
 

 

 

 

 
 

Research Institute for ICT, Iranian Association of ICT 

 
Affiliated to: Academic Center for Education, Culture and Research (ACECR) 

 
Manager-in-charge: Asghari Habibollah, Assistant Professor, ACECR, Iran 

Editor-in-chief: Shafiee Masoud, Professor, Amir Kabir University of Technology, Iran 

 
Editorial board 

Dr. Abdipour Abdolali, Professor, Amir Kabir University of Technology 

Dr. Naghibzadeh Mahmoud, Professor, Ferdowsi University 

Dr. Sadegh Mohammadi Hamid Reza, Associate Professor, ACECR 

Dr. Jalali Aliakbar, Associate Professor, Iran University of Science and Technology 

Dr. Khademzadeh Ahmad, Associate Professor, ICT Research Institute 

Dr. Lotfi Abbasali, Associate Professor, ACECR 

Dr. Elahi Sha’ban, Associate Professor, Tarbiat Modares University 

Dr. Sadeghzadeh Ramezanali, Associate Professor, Khajeh Nasir al’din Toosi University of Technology 

Dr. Ghazi Maghrebi Saeed, Assistant Professor, ACECR 

 
Administrative Manager: Gilaki Shirin 

Executive Assistant: Karimi Behnoosh 

Art Designer: Jalilvand Parvin 

Publisher: Iran University Press 

ISSN: 2322-1437 

eISSN: 2345-2773 

Publication License: 91/13216 

 
Editorial office Address: No.5, Saeedi Alley, Kalej Intersection., Enghelab Ave., Tehran, Iran, 

P.O.Box: 13145-799    Tel: (+9821) 88930150     Fax: (+9821) 88930157 

Email: info@jist.ir 

URL: www.jist.ir 

 

Indexed in: 
- Journal of Information Systems & Telecommunication   www.jist.ir 

- Scientific Information Database (SID)     www.sid.ir 

- Islamic World Science Citation Center (ISC)    www.isc.gov.ir 

- Regional Information Center for Sciences and Technology (RICeST) www.srlst.com 

- Magiran        www.magiran.com 

 
This Journal is published with scientific supported by the Advanced Information systems (AIS) and 

Information Technology Business Model (ITBM) research groups in Research Institute for ICT.  

In the Name of God 

 

Journal of  
Information Systems & Telecommunication 

Vol. 1, No. 1, January-March 2013 



  



 

 

Table of Content 

 
Editorial Note  

 

Papers: 

 A New Upper Bound for Free Space Optical Channel Capacity Using a Simple 

Mathematical in Equality ....................................................................................................... 1 

Arezu Rezazadeh, Ghosheh Abed Hodtani 

 Achieving Better Performance of S-MMA Algorithm in the OFDM Modulation ................. 7 

Saeed Ghazi-Maghrebi, Babak Haji Bagher Naeeni,Mojtaba Lotfizad 

 A Conflict Resolution Approach using Prioritization Strategy ............................................ 15 

Hojjat Emami, Kamyar Narimanifar 

 A Basic Proof Method for the Verification, Validation and Evaluation of Expert Systems 21 

Armin Ghasem Azar, Zohreh Mohammad Alizadeh 

 Prediction of Deadlocks in Concurrent Programs Using Neural Network ........................... 27 

Elmira Hasanzad, Seyed Morteza Babamir 

 Network RAM Based Process Migration for HPC Clusters ................................................ 39 

Hamid Sharifian, Mohsen Sharifi 

 Accurate Fire Detection System for Various Environments using Gaussian Mixture Model 

and HSV Space .................................................................................................................... 47 

Khosro Rezaee, S. Jalal Mousavirad, Mohammad Rasegh Ghezelbash, Javad Haddania 

 

 

 

 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 

 

1 

* Corresponding Author 

A New Upper Bound for Free Space Optical Channel 

Capacity Using a Simple Mathematical in Equality 

Arezu Rezazadeh* 
Department of Electrical Engineering, Ferdowsi University of Mashhad 

arezu.rezazadeh@gmail.com 

Ghosheh Abed Hodtani 
Department of Electrical Engineering, Ferdowsi University of Mashhad 

ghodtani@gmail.com 

 

Received: 05/Aug/2012            Accepted: 15/Dec/2012 

 

Abstract 
In this paper, by using a simple mathematical inequality, we derive a $ new upper bound fkr the capacity 

of$ free space optical channel in coherent case. Then, by applying general fading distribution, we obtain 

an upper bound for mutual information in non-coherent case. Finally, we derive the corresponding 

optimal input distributions for both coherent and non-coherent cases, compare the results with previous 

works numerically and illustrate that our results subsume some of previous results in special cases. 

 

Keywords: Mathematical Inequality, Capacity, Upper Bound, Free Space Optical Channel, Optimal 

Input Distributions. 
 

 

1. Introduction 

Free space optical (FSO) channel is important 

because of high transmission rate, power 

efficiency, high bandwidth and its safety. 

To design communication link with high 

performance, it is necessary to study its 

properties from information theoretical 

viewpoint. To determine channel capacity, 

optimum input distribution should be obtained. 

By considering input constraints, the optimum 

input distribution is derived. In FSO channel, for 

eye safely and physical limitations, average and 

peak power constraints are imposed on 

transmitted signal [1]. The mathematical 

representation for FSO channel is [1]: 

 

,Y HX Z       (1) 

 

Where, X is the channel input, Y is the output 

and Z is the Gaussian noise with zero mean and 

variance of σ2 or Z ~ N(0;σ2). H represents 

channel fading which has the probability density 

function f(h). The input constraints are [1]: 

, { } , ,
A

X A E X P
P

   0
  (2) 

Where A is the peak-amplitude limit and P is 

the average power limit and ρ is the ratio of 

optical peak to average power. 

Part of this paper was accepted at Australian 

Communication Theory Workshop 2012 

(AusCTW2012). 

The authors are with the Department of Electrical 

Engineering, Ferdowsi University of Mashhad, 

Mashhad, Iran (e-mail: arezu.rezazadeh@gmail.com; 

ghodtani@gmail.com). 

Previous Works: In [2] with constraints on 

input amplitude and power, it was shown that in 

coherent receiver, the capacity-achieving input 

distribution is discrete with a finite number of 

mass points. In other words, the input 

maximizing I(X; Y| h) is: 

0

{ ( ) : ( ) ( ), [ , ],

0, 1, , },

K

x x i i i

i

K K

i i i i

i i

P p x p x a x x x A

a a K Z P x a






 

   

   



 
  (3) 

Where δ(x) is the delta function and Z+ is the 

set of positive integers. The number of mass 

points is K + 1, where ai and xi are the 

amplitudes and positions of the ith mass points, 

respectively [1], [2]. 

In [1] instead of maximizing mutual 

information, source entropy is maximized for the 

capacity of FSO channel. 

In [3] under non-negativity and average 

optical power constraints lower and upper 

bounds for I(X; Y|h = 1) are derived. The lower 

and upper bounds are derived by maximizing 

source entropy and using a sphere packing 

argument respectively. 

In [4] bounds for I(X;Y|h = 1) are derived by 

using a dual minimax problem (instead of 

maximizing the mutual information over 

distributions on the channel input alphabet, 

average relative entropy is minimized over 

mailto:ghodtani@gmail.com
mailto:ghodtani@gmail.com


 

Rezazadeh & Abed Hodtani, A New Upper Bound for Free Space Optical Channel … 

 

2 

distributions on the channel output alphabet). At 

high-power regime, a lower bound for I(X; Y|h = 

1) is also proposed by using the entropy power 

inequality. 

In [5] by considering Gaussian maximum 

entropy for H(Y|h), an upper bound for I(X; Y|h) 

has been derived. Then by averaging over the 

gamma-gamma atmospheric turbulence for h, an 

upper bound for I(X;Y) (non-coherent case) has 

been determined. 

Our Work: In this paper, we derive a new 

upper bound for the capacity of FSO channel in 

both coherent and non-coherent cases and 

determine the corresponding optimum input 

distributions for these two cases. 

 As pointed before, for additive noise with 

input peak and power constraints, the optimum 

input distribution is discrete with finite number 

of mass points [2]. Similarly for coherent case 

with these constraints, capacity achieving 

distribution is discrete with finite number of 

mass points. By considering this fact and using 

simple mathematical inequality, we determine a 

new upper bound for capacity of FSO channel. 

Then we extend the result to the non-coherent 

case with arbitrary f(h) and finally we determine 

the corresponding input distribution and compare 

the results with previous works. 

Paper Organization: This paper has four 

sections. In section II, an upper bound for 

I(X;Y|h) and the corresponding input distribution 

is found. In section III, an upper bound for I(X; 

Y ) (non coherent case) is derived by averaging 

over distribution of f(h). Then we will maximize 

the upper bound of I(X;Y) over all input 

distributions. The paper concludes in section IV. 

2. An Upper Bound for I(X; Y|h) and 

the Corresponding Input Distribution 

In this section, first we determine an upper 

bound for I(X;Y|h) and then determine the 

corresponding input distribution. For discrete-

time Gaussian channels [6], capacity can be 

expressed as: 

 

( )

( )

max ( ; )

max ( ; | ) ( ) ,

x

x

f x

f x

C I X Y

I X Y h f h dh



 
 (4) 

To reach I(X;Y), we simplify I(X;Y|h). X and 

H are independent, thus the mutual information, 

between channel input and output is [1]: 

 

2

2

( ; | ) ( | ) ( | , )

( | ) log ( | )

( | , ) log ( | , ) (5)

I X Y H h H Y H h H Y X H h

f y h f y h dy

f y h x f y h x dy

    

 






 

Where, in view of (1): 

 

 
Where N(µ,σ2) denotes a Gaussian 

distribution with mean µ and variance σ2 and 

fx(x) is the input distribution in (3). Therefore, 

2

2

2

2

( )

2

2
0

( )

2

2
0

( ) ( ) ( , )

1
( )

2

1
.

2

i

X

y hxK

i i

i

y hxK

i

i

f y h f x f y h x dx

a x x e dx

a e






















 








  

So, 

2( ; ) ( ) log ( ( )) ( )I X Y h f y h f y h dy H z   
22

2 2

( )( )

2 2
2

2 2
0 0

1 1
log ( )

2 2

ji
y hxy hxK K

i j

i j

a e a e dy 

 


 

 

  

( ).H z
    

 (8)  

Since the above integral cannot be evaluated 

analytically, we will determine an upper bound 

for I(X;Y|h). 

 

A. Upper Bound for I(X;Y|h) 

In order to find an upper bound for I(X;Y|h), 

we write I(X;Y|h) in terms of ais. From (8) we 

have: 

 

22

2 2

2

2

22

2 2

( )( )

2 2
2

2 2
0 0

( )

2
2

2 2
0

( )( )

2 2

2
0 0

( ; ) ( )

1 1
log ( )

2 2

1 1
( ) (log ). ln( )

2 2

1
ln( )

2

ji

i

ji

y hxy hxK K

i j

i j

y hxK

i

i

y hxy hxK K

i j

i j

I X Y H h H z

a e a e dy

H z e a e dy

a e a e dy

 



 

 

 




 

 







 

 

  




   








 



 

22

2 2

2
2

( )( )

2 2
2

2
0 0

1
( ) log ( )

2

1
(log ). ln( )

2

ji

a

y hxy hxK K

i j

i j

H z

e a e a e dy 






 

 

 

 
 
 
 

 
  (9)  

2( | , ) ( , ) (6)

( | ) ( ) ( | , ) (7)x

y h x N hx

f y h f x f y h x dx



 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 3 

where, a in (9) follows from the fact that  

K

i

i

a



0

1
 and 

2
i
2

(y-hx )
-

2σ

2

1
e dy=1

2πσ


. 

Because ais are less than one, so 

( )iy hx

ia e 




2

22

 is 

less than 1. Furthermore 

 

1 log logi i i i iu u u u u       
 hence, 

( ) ( )

ln( ) ln( ).
i iy hx y hxKK

i i

i i

a e a e 

 
 

 

   
2 2

2 22 2

0 0  (10)  

Now, we can determine an upper bound for 

I(X;Y|h). From (9) and (10), the following upper 

bound is obtained. 

( ; | )I X Y H h A A h   2

1 2   (11) 

Where, 

2

1
log ( ) ( )

2

log ( ) log ,
K

e

j

j

A H z

K
a





  


 

1 2

2 2

0

1

2
  (12)  

And 

log ( ) .
K K

e n
m n

n m

a
A x x



  2

2 2 2
0 =0 2  (13) 

Now we should determine the corresponding 

input distribution. 

