 

(1) preprocessing, (2) calculation and optimization of 

energy correlation function based on an iterative 

algorithm, and (3) estimation of statistical quantities. 

Finally, the objective intelligibility prediction results 

comparing the proposed algorithm with unprocessed 

speech and a baseline method are presented. 

2. Proposed Speech Intelligibility Improvement 

Algorithm 

To improve the speech intelligibility in background noise, 

the energy correlation function in one-third octave frequency 

bands within each time frame of the clean speech and speech 

degraded by noise, is determined and the correlation function 

is then optimized with a power speech constraint. 

2.1 Preprocessing 

Clean speech  ( )  and background noise  ( )  are 

available signals, and let  ( )  and  ( )   ( )   ( ) 

denote the enhanced speech and the speech degraded by 

noise, respectively.  ( )  and  ( )  are resampled by 

sample-rate of 10 kHz to capture a relevant frequency 

range for speech intelligibility [13]. Both signals are 

segmented into 50% overlapping, Hann-windowed frames 

with a length of 256 samples. The discrete Fourier 

transform (DFT) of each time frame is determined and a 

one-third octave band analysis is then performed by 

grouping DFT-bins. In total 15 one-third octave bands are 

used, where the lowest center frequency is set equal to 160 

Hz and the highest octave band has a center-frequency 

equal to 4.06 kHz. Let  (   )  and  (   )  denote the 

DFT of the     frame of clean speech and noise in 

frequency index  , respectively. The energy of the     band 

in the     frame (i.e.,      ) of clean speech,     , and 

noisy enhanced speech,     , are calculated as follows, 
 

     ∑ | (   )| 

  ( )

    ( )

        

 

     ∑ |     (   )   (   )|
   ( )

    ( )
   (1) 

 

where   ( ) and   ( ) indicate the     one-third octave 

band edges and | | is the magnitude of the DFT. A real 

gain        , is applied to the       of the clean speech, 

to enhance the clean signal. 

2.2 Calculation and Optimization of Correlation 

Function 

The correlation coefficient is a statistical measure of 

the linear dependence between two random variables. 

Due to the energies      and      are the random variables, 

the energy correlation function      of the       of clean 

and noisy enhanced speeches is obtained as follows, 
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where  ( )  indicates the expectation of the random 

variable. The numerator in Equation (2) determines the 

covariance of      and     , and the denominator is the 

product of theirs standard deviation. According to 

Equation (1) and the properties of the complex numbers, 

     would be rewritten as follows, 
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where    indicates the complex conjugate and      is 

the energy of the       of the noise. The energy 

correlation      is obtained as a function of clean speech, 

noise and gain      by substituting      in Equation (2). 

http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Standard_deviations
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Two obvious assumptions are considered to simplify 

the energy correlation: first, independency of clean speech 

and background noise,     ( ) ( )     ( )    ( ) . 

Second, the zero expectation of the stochastic processes, 

clean speech and noise,    ( )    and    ( )   . 

According to Equations (2), (3) and the assumptions, 

the energy correlation function      is simplified as follows, 

     
     

    
 

√     
     

           
       

 
     (4) 

 

Where 
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    ( )
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}   (5) 

 

  ( ) indicates the real part of the complex value. The 

statistical quantities      

  and      

 , which refer to the 

variance of the energies      and     , respectively, and      

are estimated from clean speech and noise. The energy 

correlation function  
   

 is plotted in Figure 2 based on     
 , 

in the 10th frequency band for an SNR of –5 dB. The average 

of the energy correlation function of each frame ∑       is 

maximized subjected to a power constraint to improve the 

speech intelligibility. The correlation function      is concave 

in     
 , as illustrated in Figure 2. Hence, the sum of these 

concave functions, ∑      , is also concave. The constrained 

optimization problem can be formulated as follows, 
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where    ∑     
  
    indicates the energy of the     

frame of clean speech. The equality condition relates to 

the power constraint in the     frame, and the inequality 

condition satisfies the positive real gains        . The 

convexity is obtained by negation and the following 

Lagrangian cost-function characterizes the problem, 
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where   and    are Lagrangian multipliers related to 

the power constraint and inequality constraints in 

Equation (6), respectively. Since the objective function 

and constraints are differentiable, any point that satisfies 

the constraints in Equation (6) and the following 

conditions is guaranteed to optimize the problem [14]. 
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Fig. 2. Energy correlation function in the 10th band for an SNR of –5 dB 

based on     
 . 