 

B. Determining Optimum input 

distribution for upper bound of I(X;Y|h) 

Here, we determine ais such that the upper 

bound in (11), regarding the constraints, becomes 

maximum. We use Lagrangian coefficients to 

determine optimum input distribution.  
2 1 1

1 ( ) ( ).i i iJ A A h a a x P       1 21 2 1
 (14) 

To solve the optimization problem, 

considering constraints 

K

i

i

a



0

1
 and 

K

i

i

a li P



0 , we make 

1 0
i

J

a




 . For subset of 

input distribution with K + 1 equally spaced 

mass points i.e., xi = il, where,

A
l

K


 , we have: 

1 2

1
ia

B B


      (15) 

Where, 

2

1

2
2

( 1) ( 1)
22

2 2 2 2-( 1) ( 1) ( 1) ,
22 0

j

h
B K lK K P

Kh
K a j l K K l i i l K

j





    

 
 

     
  

and 

 
Optimum input distribution which maximizes 

the upper bound in (11) is derived via (15). It is 

clear that (15) is non linear and should be 

determined numerically. In general, optimal 

input distributions are different for each A (peak 

amplitude limit), σ2 (variance of noise) and h. So 

for a given A/σ, h and ρ, optimal input 

distribution is determined numerically. By 

considering h = 1, A = 1 and σ=1 amplitude of 

mass points for, ρ= 10 and ρ = 2.5 are presented 

in Tables I and II respectively.  

In coherent case by applying h = 1, to (15) we 

compare our derived upper bound with bounds 

which are derived in [4]. For a given A/σ and ρ, 

amplitude of mass points are computed for several 

K (number of mass points), and the corresponding 

upper bounds, which are derived from (11), are 

collected in a collection. The optimum number of 

mass points correspond to the upper bound which 

has minimum distance with lower bound. Fig. 1 

illustrates the comparison between our upper 

bound (11) and bounds derived in [4]. At low A/σ, 

our upper bound is showing tighter performance 

than upper bounds which are proposed in [4]. 

Although at high A/σ there is a great gap between 

upper bounds derived from (11) and lower bound 

derived in [4], but our proposed upper bound is 

determined simply. The coherence time, for FSO 

channel is on the order of 1-100 msec [1]. To plot 

figure, we consider the coherence time 1 msec. 

 
TABLE I: OPTIMAL INPUT DISTRIBUTION FOR 

COHERENT CASE 

(15), WHEN h = 1, ρ= 10 AND A/σ = 0dB 

Number of 
mass points 

a0 a1 a2 a3 a4 

K=1 0.9 0.1    

K=2 0.8505 0.0989 0.0505   

K=3 0.8181 0.0975 0.0507 0.0337  

K=4 0.794 0.0964 0.0505 0.0339 0.0253 

 

 

2

2

( - ) ( 1)
- ( 1)

22 2( ( ) - )

0

2 3- ( 1) ( 1) ( )
22 0

2 2( 1) ( 1) .

0

j

j

j

il P K K
B l K P

K
a jl P

j

Kh
lK K P K a lj

j

K
K P K K l a j l

j



  
  

 






   
 



     
 



 

Rezazadeh & Abed Hodtani, A New Upper Bound for Free Space Optical Channel … 

 

4 

TABLE II: OPTIMAL INPUT DISTRIBUTION FOR 

COHERENT CASE 

(15),WHEN h = 1,ρ= 2.5 AND A/σ = 0dB 

Number of 

mass points 
a0 a1 a2 a3 a4 

K=1 0.6 0.4    

K=2 0.4307 0.3386 0.2307   

K=3 0.3409 0.2808 0.2158 0.1626  

K=4 0.2836 0.2398 0.1950 0.1563 0.1253 

 
Fig. 1. Comparison of upper and lower bounds at low A/σ 

when h = 1 and ρ= 10. 

3. An Upper bound for I(X; Y ) and the 

corresponding input distribution 

We want to compute 

( ; ) ( ; ) ( )I X Y I X Y h f h dh   and then 

maximize I(X;Y) over all input distributions. 

First we describe f(h) in terms of hyper-

geometric functions and then continue aiming at 

finding the upper bound. 

Description of f(h) in Terms of Hyper-

geometric Functions 

In FSO channel, the channel state h is the 

product of  ga ha hp, where ga is the deterministic 

path loss, ha is the random attenuation due to 

atmospheric turbulence and well modeled by a 

Gamma-Gamma distribution, and hp is the 

random attenuation due to geometric spread and 

pointing errors [1], [7], [8]. The probability 

density of h i.e., f(h) in [1] and [7] is expressed 

as: 

 
2

2

2

0

2 1

/
0

( ) ( ) ,
( ) a

h a ha a a
h A g

a

h
f h h f h dh

A g






 


 
 (16) 

Where, 

 

2 1
2

2( )
( ) ( ) (2 ),

( ) ( )ah a a af h h K h

 
 

 




 







   (17) 

Where Kα-β(.) is the modified Bessel 

function of the second kind, Г (·) is the gamma 

function, and 1/α and 1/β are the variances of 

small and large scale eddies respectively [1], and 

an expression for ga, γ and A0 is given in [1], [7]. 

A closed form for probability density function of 

h in terms of hyper-geometric functions, was 

computed in [8]. Considering 

( ) (1- ) csc( )s s s    , the probability 

density of h [8,eq. (13)] can be expressed as: 

2
2 1

2 2

0

0

2

2 2

21

0

0

2

2 2

21

0

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( )

( ; 1, 1; )

( ) ( )

( )

( ; 1, 1; )

h

a

a

a

a

a

h h
f h

A g

h

A g

h
F

A g

h

A g

h
F

A g







 
   

 


 

 


     


 

 


     

 
    
  

 

 


    

 

 



     

 (18) 

Where 1F2(a;b,c;z) is a generalized hyper-

geometric function with series representation: 

 

1 2

0

( )
( ; , ; )

( ) ( ) !

k

k

k k k

a z
F a b c z

b c k






 

 

Here (.)k represents the Pochhammer symbol, 

which is defined by 

 

(z)0= 1 and (z)n= z(z+1)(z+2)...(z+n−1)= 

Γ(z+n)/Γ(z). 

We expressed f(h). Now, we can determine 

an upper bound for I(X;Y). 

 

Maximizing the Mutual Information and 

Determining an Expression for the Input 

Distribution 

 

First we compute the following expression, 

then we determine ais, (with considering 

constraints) such that the upper bound of I(X;Y) 

will be maximized. 

( ; ) ( ) ( ) .I X Y A A h f h dh 
2

1 2
 (19) 

We know that [9]: 

 

2 1 2 31
0

1

3 1 2 32

( ; , ; )

( , 1; , , 2; )

1

cK
a

a

c c

h F a a a bh dh

K F a a a a a bK

a





 






 (20) 

Where, 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 5 

1 2
2 3 1 2 1 2 3

0 1 2 3

( ) ( )
( , ; , , ; )

( ) ( ) ( ) !

k

k k

k k k k

a a z
F a a b b b z

b b b k






 (21) 

So we can write: 

 

0 0

( ; ) ( ) ( )

( ) ( ) .
c cK K

I X Y A A h f h dh

A f h dh A h f h dh

  

 



 

2

1 2

2

1 2
 

 

Notice that, the integral of expectation, is 

defined from zero to constant Kc. It means that  

 

0 ch K 
 

We will see the dependence of mass points 

on this parameter (Kc) later. Considering (18) 

and (20), the upper bound for I(X; Y) can be 

expressed as: 

( ; )I X Y A I A I 1 1 2 2    (22)  

where 
2

1 1 1 1[ ]
( ) ( )

a b cI I I I


 
  
    (23) 

And 
2

2 2 2 2[ ]
( ) ( )

a b cI I I I


 
  
    (24) 

Where, 
2

2 2 2

2

0

0
1 2

2 2

32

0

0
1 2

2 2

32

0

( ) ( ) ( )

( ) ( )

( )

( , ; 1, 1, 1; )

( ) ( )

( )

( , ; 1, 1, 1; )

c

a

a
b

c c

a

a
c

c
c

a

K
I

A g

A g
I

K F K
A g

A g
I

K
K F

A g













   




 

 


       




 

 


       



    

 

 


     

 

 


     

1a

 
And 

2

2
2

2 2

2

0

0
2 2

2 2 2

32

0

0
2 2

2 2 2

32

0

( ) ( ) ( )
2

( ) ( )

( )

( , 2; 1, 1, 3; )

2

( ) ( )

( )

( , 2; 1, 1, 3; )

2

c

a

a
b

c
c

a

a
c

c
c

a

K
I

A g

A g
I

K
K F

A g

A g
I

K
K F

A g













   




 

 


       




 

 


       









    


 

 


      



 

 


      



2a

 

and 2F3 has been defined in (21). Now, we 

maximize the upper bound of I(X; Y ) over all 

input distributions and derive an expression for 

the input. 

 

Determining Optimal input Distribution 

which Maximizes Our Upper Bound of I(X; Y ) 
 

We should determine ais such that the upper 

bound in (22), regarding the constraints, becomes 

maximum. We define J as the Lagrangian 

associated with the optimization problem. Again 

similar to previous section, to solve the 

optimization problem, considering constraints
K

i

i

a



0

1
 and 

K

i

i

a li P



0 , we make 

0
i

J

a





. 

For subset of input distribution with K + 1 

equally spaced mass points i.e., xi = il, where,

A
l

K


 we have: 

1 2 1 2( ) ( ).i iJ A I A I a a li P       1 2 1
  

by considering constraints 
K

i

i

a



0

1
 and

K

i

i

a li P



0 , the optimized ais 

which maximize the upper bound of I(X; Y), can 

be expressed as: 

1 2

1
ia

D D



    (25) 

Where, 

2
1 1

2 2 22

( 1) ( 1)
22

2 2( 1) ( 1) ( 1) ,
22 0

j

I
D K I lK K P

KI
K a j l K K l i i l K

j





   

 
       
    

and 



 

Rezazadeh & Abed Hodtani, A New Upper Bound for Free Space Optical Channel … 

 

6 

 

2 1 1

2

( - ) ( 1)
- ( 1)

22 2( ( ) - )

0

2 3- ( 1) ( 1) ( )
22 0

2 2( 1) ( 1) .

0

j

j

j

il P K K
D I l K I P

K
a jl P

j

KI
lK K P K a lj

j

K
K P K K l a j l

j



  
  

 






   
 



     
 

So, the optimal input distribution, which 

maximizes the upper bound of I(X; Y ), has the 

above relation. 

It is clear that, (25) is non linear and depends 

on channel parameters. Notice that neither the 

correct 

Number of mass points (K) nor the values of 

them 

(ai) are known. The equation (25) is non 

linear and depends on the channel parameters. 

We should determine channel parameters, to 

compute ais. But due to complexity of equation 

(25), the numerical 

Calculation have been done just for K = 1. It 

can be seen easily that, when K = 1, ais just 

depend on ρ. So it is clear that they are 

independent on Kc, which is the upper limit of 

integral in computing expectation of I(X; Y |h), 

and other channel parameters. Thus, for K = 1, 

there is no need to know channel parameters. 

When K = 1, ais are determined as a function of 

ρ. By using (25) and (2), we have: 

 

1

1

0

1 0

1

1 1
,

i

i

K P a li a l

a a


 



   


  



  (26) 

 

It is the exact result, given in [1]. Farid and 

Hranilovic have shown that, for K = 1, the 

amplitude of mass points are given by the 

following 

Equation [1]: 

0 1

1 1
[ , ] [ , ].P P



 




 
For K = 1, the amplitude of mass points, for 

coherent and non coherent, are the same and 

determined from (26). 

4. Conclusion 

In this paper, by using a simple mathematical 

inequality, we determined new upper bounds for 

capacity of FSO channel in coherent and non 

coherent cases. For h = 1 we compare our results 

with previous works. At low SNR our upper 

bound shows tighter performance. For non 

coherent case, optimum input distribution 

depends on channel parameters, but for two mass 

points, optimum value of mass points are 

independent of channel parameters and just 

depend on ρ. Our results subsume some of the 

previous ones in special cases. 

 

 

 

References 
[1] A. Farid and S. Hranilovic, “Channel capacity and 

non uniform signalling for free-space optical 

intensity channels,” Selected Areas in 

Communications, IEEE Journal on, vol. 27, no. 9, 

pp. 1553 –1563, December 2009. 

[2] J. G. and Smith, “The information capacity of 

amplitude and variance constrained scalar 

Gaussian channels,” Information and Control, vol. 

18, no. 3, pp. 203 – 219, 1971. 

[3] A. Farid and S. Hranilovic, “Capacity bounds for 

wireless optical intensity channels with Gaussian 

noise,” IEEE Transactions on Information Theory, 

vol. 56, no. 12, pp. 6066 –6077, dec. 2010. 

[4] A. Lapidoth, S. Moser, and M. Wigger, “On the 

capacity of free-space optical intensity channels,” 

in Proc.IEEE Int. Symp. Information Theory, July 

2008, pp. 2419 –2423. 

 

 

 

 

 

 

 
 

[5] A. Garca-Zambrana, C. Castillo-Vzquez, and B. 

Castillo-Vzquez, “On the capacity of fso links over 

gamma-gamma atmospheric turbulence channels 

using ook signaling,” EURASIP Journal on 

Wireless Communications and Networking, 2010. 

 [6] T. M. Cover and J. A. Thomas, Elements of 

Information Theory, 2nd ed. John Wiley & Sons, 2006. 

[7] A. Farid and S. Hranilovic, “Outage capacity 

optimization for free-space optical links with 

pointing errors,” IEEE J. Lightwave Tech, vol. 25, 

no. 7, pp. 1702 –1710, July 2007. 

[8] H. Sandalidis, T. Tsiftsis, and G. Karagiannidis, 

“Optical wireless communications with 

heterodyne detection over turbulence channels 

with pointing errors,” Journal of Lightwave 

Technology, vol. 27, no. 20, pp. 4440 – 4445, 

Oct.15, 2009. 

[9] I. S. Gradshteyn and I. M. Ryzhik, Table of 

Integrals, Series, and Products, 7th ed. Academic 

Press, 2007. 

 

 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 

 

7 

* Corresponding Author 

Achieving Better Performance of S-MMA Algorithm in 

the OFDM Modulation 

Saeed Ghazi-Maghrebi*
 
 

Islamic Azad University, Share-e-Rey Branch, Iran 

ghazimaghrebi@ieee.org 
Babak Haji Bagher Naeeni 

IRIB University, Tehran, Iran 

bnaeeni@yahoo.com 
Mojtaba Lotfizad 

Department of Electrical & Computer Engineering, Tarbiat Modares University, Tehran, Iran 

lotfizad@yahoo.com 
 

Received: 12/Sep/2012            Accepted: 11/Mar/2013 

 

Abstract 
Effective algorithms in modern digital communication systems provide a fundamental basis for 

increasing the efficiency of the application networks which are in many cases neither optimized nor very 

close to their practical limits. Equalizations are one of the preferred methods for increasing the 

efficiency of application systems such as orthogonal frequency division multiplexing (OFDM). In this 

paper, we study the possibility of improving the OFDM modulation employing sliced multi-modulus 

algorithm (S-MMA) equalization. We compare applying the least mean square (LMS), multi modulus 

algorithm (MMA) and S-MMA equalizations to the per tone equalization in the OFDM modulation. The 

paper contribution lies in using the S-MMA technique, for weight adaptation, to decreasing the BER in 

the OFDM multicarrier modulation. For more efficiency, it is assumed that the channel impulse 

response is longer than the cyclic prefix (CP) length  and as a result, the system will be more efficient 

but at the expense of the high intersymbol interference (ISI) impairment existing. Both analysis and 

simulations demonstrate better performance of the S-MMA compared to LMS and MMA algorithms, in 

standard channels with additive white Gaussian noise (AWGN) and ISI impairment simultanously. 

Therefore, the S-MMA equalization is a good choice for high speed and real-time applications such as 

OFDM based systems. 

 

Keywords: Cyclic Prefix, Equalization, ISI, LMS, MMA, OFDM, SMMA. 
 

 

1. Introduction 

During recent years, the authors have 

designed different equalizations for different 

modulation schemes [1]. Achieving more 

efficiently orthogonal frequency division 

multiplexing (OFDM) performance, only by 

changing the equalization, is the main idea of 

this paper.  

In the most digital communication systems, 

the inter symbol interference (ISI) occurs due to 

band-limited channels or multipath propagation. 

The channel equalization is one of the techniques 

to decreasing the effect of the ISI [2]. Another 

way for the cost effective handling of the ISI 

comes at the expense of the bandwidth efficiency 

reduction caused by inserting the CP. It is 

apparent that for more efficiently, the OFDM 

modulation that can perform well at short CP 

length is highly desired [3].  

In recent years, because of the severity of 

distortion, the problem of alleviating insufficient-

CP length distortion has received a great deal of 

attention.  Following the early work in [4], where 

the authors have shorten the channel to reduce 

the complexity of maximum likelihood sequence 

estimation (MLSE), the authors in [5] propose a 

time domain equalizer (TEQ) for digital 

subscriber line (DSL) systems. In [6], the 

insufficient-CP distortion was eliminated by a 

precoder at the transmitter. Moreover, the 

precoder essentially performs a matrix inversion 

and thus is prohibitively complex. The work in 

[6] did not fully take into account the inherent 

receiver noise and the transmitter power 

constraint. For some channels, this precoder will 

result in increasing transmitter power budget and 

scaling down the precoder coefficients which 

causes a significant data rate loss. The 

complexity is then significantly reduced as 

reported in [5] but the implementation is only 

applicable for systems with zero CP and still 

suffers from the power increment problem [7]. 



 

Ghazi-Maghrebi, Haji Bagher Naeeni & Lotfizad, Achieving Better Performance of S-MMA … 

 

8 

 

 

 

S/P 

 

 

Q 

A 

M 

 

Add 

cyclic 

prefix . 
. 
. 
. 
. 

 

I

F

F

T 

. 

. 

. 

. 

. 

 

 

 

A/D 

 

 

D/A 

The purpose of an equalization algorithm, in 

single carrier systms, is to make the equalizer 

match to the inverse of the communication 

channel impulse response, thus opening the eye 

of the communication system and allowing for a 

correct retrieval of the transmitted symbols [8]. 

However, in the multicarrier systems a TEQ is 

usd in transmitter for shortening the channel 

impulse response length and also a per-tone 

equalizer is used in the receiver for decreasing 

the ISI. There are many different algorithms for 

updating the tap values of equalizers. The 

constant modulus algorithm (CMA) [9, 10] is 

one of these algorithms that have been used for 

quadrature amplitude modulation (QAM) signals. 

In order to improve its performance, the authors 

have been proposed the multi-modulus algorithm 

(MMA) [8]. In this work, we propose a new 

MMA algorithm i.e. sliced multi-modulus 

algorithm (S-MMA) equalization [8], for 

updating per-tone equalization [11] taps in the 

OFDM multicarrier modulation. For more 

qualifying the proposed S-MMA algorithm 

performance, we test the algorithm with Stanford 

University Interim (SUI) standard channels in the 

presence of the ISI, due to an insufficient CP 

length, and additive white Gaussian noise 

(AWGN) simultaneously. 

The paper is organized as follows. The 

OFDM modulation description is explained in 

Section 2 and analysis of the per-tone 

equalization in the OFDM modulation is 

explained in Section 3 and analysis of the CP 

insertion in OFDM modulation is described in 

Section 4 and S-MMA equalization performance 

analysis is described in Section 5. In Sections 6 

and 7, simulation results and conclusions are 

presented respectively. 

2. OFDM modulation description 

The basic idea of the OFDM is spliting up a 

high rate data stream into a number of parallel 

lower rate data sub-streams, which are 

transmitted simultaneously over different sub-

carriers [13]. The OFDM modulation is resistant 

to multipath interference and frequency selective 

fading. The OFDM systems also have a 

relatively simple receiver structure compared to 

single carrier transmission in frequency selective 

fading channels [4]. However, the OFDM 

utilizes the spectrum much more efficiently by 

spacing the channels much closer together [14]. 

The OFDM has good performances of anti-ISI, 

anti-decline, resisting interfere of narrow-band, 

fitting for asymmetrical transmission and 

robustness to multipath fading [15]. Because of 

these advantages, the OFDM has been adopted in 

both wireless and wired applications in recent 

years [16]. 

In the block diagram of an OFDM transmitter, 

as shown in Fig. 1, a sampled analog signal 

passes through an analog to digital (A/D) 

converter and then the resulting bitstream is 

divided into a number of parallel blocks with a 

serial to parallel (S/P) converter. These blocks 

are the input of the constellation mapper, which 

is basically representing segments of bits as 

spectral coefficients.  

 

 

 

 

 

 

 

Fig.1. OFDM transmitter block diagram 

The resulting sub-channels are orthogonal to 

each other as long as the CP is longer than the 

channel impulse response. Otherwise, the system 

will suffer from insufficient-CP length distortion, 

which is composed of inter carrier interference 

(ICI) and the ISI [7, 16].  

The channel is modeled so that it adds two 

forms of interference. i.e. ISI and ICI 

impairments. It is illustrated that not only ISI but 

also ICI is caused by the collapse of 

orthogonality in the received signal. As a result, 

both the channel identification and equalization 

become difficult, and the communication 

performance cannot be guaranteed [17]. The ISI 

and ICI impairments is removed by turning the 

linear convolution into a cyclic convolution via 

insertion a CP at the beginning of each input data 

stream blocks [18] - [19].  

In the receiver, as shown in Fig. 2, the 

received signal is again broken up into parallel 

blocks. The CPs are removed and then the FFT 

of each block is calculated. The equalizer 

attempts to reduce the ISI in the received signal 

and maximizes the SNR at the input of the 

decision circuit. A constellation demapper 

converts the complex values to a bit stream. 

Due to the additive noise, the received 

constellation points deviate from their location 

in the original constellation. For recovering the 

received bitstream, a nearest-neighbor 

approximation method is computed at each 

point. The blocks of bits are concatenated back 

into a single bitstream and then undergoes a 

D/A convertor and finally back to a sampled 

analog signal. 

http://cnx.rice.edu/content/m11723/latest
http://cnx.rice.edu/content/m11722/latest


 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 9 

 
 

 

P/S 

 

 

F

E

Q 

 
 

Remove
cyclic 

prefix 

. 

. 

. 

. 

. 

 

 
 

F
F

T 

 
 

 

A/D 

 

 

 

 

Dec. 
. 
. 
. 
. 
. 

 

. 

. 

. 

. 

. 

 

3. Analysis of the per tone 

equalization in the OFDM modulation 

With the aid of inverse fast Fourier transform 

(IFFT) algorithm and appending a CP between 

the individual blocks at the transmitter and using 

the fast Fourier transform (FFT) algorithm at the 

receiver, a broadband frequency-selective 

channel is converted into a set of parallel flat 

fading sub-channels or tones [15].  

Multicarrier modulation is a powerful 

technique for providing broadband wireline and 

wireless communication to customer premises. In 

wireline applications, multicarrier systems are 

are used in discrete multitone (DMT) modulation 

in different variant DSL. Multicarrier is also used 

in wireless applications such as  OFDM defined 

in IEEE802.11a  and HIPERLAN2 standards. 

 

 

 

 

 

 

Fig.2. OFDM receiver block diagram 

Practical systems use a relatively short cyclic 

prefix and employ equalization to compensate 

for the channel effects. The OFDM receiver 

consists of a real T-tap TEQ, as shown in Fig. 3, 

for shortening channel impulse response which 

its outputs are fed to an FFT block that is 

followed by a complex 1-tap frequency domain 

equalizer (FEQ) to compensate for the channel 

amplitude and phase effects. In wireless 

applications, the goal of TEQ is bit error rate 

minimization and fast adaptation to non-

stationary environment are desired. Per tone 

equalizer is proposed in 2001 which the structure 

of a T-tap TEQ in combination with a complex 

1-tap FEQ per tone is modified into a structure 

with a complex T-tap FEQ per tone. As a result, 

each tone is equalized separately and this leads to 

a higher bit rate and reduced sensitivity to the 

synchronization delay[16].  

A crucial aspect in this process is that the 

channel impulse response length may be shorter 

or longer than the CP length. In the former, the 

ISI is removed and only the FEQ is required, 

whereas for the latter both the frequency and 

TEQ are needed [11]. The received symbol is the 

convolution of the transmitted symbol and the 

channel impulse response h=[h0,…, hL], plus 

additive noise. 

For inserting the CP to each symbol, we use 

the P matrix as bellow 
















N
I

I0
P c

|

                                  (1) 

which I and 0 matrices are „identity‟ and 

„zero‟ matrices respectively and their indexes 

show the size of the matrices [11]. Considering 

three succssesive OFDM symbols 
)(

:1

c

N
X  for time

1,,1  kkkC , the received signal will be [11] 

) 

nxH

OO

OO

OO

POO

OPO

OOP

O

h00

0

h0

00h

O

n

X

Y























































































































ˆ.

n

y

1)s(k

2T.

ˆ

1)(

:1

)(

:1

1)(

:1

)2()1(

1).s(k

2T.





















kSـ

Kـ
N

K

N

Kـ

N

NFFT

NFFT

NFFT

skـ

n

X

X

X

I

I

I

y





 

(2) 

where INFFT is an N×N IFFT matrix that 

modulates the input symbols. Also O(1) and O(2) 

are zero matrices of size  

(N+T-1)×(N+ν-T+1-L+ν) and (N+T-

1)×(N+ν-K)  respectively.
],...,...,[

k0 Lـ
hhhh

 is 

the channel impulse response in reverse order, yi  

and ni for i= 1, 2,…, N, are 

 

 

 

 



 

Ghazi-Maghrebi, Haji Bagher Naeeni & Lotfizad, Achieving Better Performance of S-MMA … 

 

10 

 

Fig. 3. T-tap TEQ equalizer for OFDM receiver 

 

the ith component of the received and noise 

vectors respectively. The conventional receiver 

with TEQ is based on the following operation  

 

 















FFT

NFFT

N

k

N

k

F

D

O

D

Z

Z

1

1

)(

)(

)..(.

0

.

.

.

0.

0

0...O

.

.

.

WY





















































 

(3) 

where Y matrix is a Toeplitz matrix and is 

defined as  

 

( 

...

.

.

.

...

...

1T).1(1).1().1(

3.1.2.

2..1.