Because of complexity of the derivative of the 

Lagrangian cost-function, the optimization problem could 

not lead to an analytical formula. Thus, an iterative 

algorithm is applied to solve the optimization problem, 

which uses descent method to search the optimal point 

[14]. The Interior-point algorithm is an iterative method 

for non-linear optimization problem that consists of two 

steps. Step 1, inner loop, the Newton's method is applied 

to optimize the equality constrained problem. Step 2, 

outer loop, the Barrier method formulates the inequality 

constrained problem as an equality constrained problem 

to which Newton’s method can be applied.  

To formulate our constrained optimization problem as 

equality constrained problem, Equation (6) can be 

rewritten based on the Barrier logarithm as follows, 
 

   
 ̌   

      ( ̌ )   ( ̌ ) 

 

   ∑
     

 ̌   

√     
  ̌   

        ̌         
 

  
    ∑     ( ̌   )  
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where a simple variable change is used as  ̌        
 . 

Vector  ̌  [ ̌     ̌       ̌    ]
 

 consists of the gains 

of frequency bands in the     frame and vector   

[                 ]  refers to the energies of the clean 

speech bands. The equality   ̌     shows the power 

constraint.  ( ̌ )   ∑    ( ̌   )  
    and   ( ̌ )  are the 

Barrier logarithm and the negative energy correlation 

function based on  ̌ , respectively. These functions are 

convex in  ̌ . Parameter     sets the accuracy of the 

Barrier logarithm approximation. The optimization problem 

in the Equation (9) searches for the optimal vector which 

minimizes the cost function   ( ̌ ) subjected to   ̌     

which satisfies power constraint and  ̌      which is 

formulated in the Barrier logarithm. The optimization of the 



 

Goli & Karami-Mollaei, Speech Intelligibility Improvement in Noisy Environments for Near-End Listening Enhancement 

 

30 

energy correlation function using interior-point algorithm 

(Barrier and Newton's method) is summarized in Table I. 

In interior-point algorithm shown in Table I, the inner loop 

minimizes the objective function    ( ̌ )   ( ̌ )  (i.e., 

parameter   is determined in outer loop) subjected to the power 

constraint using Newton's method. Hence, the Newton step 

  ̌  and decrement   are calculated in the inner loop. In each 

iteration of the inner loop, the Newton step is added to  ̌  that 

was obtained in previous iteration, and the loop is run again 

until reaching inner stopping criterion,    ⁄   ́  (i.e., for 

tolerance  ́    ). Backtracking line search is applied in the 

inner loop to determine the step size   used in gain updating at 

each Newton iteration. The optimal gain obtained by the inner 

loop is named central point,  ̌ 
 
( )  and delivered to the outer 

loop. In the outer loop, the central point  ̌ 
 
( ) is updated and 

then   is increased by a factor     . In other words, the 

central point  ̌ 
 
( ) is computed for a sequence of increasing 

values of   until reaching the outer stopping criterion,   
   ⁄  (i.e., for tolerance   ), which guarantees the  -

suboptimal solution of the optimization problem. 

Initialization of parameters of the interior-point 

algorithm largely affects the iterations of the inner and outer 

loops, and optimization accuracy. On one hand, excessive 

iterations of the loops lead to a large algorithmic delay; on 

the other hand, choosing large step sizes for reducing the 

iterations may results suboptimal points and reduces the 

accuracy. Therefore, the values of the parameters of the 

inner and outer loops are obtained from the experimental 

results, which provide the best performance of the interior-

point algorithm in the optimization problem. These values 

yield the minimum iteration numbers and the maximum 

accuracy. The initialization of the parameters of the 

presented interior-point algorithm is shown in Table II. 

Table 1. Optimization of energy correlation function using Barrier 
method (Newton's method). 
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           ( ̌ )   ( ̌ )    [    ( ̌ )  

                                       ( ̌ )]
 
  ̌          

IV. Update:   ̌   ̌     ̌  

2- Updating  ̌   ̌ 

 
( ).  

(Starting point for next inner iteration) 
3- Stopping criterion. Quit if     ⁄  . 
4- Increasing  .        END. 