TNsksـksk

Tskskـsk

Tsksksk

yyy

yyy

yyy





































Y

 

(4) 

The main idea of per tone equalization is 

transferring TEQ from time domain to frequency 

domain which is performed the following 

permutation for each  tone i 

 
 (5) 

In this work, the per-tone equalizer, which is 

shown in Fig. 4, is used in the OFDM receiver 

part and instead of the well-known algorithms 

such as the LMS, the MMA and S-MMA 

algorithms are used for updating the per-tone 

equalizer taps. The CP block through a serial to 

parallel convertor, as shown in Fig. 4, is removed. 

Each CP bit and the corresponding bit are 

compared for determining the channel effects on 

the data bit stream [11, 16]. In this figure Δ=N+v 

is the OFDM symbol length, where N is symbol 

size and v is the CP length. Also Vi,l is the 

coefficient of the per-tone equalizer and finally 

↓N+v denotes down-sampling with period of 

N+v samples. The modified per tone equalizer is 

defined as 
T

Tioi
],...,[

1,,i 
V

 and therefore Wi 

coefficients will be computed as 

 


i

i

TFFT

NFFTiNFFTii

k

i DFrowFrowDZ

W

WYWY .)..().)((.)( 

 

 
0 

 

 

 

 

 

 

 
N-point 

FFT 

 
 
 

 

0 

 

∆ 

 
 
 

∆ 

∆ 

∆ ∆ ∆ 

N+ ν 

N+ ν 

N 

yℓ 

0 

w0 w1 w2 wT-1 

T 

N+ν 

N/2 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 11 





































































































































1,

1,

,
1-

1

1

1,

1,

,
-1

1

)1)(1(1

1,

1,

,

.

.

.

10..0

...

0..

10

001

.

.

.

100

.

.

10

1

.

.

.

Tـi

i

oi

i

i

Tـi

i

oi

i

Tii

Tـi

i

oi

w

w

w

α

α

W

W

W

α

αα

v

v

v

















 
(6) 

The Eq. (6) is written as recursive form as 

bellow 

(7) 
titi

iـ
ti w ,,

1

1, .    
For tone i=1,…,N     with t = 0,…,T-2   

(8) 
(1/N)j2

1,1,
, 


 ew

TiTi

 

]...[ 0,1, iTـi

T

i www
 

 

 

 

 
Fig. 4. Per-tone equalizer for OFDM receiver 

 

4. Analysis of the CP Insertion in the 

OFDM Modulation 

For considering the effects of the CP 

insertion, first we define the OFDM symbol in 

the baseband as  

][][
12/

2/

2

, nseanx
N

Ni

in
N

j

lil 








               (9) 

whereai,l denotes the complex symbol 

modulating of the ith subcarrier. The s[n] is a 

time rectangular window function in the interval 

[0,M], where M is the OFDM symbol period, 

and N is the number of subcarriers. 

After the CP insertion with the length of Ng, 

the lth discrete time domain of the OFDM 

symbol 
][~ nxl  will be   

][][~
12/

2/

)(
2

, nseanx
N

Ni

Nni
N

j

lil
g











           (10) 

The channel impulse response with the 

channel tap weight coefficients hl and the 

symbol period T is  

.





L

l

l
N

lT
thth

0

)()(

                              (11) 

Therefore, the output of the OFDM 

transmitter will be  

)()(
)(

212/

2/

, mTtseatx
mTt

T

i
j

m

N

Ni

mi 






 
     (12) 

The received baseband signal at the input of 

the OFDM receiver will be as the linear 

convolution of the transmitted signal and the 

channel impulse response as bellow 

)(

)(

)(
212/

2/

,

0

0

)(*)()(

mT
N

lT
t

N

lT
t

seah

xhtxthtu

mT
N

lT
t

T

i
j

m

N

Ni

mi

L

l

l

L

l

l











 









   (13) 

The k'th subcarrier of the m'th demodulated 

OFDM symbol will be 

 

Fig. 5. Insertion of GI 

 

 

 

 

 
N-point 

FFT 
 
 
 

0 
∆ 

∆ 
N+ν 

V1,0 

∆ ∆ 

N+ν N+ν 

N/2 
 
 
 

 
 
 

V1,2 V1,1 V1,T-1 

0 
VN,0 

2 
VN,T-1 

2 
VN,1 

2 
VN,2 

2 

+ 

N+ν 

ـ

∆ 

 
 
 

N 

N+ν 

+ 

Ng 

N 

Cyclic  

prefix 
OFDM Symbol 

Samples 



 

Ghazi-Maghrebi, Haji Bagher Naeeni & Lotfizad, Achieving Better Performance of S-MMA … 

 

12 

 

m)T)(m'
N

lT

N

nT
(

N

s

e

eahu

Nkimmnki
N

jN

n

m

N

Ni

N

li
j

mi

L

l

lmk





















 

))')('()'((
21

0

12/

2/

2

,

0

'',

1





   (14) 

 

It was proved [12] that the Eq. (14) will be 

rewriten as  

))('(
21

0

12/

2/ 0

2

1',

)'(
2112/

'
2/ 0

2

',

','

'2

0

','

1

1

)1(

Nnki
N

jl

n

N

Ni

L

l

N

li
j

lmi

nki
N

jN

ln

N

ki
Ni

L

l

N

li
j

lmi

mk
N

lk
jL

l

lmk

eeha
N

eeha
N

a
N

l
ehu







 












 







 

 















  (15) 

In Eq. (15), the first term is the desired data, the 

second term represents the ICI caused by the other 

subcarriers belonging to the current OFDM symbol. 

Finally, the third term represents the ISI caused by 

the subcarriers of the previous OFDM symbol [12]. 

The ISI can be avoided by the insertion of a 

guard interval (GI) at the beginning of each 

OFDM symbol. The GI, with Ng length, should 

be longer than the maximum possible of the 

channel impulse response length. In order to 

avoid ICI, the last part of the OFDM symbol can 

be added to the beginning of the symbol, as 

shown in Fig. 5. This part is called the CP. After 

inserting the CP, the Eq. (15) will change to 

','

'2

0

',' mk
N

lk
jL

l

lmk aehu







              (16) 

which contains only the desired symbol, free of 

the ICI and ISI impairments. Therefore, by 

inserting a GI longer than the maximum delay 

spread of the channel and by cyclically extending 

the OFDM symbol over the GI, both the ICI and 

ISI eliminated completely and the channel appears 

to be flat fading for each subcarrier [11, 12].  

5. S-MMA Equalization Performance 

Analysis 

The relation between the transmitted symbol 

x(m) and the received signal u(m), as shown in 

Fig. 6, will be 

)()()(
1

0

mnimxhmu
L

i

i 


          (17) 

where hi is the ith tap of the channel impulse 

response with length L and n denotes the AWGN 

noise.  

 

 

 

 

 

 

 

Fig.6 .Blind equalizer block diagram 

Least mean square (LMS) is a well-known 

algorithm for updating different adaptive filter. 

For the LMS algorithm, the estimation error is 

expressed as 

        (18) 

where )(ˆ mw is the estimation of the tap-weight 

vector at iteration m and H denotes the Hermitian 

operator. In this case, the LMS cost function will 

be 

  
 )()()()(

)()()(Re2 *

min

mmmmE

mmmeEJJ

o

HH

o

H

oo

εuuε

uε





(19) 

where min
J

is the minimum mean-square error 

of Wiener filter and 
)(moε is the zero-order 

weight-error vector of the LMS filter [20]. The 

LMS tap updating algorithm is 

)()(.)()1( * memmm uww 
                           (20) 

where w(m) is the tap-weight vector at iteration 

m and μ is the step size and u(m) is the received 

signal vector or the LMS input vector [20].  

The CMA is a special case of Godard‟s family 

of blind equalization algorithms [21]. Its cost 

function is only amplitude-dependent, and 

knowledge about the signal constellation is 

dismissed. For signal constellation which all 

signal points have the same magnitude, the 

performance of CMA is reasonable [8]. Many 

MMA have been presented in the past to 

overcome the misadjustment caused by the CMA. 

Some of these MMA schemes, specifically for 

QAM constellations, fix the phase offset error 

without needing any rotator at the end of the 

equalizer stage. The MMA minimizes the 

dispersion of real and imaginary parts, yR and yI, 

of y(n) separately [22]. The MMA, unlike the 

CMA, ignores the cross term yRyI between the in-

phase and quadrature components. As a result, the 

MMA cost function is not a two-dimensional cost 

function and it is pseudo two-dimensional because 

it contains yR(n) and yI(n) only [8]. The MMA 

cost function and its parameters are given as  

    2222 )()( IIRR RmyRmyEJ    (21) 

   2

4

2

4 ][
,

][

I

I
I

R

R
R

xE

xE
R

xE

xE
R 

                (22) 

)()(ˆ)()()()( mmmxmymxme H uw

OFDM 

Mod. 
Equalizer 

W(z) 

Decision 

Device 

Blind 

algorithm 

u(m) y(m) 

 

a (m) 
n(m) 

Channel 

H(z) 

x(m) 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 13 

which yR(m) and yI(m) are the real and 

imaginary parts of y(m). The corresponding 

MMA tap updating algorithm is 

 
 

)(.
)()(.

)()((
)()1(

2

2

m
myRmyj

myRmy
mm

III

RRR 
















 uww 

   (23) 

In this paper, we propose the S-MMA for 

using in the OFDM applications which 

employing QAM signals. The S-MMA cost 

function satisfies a number of desirable 

properties, including multiple-modulus, 

symmetry, and (almost) uniformity. The S-MMA 

cost function exhibits a much lower 

misadjustment compared to CMA and MMA [8]. 

The proposed S-MMA algorithm is devised by 

embedding the sliced symbols in the dispersion 

constants [8]. The S-MMA cost function is 

 
 

2

2

2
2

)(ˆ)(

)(ˆ)(




















I

c

II

R

c

RR

Rmxmy

Rmxmy
EJ

  (24) 

where )(ˆ mx is the predicted symbol and c is a 

positive constant. The S-MMA tap updating is 

 
 

)(.
)()(ˆ)(.

)()(ˆ)((

)()1(

2

2

m
myRmxmyj

myRmxmy

mm

II

c

II

RR

c

RR 






















u

ww



     (25) 

The S-MMA update mechanism is aware of 

the dispersion of y(n) away from the closest 

symbol )(ˆ mx  in some statistical sense. The 

performance of an equalization algorithm maybe 

measured as the bit error rate (BER), the 

convergence rate and the residual ISI[8]. In this 

paper, the performance is measured by BER 

criteria. 

6. Simulation Results 

In this work, three tap updating algorithms 

(well-known LMS, MMA and S-MMA) are 

applied to the OFDM multicarrier modulation. 

For comparison, six standard channels, SUI[1] 

through SUI[6], with length of L=18 taps and 

AWGN (with mean=0) noise are employed. For 

transmission efficiency, the CP length was set to 

be smaller than the channel length i.d. v=16, and 

hence the system had ISI impairment and 

AWGN noise simultaneously. 

For each experiment, the BER is obtained 

from the ensemble average of 1000 independent 

Monte Carlo experiments. Because the results for 

SUI[1] through SUI[6] channels are almost the 

same, we have shown the results only for SUI[1] 

in Fig. 7. It is clear that the S-MMA has a much 

lower BER than the LMS and MMA algorithms, 

especially for high SNR's.  

 
Fig.7. The effects of S-MMA on SUI[1] channel with 

AWGN noise 

7. Conclusions 

In this work, the S-MMA adaptive 

equalization was introduced for OFDM 

applications. The performance of the MMA and 

S-MMA was contrasted against the well-known 

LMS equalization in per-tone equalizer for SUI 

channels with the AWGN noise. For transmission 

efficiency, the length of the CP was set to be 

smaller than the channel length, and hence the 

system had simultaneous ISI impairment. Both 

analysis and simulations results show the gains 

and clearly verify that the S-MMA equalization, 

with an insufficient length of CP, has a lower BER 

than the most well-known LMS across all channel 

SNR‟s. Thus, the S-MMA equalization is a 

suitable candidate to replace for the LMS 

equalization in the OFDM modulation. 

 

 

 

 

 

References 
[1] C. Chong-Yong, F. Chin-Chun, C. Chii-Horng and 

C. Ching-Yung, “Blind Equalization and System 

Identification”, Springer, 2006. 

[2] G. Kurt, Karabulut, C. Sahin, “Channel estimation 

error compensation in OFDM based multi-carrier 

systems”, Waveform Diversity & Digital Radar 

Conference, IET 2008, pp. 1 –4. 

 

 

 

 
 

[3] S. Ghazi-Maghrebi, M. Lotfizad, and M. Ghanbari, 

“Comparison performance of different 

constellations with FHT in ADSL system based on 

DMT”, IEEE, DSP2007, Cardiff, UK, 2007, 

pp.335-338. 

[4] D.D. Falconer, and F.R. Magee, “Adaptive 

channel memory truncation for maximum 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4772172
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4772172


 

Ghazi-Maghrebi, Haji Bagher Naeeni & Lotfizad, Achieving Better Performance of S-MMA … 

 

14 

likelihood sequence estimation”, Bell System 

Technology Journal, 1973, pp. 1541–1562. 

[5] J.S. Chow, and J.M. Cioffi, “A cost-effective 

maximum likelihood receiver for multicarrier 

systems”, Proc, IEEE international Conference on 

Communications, IEEE ICC 1992, Chicago, IL, 

USA, 1992, pp.948–952.  

[6] K.W. Cheong, and J. M. Cioffi, “Precoder for 

DMT with insufficient cyclic prefix”, IEEE 

international Conference on Communications. 

IEEE ICC 1998, Atlanta, Georgia, USA, 1998, pp. 

339–343. 

[7] M. Malkin, C.S. Hwang, and J.M. Cioffi, 

“Transmitter Precoding for Insufficient-Cyclic-

Prefix Distortion in Multicarrier Systems”, IEEE 

Vehicular Technology Conference 2008, Marina 

Bay, Singapore, 2008, pp.1142 – 1146. 

[8] S. Abrar  and R. A. Axford, “Sliced Multi- 

modulus Blind Equalization Algorithm”,  ETRI 

Journal, Vol. 27, No.3, Jun 2005, pp. 257-266.  

[9] C.R. Johnson, P. Schniter, T.J. Endres, J.D. Behm, 

and D.R. Brown, “Blind equalization Using the 

constant Modulus Criterion”, A review, Proceeding 

of IEEE Vol. 86, Oct. 1998, pp. 1927-1950. 

[10] J.R. Treichler and B.G. Agee, “A New Approach 

to Multipath Correction of constant Modulus 

Signals,” IEEE Transaction Acoust. Speech Signal 

Processing, vol. ASSP-31, 1983, pp. 459–471.  

[11] K. V. Acker, M. Moonen, and T. Pollet, “Per-

Tone equalization for DMT-based systems”, IEEE 

Transactions on Communications, Vol. 49, No. 1, 

2001, pp. 109-119.  

[12] S. Ghazi-Maghrebi, H. Motahayeri, K. 

Avanesian, “A New Mathematical Analysis of the 

Cyclic Prefix Effect On Removing ISI and ICI in 

DMT Systems”, IEEE TENCON international 

conference, 2011, pp. 626-630. 

[13] J. Sivadasan, “Effectiveness of Orthogonal 

Frequency Division Multiplexing Technique for 

Wireless Telecommunication Systems”, 

International Conference on Information and 

Communication Technology in Electrical Sciences 

(ICTES 2007),  IET-UK,  2007,  pp.758-761.  

[14] H. Hu, H. H. Chen, K. Guo, and M. Weckerle, 

“Cross-layer adaptive resource allocation for OFDM 

systems with hybrid smart antennas”,  IET 

Communications, Vol. 1, No. 5, 2007, pp. 831 – 837. 

[15] Y. Wei, Y. Weisheng, Y. Zhenhua, Y. Ziqiao, 

and H. Jing, “Implement of signal transmitter for 

OFDM in underwater acoustic communication 

based on DDWS”, IET Conference on Wireless, 

Mobile and Sensor Networks, (CCWMSN07).  

Dec. 2007, pp. 1005 – 1009.  

[16] S. S. C. Rezaei, M. Pakravan, per tone 

equalization analysis in DMT based systems, 

IEEE, 2004, pp. 530-542 

[17] L. Sun, A. Sano, W. Sun, and A. 

Kajiwara, ”Channel identification and interference 

compensation for OFDM system in long multipath 

environment”, Signal Processin. 2009; Vol.89, 

2009, pp. 1589-1601. 

[18]  S. Ghazi-Maghrebi, M. Lotfizad, and M. 

Ghanbari, “The better performance of the new 

non-rectangular QAM with FHT in ADSL system 

based on DMT without cyclic prefix”, IEEE, 

DSP2007, Cardiff, UK, 2007,  pp. 335-338. 

[19] Y.J. Kou, W.S. Lu, and A. Antoniou, “A new 

peak-to-average power-ratio reduction algorithm 

for OFDM systems via constellation extension”, 

IEEE Transactions on Wireless Communications, 

2007, pp. 6. 

[20] S. Haykin, Communication systems, John Wiley 

& Sons, Inc., 4th Edition, 2001. 

[21] D.N. Godard, “Self-recovering equalization and 

carrier tracking in two-dimensional data 

communications systems,” IEEE Trans. 

Communication, vol. COM-28, Nov. 1980, pp. 

1867–1875. 

[22]  J. Yang, J.J. Werner, and G.A. Dumont, “The 

Multi-modulus Blind Equalization and its 

Generalized Algorithms,” IEEE J. Selected Areas 

Communication, Vol. 20, No. 5, Jun. 2002,  pp. 

997–1015. 

 

 

 

 

 

 

 

 

 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4525555
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4105970
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4768671
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4768671
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V18-4VT1FXV-1&_user=10&_coverDate=08%2F31%2F2009&_alid=947173003&_rdoc=37&_fmt=high&_orig=search&_cdi=5668&_docanchor=&view=c&_ct=84&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=f0aed61010ed468d0a6024164c21b4bd
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V18-4VT1FXV-1&_user=10&_coverDate=08%2F31%2F2009&_alid=947173003&_rdoc=37&_fmt=high&_orig=search&_cdi=5668&_docanchor=&view=c&_ct=84&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=f0aed61010ed468d0a6024164c21b4bd
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V18-4VT1FXV-1&_user=10&_coverDate=08%2F31%2F2009&_alid=947173003&_rdoc=37&_fmt=high&_orig=search&_cdi=5668&_docanchor=&view=c&_ct=84&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=f0aed61010ed468d0a6024164c21b4bd
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPerson?id=10895047
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPerson?id=10895049
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPerson?id=10895051
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPublication?id=10072816
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPublication?id=10072816
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPublication?id=10072816


 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 

 

15 

* Corresponding Author 

A Conflict Resolution Approach using 

Prioritization Strategy 

Hojjat Emami* 
Department of Computer Engineering, Islamic Azad University, Miandoab Branch, Iran 

hojjatemami@yahoo.com 

Kamyar Narimanifar 
Department of Civil Engineering, Islamic Azad University, Miandoab Branch, Iran 

kamyar1360@yahoo.com 
 

Received: 27/Sep/2012            Accepted: 16/Dec/2012 

 

Abstract 
In current air traffic control system and especially in free flight method, the resolution of conflicts 

between different aircrafts is a critical problem. In recent years, conflict detection and resolution 

problem has been an active and hot research topic in the aviation industry. In this paper, we mapped the 

aircrafts’ conflict resolution process to graph coloring problem, then we used a prioritization method to 

solve this problem. Valid and optimal solutions for corresponding graph are equivalent to free conflict 

flight plans for aircrafts in airspace. The proposed prioritization method is based on some score 

allocation metrics. After score allocation process, how much the score of an aircraft be higher its priority 

will be higher and vice versa how much the score of an aircraft be lower its priority will be lower. We 

implemented and tested our proposed method by different test cases and test results indicate high 

efficiency of this method. 

 

Keywords: Air Traffic Control, Free Flight, Conflict Detection and Resolution, Graph Coloring 

Problem, Prioritization Method. 
 

 

1. Introduction 

Air traffic management is a very difficult, 

dynamic and complex problem [1]. Nowadays, 

the airspace management system has high flight 

capacity, therefore control of existing enormous 

volume of flights is very difficult [2, 3]. Current 

air transportation systems are faced with many 

problems. The aviation industry introduced a 

new approach called free flight for solving 

various problems in current air traffic 

management [4, 5]. Free flight or user preferred 

trajectories, is an innovative method introduced 

to improve the safety and efficiency of the 

national airspace system. Currently free flight 

method is technically practical because exist its 

required technologies. Free flight method has 

many advantages such as less fuel consumption, 

reduction of flight times, flights’ delays and 

reduction the workload of air traffic controllers. 

Despite many advantages of this method, free 

flight imposes some problems for air traffic 

management system that one of the important of 

them is the conflict problem between different 

aircrafts’ flights [6, 7]. Conflict detection and 

resolution is one of the major and fundamental 

challenges in safe, efficient and reliable air 

traffic management system. In this paper, 

conflict is defined as: ―the event in which two or 

more than two aircrafts experience a loss of 

minimum separation from each other‖ [8].  Also 

the conflict detection process is defined as: ―the 

process of deciding when conflict between 

aircrafts will occur‖, and conflict resolution 

process is considered as: ―specifying what action 

and how should be to resolve conflicts‖ [8]. 

Annually Conflicts between different aircrafts 

causes many losses for aviation industry. 

Generally many researchers have been 

presented various models to automate conflict 

detection and resolution system (e.g. in [9, 10, 

11]). In reference [8] Kuchar and Yang provided 

a review of some of proposed conflict detection 

and resolution modeling methods. Also in 

reference [12] we presented an overview of a 

number of multi-agent conflict detection and 

resolution methods. 

This paper presented a conflict resolution 

methodology for aircrafts’ flights in airspace. 

This method has high efficiency, flexibility and 

reliability. In this paper we used concept of 

graph coloring problem [13]. In fact we mapped 

congestion area to a corresponding state space 

graph. Each vertex of this graph indicates an 

aircraft in airspace and each edge of this graph 

indicates a predicted conflict between two 

aircrafts in future times. Also in this paper we 

proposed a new prioritization method for solving 

mailto:Kamyar1360@yahoo.com


 

Emami & Narimanfar, A Conflict Resolution Approach using Prioritization 20 Strategy 

 

16 

conflicts problem. By using prioritization 

algorithm we make a priority list for aircrafts that 

exist in congestion area. In our proposed model, 

after mapping congestion area to a corresponding 

graph we used this priority order for coloring this 

graph (i.e. solving conflicts between aircrafts). A 

valid and optimal coloring for this graph is equal 

to a new free conflict flight plan. The simulation 

results indicate this algorithm has high efficiency 

and it is sound. 

The organization of this paper is as follows. In 

Section 2, graph coloring problem is described. 

Section 3 describes prioritization method. In 

Section 4 we explain our proposed model. Section 

5 discusses experiments and simulation results and 

finally in Section 6 we make some conclusion and 

present an outlook of future works. 

2. Graph coloring Problem 

Graph coloring problem (GCP) [13, 14] 

involves labeling each vertex of given graph G, 

so that no two adjacent vertices have the same 

colors. One of the goals of graph coloring 

problem is to minimize the number of colors 

used in the coloring process. Graph coloring 

problem is a practical method and is a NP-hard 

problem [15]. Graph coloring problem arises 

naturally in many real world application fields 

such as register allocation, frequency assignment, 

time scheduling, and circuit board testing. 

Assume an undirected graph G = (V, E) with 

a set of vertices V, and a set of edges E, a k-

coloring of G include assigning a color to each 

vertex of V such that no two adjacent vertices 

have the same color. In other word, a k-coloring 

of G = (V, E) can be stated as a function C from 

V to a set of colors K such that |K|=k and C (u) 

≠ C (v) whenever E contain an edge (u, v) for 

any two vertices u and v of V. The minimal 

number of colors k for which a k-coloring exists 

is called the chromatic number of G. Optimal 

coloring is one that uses exactly the predefined 

chromatic number for that graph. 

For example assume we have a graph G as 

illustrated in fig. 1.a. This graph has four nodes 

(i.e., V = 4) and four edges (i.e., E = 4). The 

chromatic number for this graph is equal to two 

(i.e., K = 2). For coloring this graph we use two 

colors (red and green). The colored graph 

indicated in fig. 1.b. 

 

 

 

 

 

 

(a) (b) 
 

Fig. 1 A simple example of graph coloring process.  

(a) graph G before coloring; (b) graph G after coloring. 

 

There are many methods presented for Graph 

Coloring Problem such as: evolutionary methods 

(e.g. genetic algorithm [16, 17]), local search 

algorithms (e.g. Tabu search [18] or simulated 

annealing [19] and etc). In this paper to solve the 

graph coloring problem we used a prioritization 

method described in next section. 

3. Prioritization Method 

In this section, we introduce a prioritization 

method to solve conflicts between different 

aircrafts. We assign a (unique) priority for each 

aircraft based on its scores. The scores of each 

aircraft are specified based on situation of that 

aircraft in airspace. So that in priority allocation 

process if an aircraft has higher score, its priority 

will be higher and vice versa if total score of an 

aircraft be lower its priority will be lower. 

We used simple score allocation criterions for 

each aircraft. These criterions are as follows: 

 The score of an aircraft will increase if it 

had least distance to destination. 

 This criterion is defined for prevention of 

congestion in airspace. 

 The score of an aircraft will increase if it 

flies in the satisfactory weather condition. 

 This criterion defined to consider 

environment conditions. 

 The score of an aircraft will increase if it 

had higher speed (under valid speed). 

 This criterion causes the traffic rate 

increases. 

 The score of an aircraft increases, when 

the aircraft flies at higher altitude (under 

valid altitude). 

 When aircrafts fly on higher altitude their 

fuel consumption decreases. 

1 2 

3 4 

1 2 

3 4 

after coloring 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 17 

 The score of an aircraft increases, when its 

distance (horizontal or vertical) from the 

other aircrafts is higher. 

In conflict resolution process, the aircraft 

with a lower priority must change its original 

flight path in order to prevent of occurring 

conflicts. In fact, we use a hierarchy method to 

resolve conflicts. Perhaps, this prioritization 

method seems very similar to the greedy 

method but this method is general and 

reasonable. For example, when an aircraft is 

closer to its destination, and had appropriate 

speed and minimum deviation from the 

mainstream, it must be serviced in first and then 

other aircrafts must be serviced. Although, in 

this case starvation state occurring is not 

unexpected but we can avoid this problem by 

allocating scores to the aircrafts that for long 

time are on the flight paths, so these aircrafts 

also service immediately in least possible time. 