Table 2. Initialization of the parameters of the inner and outer loops in 

the presented interior-point algorithm 

Parameter Value Loop 

Feasible point  ̌              Outer 

 ( )      Outer 

    Outer 

        Outer 

 ́       Inner 

       Inner 

       Inner 

2.3 Estimation of Statistical Quantities 

Given that the random variables      and      are short-

time stationary processes over the time frames, the statistical 

quantities could be estimated via time frame averaging [15], 
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where   denotes the number of successive frames in which 

the quantities are estimated. The best results are obtained 

in      . Such as Equation (10), similar estimation hold for 

     

 . In practice, a simple noise-tracker algorithm [16] could 

be applied to estimate the power of noise signal. 
 

 

Fig. 3. Block diagram of the proposed algorithm 

A simple smoother is then applied to the statistical 

quantities to prevent high changes which may negatively 

affect the estimation, 
 

 ̂    

    ̂      

  (   )     

      (12) 
 

where      6 leads to best results and similar 

smoother is applied to      

  and     . 

3. Proposed Algorithm Implementation 

A simple voice activity detector (VAD) is used in the 

proposed algorithm, as illustrated in Figure 3. The VAD 

block selects the speech frames whose power is greater 

than         for the process.      is the maximum 

power of the received frames of clean speech in dB and 

the constant value of   is selected 25 dB in practice. 

Clean speech, enhanced speech by proposed method and 
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iteration number of the interior-point algorithm within 

each time frame in white noise for an SNR of –5 dB are 

shown in Figure 4. The iteration number is equal to zero 

in silent frames as illustrated in Figure 4, since the VAD 

block prevents to manipulate these frames. Also, the 

iteration range of the interior-point algorithm in speech-

active frames is 1 to 167 with a total of 5302 iterations. 

The enhanced speech is corrupted by white noise and 

babble noise to evaluate the performance of the proposed 

algorithm. The spectral power of white noise is uniformly 

distributed over the frequencies. This important property 

makes white noise appropriate to evaluate the 

performance of the speech enhancement methods in 

frequency domain; however, white noise is not an 

environmental noise. Babble noise, the noise of the public 

places, is a common environment noise that may destroy 

speech intelligibility in wireless communications. 

The effect of the proposed algorithm on the power of 

one-third octave bands in clean and enhanced speech for 

white and babble noises with an SNR of –5 dB is shown 

in Figure 5. The energy is usually distributed from the 

frequency bands in which the clean speech power is 

greater than the noise power to other frequency bands, as 

illustrated in Figure 5. This transmission is such that the 

average of the energy correlation can be maximized. In 

other words, this method spreads the energy between the 

bands and makes a dense spectral power density. 

4. Performance Evaluation 

To evaluate the performance of the proposed algorithm, 

the clean and enhanced speech is degraded by white, 

babble, factory, and traffic noises at the SNRs of –20, –

15, –10, –5 and 0 dB from the NOISEX-92 database.  
 

 

 

 

Fig. 4. The time domain plots of (a) clean speech and (b) enhanced 
speech with an SNR of –5 dB, and (c) iteration number of the interior-

point algorithm within each frame. 

 

 

Fig. 5. Avrage power of one-third octave bands of the N=30 successive 

frams for noise, clean speech and enhaced speech in (a) white noise and 
(b) babble noise with an SNR of –5 dB. 

In total, 20 random sentences from male speakers are used 

from the TIMIT database. The duration of each sentence is 

almost between 3 s and 5 s. A comparison is made with 

the unprocessed noisy speech and a reference method 

proposed by Taal et al. [10]. This method, which is similar 

to the proposed method, improves speech intelligibility by 

optimizing a cost function. Taal et al. optimally 

redistribute the speech energy over time-frequency cells 

according to a perceptual distortion measure. The baseline 

algorithm minimizes the mentioned objective measure by 

using auditory filter bank with a power constraint over all 

speech-active frames to improve the speech intelligibility. 