It is worthwhile to mention that we can use the 

prioritization method to solve conflicts without 

using of graph coloring problem. 

4. Our proposed model 

The block diagram of our proposed model is 

shown in fig. 2. As shown in fig. 2, firstly the 

traffic environment must be monitored and 

appropriate traffic information must be collected. 

This information provides an estimation of 

current traffic situation (such as, the position, 

direction, destination and speed of the aircraft). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 our proposed model. 

No 

Yes 

Monitor Traffic 

Define traffic 

parameters 

Solve conflicts 
(Color the 

corresponding graph) 

Compute Scores 

Map the 

congestion area to 

a graph 

Compute 

priorities 

Conflict 

detected? 

Detect congestion 

area 

New free conflict 

flight plan 



 

Emami & Narimanfar, A Conflict Resolution Approach using Prioritization 20 Strategy 

 

18 

 

After this stage we specify domain of 

congestion area and then we map this area to a 

corresponding graph. Each vertex of this graph 

indicates an aircraft in congestion area and each 

edge in this graph indicate a predicted conflict in 

future states. In other words in this stage we map 

the congestion area to a state space graph. 

In next step, the scores of aircrafts in 

congestion area are computed based on some 

score allocation criterions. Then based on 

allocated scores to aircrafts, the priority of each 

aircraft is specified. 

In the third stage, the corresponding graph is 

colored using prioritization method. The output 

of the algorithm is an optimal and reliable 

coloring (an efficient solution for solving 

conflicts between aircrafts in congestion area). 

If there is no collision, the algorithm ends. 

Then, we send the new free conflict flight plan to 

the aircrafts on flight paths. Here we emphasize 

that our proposed model can interact with 

innovative technologies (such as multi-agent 

systems technology) to conflicts detection and 

resolution in air traffic management and also in 

ground traffic and related applications. 

5. Experiments and Results 

To evaluate our proposed model explained in 

previous sections, we used randomly generated 

test cases. Each test case consists of several 

aircrafts with different or same velocity, altitude, 

position and heading. These scenarios based on a 

test case used by krozel et al. [20, 21], and hill et 

al. [22], comprise of two concentric circles in 

open airspace. All aircrafts appears at random 

points on the outer circle with 100 miles, and 

destination of each of aircrafts at random point 

on inner circle with 80 miles. 

We have used supposed test cases to test our 

proposed conflict resolution model, but we 

attempted to test samples very similar to the real 

world patterns. These test cases provide a wide 

range of conflict patterns that any conflict 

detection and resolution method must be 

evaluated across these test cases. Conflict 

resolution maneuvers used in our proposed 

model include small altitude and heading 

changes.  

Table 1 shows the average of system 

efficiency from five simulation runs of the 

proposed model at each reported density. In table 

1, column 1 indicates the number of aircrafts in 

airspace, column 2 indicates the average number 

of predicted conflicts and last columns indicate 

the efficiency of our proposed conflict detection 

and resolution model. The results of simulations 

show proposed model has high efficiency; this 

means our proposed model decrease flight delays 

and increases passengers’ comfort.  

Here we used a simple efficiency metric. This 

metric is same as the metric used in reference [20, 

21]. This metric measure the degree to which an 

aircraft are able to track direct and optimal flight 

path from origin to its destination. In fact in 

conflict resolution process some aircrafts (in 

general aircrafts with lower priorities) should be 

deviate from their optimal and ideal mainstream 

in order to prevent of conflicts. In conflict 

resolution process our proposed model tries to 

decrease the number of deviations for aircrafts.  

For a test case with N aircraft at the end of 

simulation run the efficiency of the proposed 

conflict detection and resolution model is as 

Eq.(1). In the ideal system the efficiency value 

equals to 1. As traffic density and number of 

conflicts increases the value of efficiency metric 

decreases.  

N1 tidealefficiency  = 
t  + tN ideal delayi =1


 
 
   (1) 

 

   (2) 

 

t
ideal = the ideal flight time for aircraft ―i‖ 

(specified when the aircraft first arrived in 

simulation) 

t
delay

= the delay time for aircraft ―i‖  

t
actual  = the actual flight time for aircraft ―i‖ 

 
Table 1: Result for the random flight scenarios after five 

simulation runs. 

Aircrafts Predicted conflicts Efficiency (%) 

24 18 92.6 

20 10 95 

16 8 95.8 

12 7 96.1 

10 6 97 

8 5 98 

6 4 98.8 

4 2 99.5 

2 1 99.8 

2 0 1 

 

In fact our proposed model is a preliminary 

and abstract conflict resolution methodology; 

t = t - t
delay actual ideal



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 19 

nonetheless this model has high efficiency and 

works as better. 

5.1 Example Scenario 

To illustrate the process of proposed 

prioritization method, consider two-aircraft 

scenario depicted in fig. 3. This example 

involves two aircrafts A1 and A2 that these 

aircrafts are headed directly their destination. We 

supposed these aircrafts restricted to fly in same 

altitude. As shown in fig. 3, if aircraft A1, A2 

continue on their current heading without any 

deviation from their mainstreams, the aircrafts 

will collide. In fig. 3, if aircraft A1 and A2 

continue on their previous trajectories after 7.5 

minutes will collide. Aircraft A1 and A2 have 

500 mph speed. These two aircrafts fly at the 

same altitude. Aircraft A1 has 140nm distance to 

its destination and distance to destination of 

aircraft A2 is 200nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
A1: A2: 

Airspeed: 500 mph 

Distance to Destination: 

140 nm 

Airspeed: 500 mph 

Distance to Destination: 

200 nm 

Fig. 3 Example Scenario 

 

In our proposed model we used nominal 

state projection method to predict and detect 

possible conflicts that going to occur. In first 

step to resolve conflicts we compute scores of 

aircrafts and then allocate a (unique) priority for 

each aircraft. For instance, here we only used 

―distance to destination‖ score allocation metric. 

According to this metric the score of aircraft A1 

and A2 respectively is equal to 2.43 and 1.7. As 

we mentioned in our proposed model the 

aircrafts which had higher score will have 

higher priority and the aircrafts that had lower 

score will have lower priority. So aircraft A1 

has higher score and subsequently its priority is 

equal to 1, and aircraft A2 has priority order 2. 

The lesser number indicates the high priority. 

Then to resolve predicted conflict between two 

aircrafts we send a command to aircraft with 

lower priority to deviate from its original 

trajectory in order to prevent collision. The 

aircraft which has lesser priority after receiving 

the deviation command, according to its 

conditions reply to other aircrafts acceptance or 

rejection message. In this scenario aircraft A2 

has lower priority therefore this aircraft 

deviates from its mainstream, hence the 

predicted conflict resolved. 

6. Conclusions 

In this paper we proposed a systematic 

conflict resolution approach using graph coloring 

problem concept and prioritization method. Also 

in this paper we introduced some score allocation 

criterions and allocated a priority for each 

aircraft based on these criterions. The proposed 

prioritization method is natural, sound and 

flexible. This method considers traffic conditions 

to make the best decisions in critical 

environmental conditions for solving conflicts 

between aircrafts. 

Simulation results on different test cases 

indicate the prioritization method can offer 

good efficiency and safety for resolving 

conflicts in free flight air traffic control method. 

Air traffic control is a dynamic problem, so that 

one problem in proposed prioritization method 

is that we can’t accurately adjust the weight of 

different score allocation metrics, therefore in 

priority assigning process may be allocated 

priorities not correct. 

Future work will comprise the extension of 

prioritization method to have high adaptability 

with traffic situations. Also we will focus on 

using multi agent systems with prioritization 

method to present a comprehensive model with 

high efficiency for conflict detection and 

resolution in air traffic management system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x (nm) 

y
 (

n
m

) 

100 

70 

N 

40 

0 

60 0 -60 

 

 



 

Emami & Narimanfar, A Conflict Resolution Approach using Prioritization 20 Strategy 

 

20 

References 
[1] K. Tumer and A. Agogino, "Improving air traffic 

management with a learning multiagent system", 

IEEE Intell. Syst., vol. 24, no. 1, pp. 18–21, 

Jan/Feb. 2009. 

[2] Federal aviation regulations and aeronautical 

information manual, 2010 edition. 2009 asa, inc. 

Newcastle, Washington. 

[3] Department of Transport, U.K., ―Air traffic 

forecasts for the United Kingdom 1997,‖ U.K. 

Government, Department of Transport, Tech. Rep., 

1997. [Online]. Available 

http://www.aviation.dft.gov.uk/aed/air/aircont.htm. 

[4] Radio Technical Commission for Aeronautics. 

Final report of RTCA Task Force 3: Free flight 

implementation, RTCA, Washington DC, Tech. 

Rep.,Oct. 1995. 

[5] Federal Aviation Administration, "Free Flight 

Introduction", http://www.faa.gov/freeflight/ff 

ov.htm, September 2011. 

[6] Federal aviation administration, ―advancing free 

flight through human factors‖, 

www.hf.faa.gov/docs/508/docs/freeflt.pdf, 

accessed 1 august 2011, 1995. 

[7] J. Rong, J. Valasek, S. Geng, and Ioerger RT, ―Air 

traffic conflict negotiation and resolution using an 

onboard multi agent system‖, Proceedings of the 

21st Digital Avionics Systems Conference, 2002. 

[8] J. Kuchar and C. Yang, "A Review of Conflict 

Detection and Resolution Modeling Methods"; 

IEEE Transactions on Intelligent Transportation 

Systems, Vol. 1, No. 4, December 2000. 

[9] M. Nguyen-Duc, J. Briot, and A. Drogoul, "An 

application of Multi-Agent Coordination 

Techniques in Air Traffic Management", 

Proceedings of the IEEE/WIC International 

Conference on Intelligent Agent Technology 

(IAT’03), 2003. 

[10] S. Wollkind, J. Valasek, and RT. Ioerger, 

―Automated conflict resolution for air traffic 

management using cooperative multi-agent 

negotiation‖, AIAA Guidance, Navigation and 

Control Conference, 2004. 

[11] N. Archambault, and N. Durand , "Scheduling 

Heuristics For on-Board Sequential Air Conflict 

Solving", IEEE, 2004. 

 
[12] H. Emami, F. Derakhshan, ―An Overview on 

Conflict Detection and Resolution Methods in Air 

Traffic Management using Multi Agent Systems‖, 

Proceeding of AISP 2012, Shiraz, Iran, May 2012. 

[13] T.R. Jensen, B. Toft, "Graph Coloring Problems", 

Wiley interscience Series in Discrete Mathematics 

and Optimization, 1995. 

[14] D. Werra, "Heuristics for Graph Coloring", 

Computing Suppl. 7, pp. 191-208, 1990. 

[15] M.R. GAREY, and D.S. JOHNSON, ―Computers 

and intractability: a guide to the theory of NP-

completeness‖, W.H. Freeman and Company, 

New York, 1979. 

[16] D. E Goldberg. ―Genetic Algorithms in Search, 

Optimization and Machine Learning‖. Addison-

Wesley, Reading, MA, 1980. 

[17] C. FLEURENT, and J.A. FERLAND, ―Genetic 

and  hybrid algorithms for graph coloring‖. Dans 

G. Laporte, I.H. Osman, (Eds.), Metaheuristics in 

Combinatorial Optimization, Annals of Operations 

Research, 63 : 437-441, 1996. 

[18] M. Kubale, "Introduction to Computational 

Complexity and Algorithmic Graph Coloring", 

Gdanskie Towarzystwo Naukowe, 1998. 

[19] M. CHAMS, A. HERTZ, D. de WERRA, ―Some 

experiments with simulated annealing for coloring 

graphs‖. EJOR 32: 260-266, 1987. 

[20] J. Krozel, M.Peters, K. D. Bilimoria,, C. Lee, , 

and J. S. B. Mitchell, ―System Performance 

Characteristics of Centralized and Decentralized 

Air Traffic Separation Strategies,‖ Fourth 

USA/Europe Air Traffic Management Research 

and Development Seminar, 2001. 

[21] H. Emami, F. Derakhshan, S. Pashazadeh, ―A 

New Prioritization Method for Conflict Detection 

and Resolution in Air Traffic Management‖. 

Journal of Emerging Trends in Computing and 

Information Sciences, VOL. 3, NO. 7, pp. 1042-

1049, 2012. 

[22] K. Archibald, c. Hill, a. Jepsen, c. Stirling, and l. 

Frost, "A satisficing approach to aircraft conflict 

resolution" , ieee transactions on systems, man, 

and cybernetics—part c: applications and reviews, 

vol. 38, no. 4, July 2008. 

 

 

 

 

 

http://www.aviation.dft.gov.uk/aed/air/aircont.htm


 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 

 

21 

* Corresponding Author 

A Basic Proof Method for the Verification, Validation 

and Evaluation of Expert Systems 

Armin Ghasem Azar
*  

Department of Computer and Information Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Tehran, Iran 

a.ghasemazar@iasbs.ac.ir 

Zohreh Mohammad Alizadeh 

Department of Computer and Information Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Tehran, Iran 

z.alizadeh@iasbs.ac.ir 

 

Received: 06/Oct/2012            Accepted: 23/Feb/2013 

 

Abstract 
In the present paper, a basic proof method is provided for representing the verification, Validation and 

evaluation of expert systems. The result provides an overview of the basic method for formal proof such 

as: partition larger systems into small systems prove correctness on small systems by non-recursive 

means, prove that the correctness of all subsystems implies the correctness of the entire system. 

 

Keywords: Expert System, Partition, Non-Recursive. 
 

 

1. Introduction 

An expert system is correct when it is 

complete, consistent, and satisfies the 

requirements that express expert knowledge 

about how the system should behave. 

For real-world knowledge bases containing 

hundreds of rules, however, these aspects of 

correctness are hard to establish. There may be 

millions of distinct computational paths through 

an expert system, and each must be dealt with 

through testing or formal proof to establish 

correctness. 

To reduce the size of the tests and proofs, one 

useful approach for some knowledge bases is to 

partition them into two or more interrelated 

knowledge bases. In this way the VV&E 

problem can be minimized [1]. 

2. Overview the Proofs Using Partitions 

The basic method of proving each of these 

aspects of correctness is basically the same. If 

the system is small, a technique designed for 

proving correctness of small systems should be 

used. If the system is large, a technique for 

partitioning the expert system must be applied 

and the required conditions for applying the 

partition to the system as a whole should be 

proven. In addition the correctness of any 

subsystem required by the partition must be 

ensured. Once this has been accomplished this 

basic proof method should be applied recursively 

to the sub-expert systems. Once the top level 

structure of the Knowledge base has been 

validated, to show the correctness of the expert 

system, the following criteria must be 

accomplished [6]: 

 Show that the Knowledge base and 

inference engine implement the top level 

structure; 

 Prove any required relationships among 

sub-expert systems or parts of the top 

level Knowledge representation; 

 Prove any required properties of the sub-

Knowledge bases. 

2.1 A Simple Example 

To illustrate the basic proof method, 

Knowledge Base 1 will be proved correct in 

Table 1 and although this Knowledge base is 

small enough to verify by inspection. 

2.1.1 Illustrations of Knowledge Base 1 

The Knowledge Base 1 (KB1) has six rules. 

There are seven variables which can take two 

possible values. It is, therefore a seven 

dimensional, binary problem [5]. Let's focus on 

Rule 3 to understand the illustrations of KB1. 

It has two hypotheses, and one conclusion. 

The hypotheses are “Do you buy lottery 

tickets?”=”yes”, and “Do you currently own 

stock”=”yes”. They are associated with the 

logical operator “or”. The consequent is Risk 

Tolerance”=”high”. This is illustrated in Figure 1. 

For the two variables of the hypotheses in Rule 3, 

there are two possible values: “yes” or “no”. The 

number of possible combinations of values for 

the variables is four. These four combinations 

appear in Figure 1 as four square regions defined 

mailto:z.alizadeh@iasbs.ac.ir


 

GhasemAzar & MohammadAlizadeh, A Basic Proof Method for 28 The Verification, ……. 

 

22 

by the closed boundary (defining the domain or 

the variables) and the line boundaries separating 

the possible values for each variable. Each 

square is a Hoffman region. 

 

 

 

Table 1: Knowledge Base 1 [7] 

 

 

If variable “Do you buy lottery tickets” is 

assigned a value “yes”, then two of the four 

regions are relevant. In Figure 1.a, they are 

shown with a hatch. The two regions 

corresponding to hypotheses “Do you currently 

own stock?”=”yes” are hatched in Figure 1.b. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Knowledge Base 1 [7] 

 

In two dimensions, a Hoffman region is a 

surface as shown in this example. In three 

dimensions, it would be a volume. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Knowledge Base 1 [7] 

 

The logical operators are “and”, “or” and 

“not”. In Figure 1.a and 1.b, the Hoffman regions 

corresponding to hypothesis of Rule 3 are 

hatched. When combined with an “and” logical 

operator, intersection of the two sets of Hoffman 

regions. This is shown in Figure 2.a.  

The intersection in this case is a unique 

Hoffman region. In Rule 3, an “or” operator 

connects the two hypotheses.  

In this case, the union two sets of Hoffman 

regions are taken, as shown in Figure 2.b. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: Knowledge Base 1 [7] 

 

Next, the region by the logical expression of 

the hypotheses is labeled with its rule. For Rule 3, 

the three Hoffman regions are labeled with a 

circled 3 as shown in Figure 3.a. Consequence 

for the Rule is linked to the label of the region of 

the hypotheses. In Figure 3.b, an arrow starts at 

the circled 3 and ends at the value “low” of the 

variable “Risk”. 

 

Rule 1 
If “Risk tolerance” = high AND “Discretionary income exists”= yes then 

investment = stocks. 

Rule 2 
If “Risk tolerance” = low OR “Discretionary income exists” = no then investment = 

“bank account”. 

Rule 3 
If “Do you buy lottery tickets” = yes OR “Do you currently own stocks” = yes then 

“Risk tolerance” = high. 

Rule 4 
If “Do you buy lottery tickets” = no AND “Do you currently own stocks” = no then 

“Risk tolerance”= low. 

Rule 5 
If “Do you own a boa” = yes OR “Do you own a luxury car” = yes then 

“Discretionary income exists” = yes. 

Rule 6 
If “Do you own a boat” = no AND “Do you own a luxury car” = no then 

“Discretionary income exists” = no. 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 23 

2.2 Step 1-Determine Knowledge Base 

Structure 

To prove the correctness of Knowledge Base 

1 (KB1), the expert Knowledge can determine 

that the system represents a 2-step process [3]: 

 Find the values of some important 

intermediate variables, such as risk 

tolerance and discretionary income; 

 Use these values to assign a type of 

investment. 

KB1 was built using this Knowledge; 

therefore, it can be partitioned into the following 

pieces: 

  A subsystem to find risk tolerance (Part 

of Step 1); 

 A subsystem to find discretionary income  

(Part of Step 1); 

 A subsystem to find type of investment 

given this Information (Part of Step 2). 

2.3 Step 2-Find Knowledge Base 

Partition 

To find each of the three subsystems of KB1, 

an iterative procedure can be followed: 

 Start with the variables that are goals for 

the subsystem, e.g., risk tolerance for the 

risk tolerance subsystem; 

  Include all the rules that set subsystem 

variables in their conclusions. For the risk 

tolerance subsystem, Rules 3 and 4 are 

included;  

 Include all variables that appeared in rules 

already in the subsystem and are not goals 

of another subsystem;  

 For the risk tolerance subsystem, include 

“Do you buy lottery tickets” and “Do you 

currently own stocks”;  

 Quit if all rules setting subsystem 

variables are in the subsystem, or else go 

to Step 2. For the risk tolerance subsystem, 

there are no more rules to be added. 

Figure 4 below shows the partitioning of 

KB1 using this method. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Knowledge Base 1 [3] 

 

2.4 Step 3-Completeness of expert 

systems 

2.4.1 Completeness Step 1-Completeness of 

Subsystems 

The first step in proving the completeness of 

the entire expert system is to prove the 

completeness of each subsystem. To this end it 

must be shown that for all possible inputs there is 

an output, i.e., the goal variables of the 

subsystem are set. This can be done by showing 

that the OR of the hypotheses of the rules that 

assign to a goal variable is true [7]. 

2.4.2 Completeness Step 2-Completeness of 

the entire system 

The results of subsystem completeness are 

used to establish the completeness of the entire 

system. The basic argument is to use results on 

subsystems to prove that successively larger 

subsystems are complete. At each stage of the 

proof there are some subsystems known to be 

complete; initially the subsystem that concludes 

overall goals of the expert system will be 

complete. At each stage of the proof, a 

subsystem that concludes some of the input 

variables of the currently-proved-complete 

subsystem is added to the currently complete 

subsystem. After a number of steps equal to the 

number of subsystems, the entire system can be 

shown to be complete. 

2.5 Step 4-Consistency of the entire 

system 

The first step in proving the consistency of 

the entire expert system is to prove the 

consistency of each sub- system. To do this, the 

user must show that for all possible inputs, the 

outputs are consistent, i.e., that the AND of the 

conclusions can be satisfied. 

For example, if an expert system concludes: 

“temperature >0” and “temperature <100” 

The AND of these conclusions can be 

satisfied. However, if the system concludes: 

“temperature <0” and “temperature>100” 

The AND of these two conclusions has to be 

false. It is clear that based on the input that 

produced these two conclusions, it is not possible 

for all of the system's conclusions to be true at 

the same time and thus the system producing 

these conclusions is inconsistent. 

2.5.1 Consistency Step 1-Find the mutually 

inconsistent conclusions 

The first step in proving consistency is to 

identify those sets of mutually inconsistent 

conclusions for each of the subsystems identified 

in the “Find partitions” step above. Some sets of 



 

GhasemAzar & MohammadAlizadeh, A Basic Proof Method for 28 The Verification, ……. 

 

24 

conclusions are mathematically inconsistent [2]. 

For example, if a system describes temperature, 

the set: “temperature <0”, “temperature >100” is 

mathematically inconsistent. 

Because some sets of conclusions are 

inconsistent because of domain expertise, finding 

all sets of inconsistent conclusions generally 

requires expert Knowledge. 

Note that if there are no mutually inconsistent 

conclusions in the expert system as a whole, then 

consistency is true by default, and no further 

consistency proof is necessary. 

2.5.2 Consistency Step 2-Prove consistency of 

subsystems 

If there are inconsistent conclusions in the 

Knowledge base as a whole, then the next step in 

proving consistency is to prove the subsystems 

consistent. This can be done by showing that no 

set of inputs to a subsystem can result in any of 

the sets of inconsistent conclusions. 

2.5.3 Consistency Step 3-Consistency of 

entire system 

The results of subsystem consistency are used 

to establish the consistency of the entire system. 

The basic argument is to use results on 

subsystems to prove that successively larger 

subsystems are consistent. At each stage of the 

proof, there are some subsystem known to be 

consistent; initially, this is the subsystem that 

concludes goals of the expert system as a whole. 

At each stage of the proof, a subsystem that 

concludes some of the input variables of the 

currently-proved-consistent subsystem is added 

to the currently consistent subsystem. After a 

number of steps equal to the number of 

subsystems, the entire system can be shown to be 

consistent [2]. 

2.6 Step 5-Specification satisfaction 

In order to prove that KB1 satisfies its 

specifications, the user must actually know what 

its specifications are. This is a special case of the 

general truth that in order to verify and validate, 

the user must know what a system is supposed to 

do. Specifications should be defined in the 

planning stage of an expert system project [4]. 

To illustrate the proof of specifications it will 

be assumed that KB1 is supposed to satisfy:  

A financial advisor should only recommend 

investments that an investor can afford. 

As with many other aspects of verification 

and validation, expert Knowledge must be 

brought to bear on the proof process. For KB1, 

an expert might say that anyone can afford a 

savings account. Therefore, the user only has to 

look at the conditions under which stocks are 

recommended. However, that same expert would 

probably say that just having discretionary 

income does not mean that the user can afford 

stocks; that judgment should be made on more 

than one variable. Therefore, it would be 

reasonable to conclude that KB1 does not satisfy 

the above specification. 

3. Conclusion 

This paper has argued that V&V techniques 

are an essential part of the Knowledge 

engineering process,  because they offer the only 

way to judge the success (or otherwise) of a KBS 

development project. This is equally true in the 

context of Knowledge management, where V&V 

techniques tell us whether or not the KBS can be 

relied upon to accurately embody the Knowledge 

of the human experts that supplied it. 

However, examination of known studies on 

the effectiveness of existing KBS VV&E 

techniques has shown that the state of 

Knowledge in this area is sparse. The way to 

improve this situation would be by 

systematically gathering data from a 

representative set of KBS projects and V&V 

techniques. Without such a study, Knowledge 

engineering will remain very much an art and, by 

extension, so will the use of KBS technology in 

Knowledge management. 

It is difficult to generalize our results to all 

Knowledge based systems and, of course, further 

evaluations of other applications are necessary to 

confirm (or challenge) our conclusions. However, 

since the method we have used minimizes the 

need for experts' interpretation of the faults, we 

can reasonably conclude that if we use an 

application of similar size and complexity to 

GIBUS, we would expect to obtain similar 

results. Consequently, since our application has a 

size and a complexity which is representative of 

actual practice, we would expect that consistency 

and completeness checking, in addition to testing, 

would be an effective combination of methods to 

validate many of the Knowledge based systems 

actually under development. 

 

 

 

 

 

 

 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 25 

References 
[1] Ayel M and Laurent J-P, two different ways of 

verifying Knowledge-based systems, Validation, 

Verification and Test Of Knowledge-Based 

Systems, Wiley, New York, Year. 1991, pp. 63-76. 

[2] Bendou A, A constraint-based test data generator, 

EUROVAV-95, Saint Badolph, France, Year. 

1995,  pp. 19-29. 