The current study employs two objective intelligibility 

measures to predict the intelligibility of the noisy 

enhanced speech. The objective measures enable rapid 

feedback on a range of speech intelligibility enhancement 

methods. First measure is speech intelligibility index 

(SII), which is based on weighted SNRs. In the one-third 

octave band procedure provided by ANSI [17], the SII 

measure is computed by dividing the spectrum of clean 

speech and noise into one-third octave frequency bands 

and estimating the weighted average of the SNRs in each 
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band. The SNRs are weighted by band importance 

functions which differ across speech materials. The 

output of the SII measure is a scalar number between 0 

and 1, which predicts the speech intelligibility in 

background noise. Second method is short-time objective 

intelligibility (STOI) measure, which is based on a 

correlation coefficient between the temporal envelopes 

(i.e., the root of energy of one-third octave frequency 

bands) of the clean and degraded speech in overlapping 

segments [18]. To calculate the STOI measure, the clean 

and degraded speech are decomposed into DFT-based. 

Then, short-time temporal envelope segments of the clean 

and degraded speech are compared by means of a 

correlation coefficient after normalizing and clipping. The 

STOI score is then obtained by averaging these short-time 

intelligibility measures over the speech signal. This 

measure provides a score in the range of 0 to 1, which 

refers to the speech intelligibility of degraded speech. 

Both measures can predict the intelligibility of noisy 

speech in various speech degradations. 

The proposed method provides the best intelligibility 

scores in the STOI measure in comparison with the 

unprocessed noisy speech and the baseline method 

proposed by Taal et al. for all noisy conditions, as 

illustrated in Figure 6. The results also show that the 

baseline method led to a decrease in model intelligibility 

based on STOI at low SNRs in all noises except babble 

noise in which it provides a large increase in comparison 

with the unprocessed noisy speech in all SNRs. 

Figure 7 presents the SII measure intelligibility scores. The 

results show intelligibility improvement with the proposed 

algorithm in comparison with the unprocessed noisy speech 

and the baseline method at low SNRs in the SII measure for 

white, babble, and traffic noises. However, the baseline 

method obtains better SII scores than our algorithm in 

factory noise at all SNRs. The baseline method also provides 

better intelligibility scores at –5 and 0 dB than the proposed 

method in all maskers, as illustrated in Figure 7. 
 

 

Fig. 6. STOI intelligibility predictions for the proposed method, unprocessed 
noisy speech, and the baseline method by Taal et al. for white, babble, 

factory, and traffic noises at the SNRs of –20, –15, –10, –5 and 0 dB. 

 

Fig. 7. SII intelligibility predictions for the proposed method, unprocessed 
noisy speech, and the baseline method by Taal et al. for white, babble, 

factory, and traffic noises at the SNRs of –20, –15, –10, –5 and 0 dB. 

The significant intelligibility scores that the proposed 

method obtained in the STOI predictor are expected, since 

our method maximizes the energy correlation between 

clean speech and noisy enhanced speech, and also the 

STOI measure is based on the mean cross-correlations of 

the root of energy in frequency bands between these 

signals. Thereby, both algorithms are based on the 

correlation between clean speech and noisy speech. The 

proposed method improves speech intelligibility based on 

the correlation and STOI measures it to predict the speech 

intelligibility. Therefore, it can be stated that the proposed 

method maximizes an intelligibility cost function 

according to the STOI measure. 

5. Conclusions 

A new speech intelligibility improvement algorithm is 

proposed to enhance the speech intelligibility for the near-

end listener in noisy environments without increasing the 

speech energy. This was performed by maximizing the 

energy cross correlation of the one-third octave bands 

between clean speech and enhanced noisy speech with a 

power constraint. The interior-point algorithm, an 

iterative algorithm for nonlinear optimization, is applied 

to solve the optimization problem, because of the 

nonlinearity and complexity of the cost function. The 

speech energy is redistributed over the frequency bands of 

clean speech according to the optimization of the energy 

correlation between clean and noisy speech. Two 

objective intelligibility predictors, the STOI and SII 

measures, are employed for scoring the intelligibility of 

the noisy enhanced speech under various noisy conditions 

to evaluate the performance of the proposed method. The 

results show significant intelligibility improvement with 

the proposed algorithm in comparison with the 

unprocessed noisy speech. As the current work is a frame-

based speech enhancement method that maximizes the 
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cost function within each time frame, the proposed 

method can be appropriate for online processing. 

However, the iterative optimization algorithm used in the 

optimization problem is not appropriate for online 

processing due to the algorithmic delay produced with the 

loop iterations. Therefore, the iterative algorithm would 

be replaced with an alternative method with an 

insignificant algorithmic delay, in future works. 
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