[3] Ginsberg A, Knowledge-based reduction: A new 

approach to checking Knowledge bases for 

inconsistency & redundancy, AAAI Vol. 88,  No. 

2, Year. 1988, pp.  585-589. 

[4] Kirani S, Zualkernan I.A, and Tsai W.T., 

Comparative Evaluation of Expert System Testing 

Methods, Computer Science Department, 

University of Minnesota, Minneapolis Vol. 2, 

Year. 1992, pp. 92-30. 

 

 

[5] Laurent J-P, Proposals for a valid terminology in 

KBS validation, ECAI-92, Wiley, New York, Vol. 

2, Year. 1992, pp. 829-834. 

[6] Lounis R and Ayel M, Completeness of KBS, 

EUROVAV-95, Saint Badolph, France, Vol. 2, 

Year. 1995, pp. 31-46. 

[7] O'Leary D, Design, development and validation of 

expert systems: A survey of developers, Vol. 2, 

Year. 1991. 

 

 

 

 

 

 

 

 

  



 

 

 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 

 

27 

* Corresponding Author 

Prediction of Deadlocks in Concurrent Programs 

Using Neural Network 

Elmira Hasanzad 
Department of Computer Engineering, University of Kashan, Iran 

elm.hasanzade@grad.kashanu.ac.ir 

Seyed Morteza Babamir
*
 

Department of Computer Engineering, University of Kashan, Iran 

babamir@kashanu.ac.ir 

 

Received: 26/Nov/2012            Accepted: 20/Feb/2013 

 

Abstract 
The dependability of concurrent programs is usually limited by concurrency errors like deadlocks and 

data races in allocation of resources. Deadlocks are difficult to find during the program testing because 

they happen under very specific thread or process scheduling and environmental conditions. In this 

study, we extended our previous approach for online potential deadlock detection in resources allocated 

by multithread programs. Our approach is based on reasoning about deadlock possibility using the 

prediction of future behavior of threads. Due to the nondeterministic nature, future behavior of 

multithread programs, in most of cases, cannot be easily specified. Before the prediction, the behavior of 

threads should be translated into a predictable format. Time series is our choice to this conversion 

because many Statistical and Artificial Intelligence techniques can be developed to predict the future 

members of the time series. Among all the prediction techniques, artificial neural networks showed 

applicable performance and flexibility in predicting complex behavioral patterns which are the most 

usual cases in real world applications. Our model focuses on the multithread programs which use locks 

to allocate resources. The proposed model was used to deadlock prediction in resources allocated by 

multithread Java programs and the results were evaluated. 

 

Keywords: Detecting Potential Deadlocks, Time Series Prediction, Multithread Programs, Behavior 

Extraction. 
 

 

1. Introduction 

Multithread programs are becoming 

increasingly common. Since multi-core 

processor generation has brought more cores, 

developers must parallelize programs if they 

want to speed the program execution up. 

However, applying concurrency method causes 

some integrity and mutual exclusion issues in 

allocating resources. To resolve them, locking 

mechanism was developed. However, this 

mechanism leads to some other known problems 

like starvation and deadlock in resources 

allocated by concurrent systems. Detection of 

such errors in the program testing phase may be 

difficult since they often occur in the special 

sequence of events [1]. This is why that, these 

errors are sensitive to timings, workloads, 

compiler options and memory models. In 

addition, if a deadlock or data race in resource 

allocation emerges in the testing phase, it is 

difficult to find out its root cause; because in a 

multithread program, even if there is a deadlock 

between some threads in allocating resources at 

runtime, other threads still can run. The effects of 

such a situation can manifest itself millions of 

cycles after occurring the error. Deadlock is a 

common form of bug in software nowadays. 

Sun‟s bug database showed that 6,500 bug 

reports out of 198,000 contain “deadlock” [2]. 

Main reasons of deadlock are: (1) software 

systems are often written by diverse 

programmers; therefore, it is difficult to follow a 

lock order discipline in allocating resources, (2) 

programmers often introduce deadlocks when 

they fix race conditions by adding new locks and 

(3) using third-party software such as plug-in 

because the third-party software may not follow 

the locking discipline followed by the parent 

software [3]. This is why that “deadlock 

avoidance” techniques became unusable. Such 

techniques are simple in theory but so restrictive 

in real application.  

Therefore “detecting potential deadlocks” 

became an acceptable method to solve deadlock 

problem in resources allocation. “Potential 

deadlock detection” techniques are Online or 

Offline, which Online ones try to find the 

concurrency errors at runtime. Such approaches 

mostly use a monitor to observe the program 

mailto:Elm.hasanzade@grad.kash%20anu.ac.ir
mailto:babamir@kashanu.ac.ir


 

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network 

 

28 

execution and based on the observations, they 

decide about the error possibility. In comparison 

with offline techniques, online ones have the 

following advantages: 

1. They only visit feasible paths of program 

executions and have accurate views of the 

values [1], 

2. Because of their accurate view, they 

generate fewer false alarms. False alarm 

means a fake report of an error (in our case, 

a deadlock), 

3. They don‟t need considerable programmer 

effort, 

4. These approaches are language independent 

meaning that the solution is not depended 

on features of a specific programming 

language. 

 In this paper, we demonstrate and extend a 

novel online potential deadlock detection 

approach, whose base was presented in [4]. It 

was based on the prediction of processes or 

threads behavior at runtime and dealt with 

reasoning about the deadlock possibility in the 

future. In this work, we introduce time series 

analysis approaches in configuring prediction 

parameters. Also, we include the environmental 

conditions in predicting the threads behavior to 

improve the correctness of obtained results. We 

obtained considerable improvement in detecting 

potential deadlocks in comparison with our 

previous work.  

This paper is organized as follows: Section 2 

overviews the related works and our proposed 

model is discussed in Section 3. We analyze our 

approach and evaluate its results in Section 4. 

We draw conclusions in Section 5. 

2. Related works 

As mentioned in the previous section, our 

approach is based on finding potential deadlocks 

in allocating resources at runtime using program 

behavior extraction and time series prediction. 

Therefore in this section, we first overview 

online approaches detecting potential deadlocks 

in resources allocated by concurrent programs. 

Afterwards, we discuss different approaches used 

time series for the prediction. 

2.1 Online potential deadlock detection 

Informally, in multi-threaded systems used 

shared memory, deadlocks in allocating 

resources happen when a set of threads are 

blocked forever; this is because each thread in 

the set is waiting to acquire a lock held by some 

thread [2]. Generally in a concurrent system, the 

order of acquiring and releasing locks in 

allocating and freeing resources can be described 

as a directed graph where nodes indicate locking 

resources so that an edge from node A to node B 

means the system has locked resource A and is 

waiting for resource B. There will be a deadlock 

in allocation of resources if a circle is found in 

the graph. Lock graphs and their variations have 

been used for detection of deadlocks in resources 

allocated by concurrent programs.  

GoodLock algorithm [5] is an approach to 

detect potential deadlocks in multithread 

programs. It only detects potential deadlocks 

caused through interleaving locks by just two 

threads. To overcome this limitation, some 

generalized versions of GoodLock algorithm was 

presented in [6] and [7] which detect potential 

deadlocks caused by any number of threads. 

Their approach address programs that use bloc 

and non-block structured locking. 

In [8], authors constructed an online lock 

graph and found specific paths, which named 

“not guarded SCC (strongly connected 

components)”. “Not guarded SCC” indicates one 

or more potential deadlocks because there can be 

several cycles in the SCC. They tried to exhibit 

the deadlocks using injection of noises in the 

SCCs. A noise is inserted to create a delay to 

acquire a lock; accordingly, they raised the 

probability of manifesting the real deadlocks. 

Although this approach is based on GoodLock 

algorithm, its advantage over one that presented 

in [6] and [7] is regarding different runs. The 

Goodlock looks at the scope of one process run. 

This means, when a cycle in the graph is caused 

by sequences of two different runs, Goodlock 

can‟t detect.  

GoodLock algorithm also was used in 

combination with other techniques to find the 

potential deadlock at runtime such as 

DEADLOCKFUZZER [2]. This approach 

consists of two phases. In the first phase, a 

simple variant of the Goodlock algorithm, called 

informative Goodlock, was used to discover 

cycles of potential deadlock. In the second phase, 

DEADLOCKFUZZER executed the program at 

a random schedule in order to create a real 

deadlock corresponding to a cycle which 

reported in the previous phase. In [3] “deadlock 

immunity” concept was introduced for avoiding 

occurrence of deadlocks occurred in the past. 

When a deadlock occurs for the first time, the 

deadlock information is saved in a "context" in 

order to avoid the similar contexts in future runs. 

This approach achieved “immunity” against the 

corresponding deadlocks. To avoid deadlock 

whose context has been already seen, the 

approach changed the schedule of threads. As the 

several deadlocks occur, the numbers of contexts 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 29 

increases; therefore it can avoid a wider range of 

deadlocks. However, if a deadlock does not have 

a pattern similar to one that already encountered, 

the approach cannot avoid its occurrence. 

As we mentioned in Section Introduction, all 

the online deadlock detection approaches share 

some common advantages like: language 

independency, accurate views of the values, 

fewer false alarms and programmer efforts. But 

online techniques suffer from some 

disadvantages too. The most common problem is 

imposing the heavy overhead at runtime, both in 

time or space. All the mentioned techniques try 

to extract some relevant traces before their real 

execution based on observed current execution. 

In fact, they pre-run these extracted traces to find 

out whether there is any deadlock in the trace or 

not. This phase is time consuming because of 

extracting and running relevant traces. Also, one 

of the important steps for online techniques is the 

code instrumentation. Code instrumentation 

means modifying the target code for runtime 

monitoring code behavior. This step could be 

time consuming too and for the legacy codes it is 

more difficult. Sometimes, online potential 

deadlock detection techniques may show 

deadlocks late. This leads to finding a potential 

deadlock when the rollback mechanism is 

impossible because of some preclude actions like 

I/O.  

2.2 Time series prediction approaches 

Because of weaknesses of the online potential 

deadlock detection techniques mentioned in 

previous section, we proposed a novel online 

approach which targets the increase of 

performance, decrease of instrumentation and the 

enhancement of the prediction [4]. In this 

approach, we needed to predict future members 

of the generated time series at runtime. In 

general, time series prediction techniques can be 

classified in two categories: statistical and neural 

network based techniques. The statistical 

prediction techniques such as Autoregressive 

(AR), Moving Average (MA) and combined AR 

and MA (ARIMA) [9] have several limitations, 

such as inefficiency for real world problems 

which are often complex and nonlinear. This is 

due to the fact that these techniques assume that 

a time series is generated by a linear process. 

Thus, they are called linear statistical predictors.  

The nonlinear statistical predictors such as 

predictors, “threshold”, “exponential”, 

“polynomial” and “bilinear” were proposed to 

increase of the prediction precision [9],[10]. 

However, the selection of a suitable nonlinear 

model and the computation of its parameters are 

difficult tasks for a practical problem especially 

when the time series behavior is non-

deterministic. Moreover, it has been shown that 

the capability of the nonlinear model is limited, 

because it is unable to provide a long-term 

prediction [11].  

In recent years, artificial intelligence tools 

have been extensively used for time-series based 

prediction [12, 13]. In particular, artificial neural 

networks are frequently exploited for time-series 

based prediction of systems behavior. A neural 

network is an information processing system that 

is capable of treating complex problems of 

pattern recognition, dynamic and nonlinear 

processes. In particular, it can be an efficient tool 

for prediction applications. The advantage of 

neural networks based approaches over statistical 

ones is the capability of learning and accordingly 

generalization of their knowledge [14]. Also the 

neural networks are based on training and in 

many cases their prediction results are more 

precise, even if the training set has considerable 

noise [14]. These approaches are much more 

suitable for real world problems which do not 

have specific rules.  

There are some composite approaches which 

try to take the advantage of the accuracy of 

statistical models and the generality of neural 

network approaches. In [15], authors composed 

statistical model ARIMA and a feed-forward 

neural network to forecast time series. A feed 

forward network is a type of neural networks 

where all of its connections have the same 

direction [16]. This composition could be 

efficient in predicting some well-known time 

series. However, in the case of other time series, 

finding the proper value for statistical part of the 

composition is a difficult task and wrong values 

could affect the accuracy of prediction. Also it 

has been proved that the capability of recurrent 

neural networks is equivalent to the Turing 

machine [17]. Recurrent network is a class of 

neural network where connections between the 

layers of it could be backward or forward [16]. 

Therefore recurrent networks can approximate 

any function by learning from the function inputs 

and outputs. 

3. Potential deadlock prediction 

In our previous work we proposed an online 

predictive model to detect the potential 

deadlocks in multithread programs which is the 

basis of our approach [4]. Figure 1 shows our 

proposed model architecture. This model is 

consists of four components which are 

collaborating together at runtime. In this work, 

we aim to extend the basis model, indeed we 

extend “predictor” component, to be able to 

generate much more accurate prediction. 

http://en.wikipedia.org/wiki/Neural_network


 

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network 

 

30 

3.1 The basis of proposed model 

We used dependency graph in our model 

which nodes are the concurrent threads or 

processes. There is an edge from node A to node 

B if and only if thread A wants to acquire a lock 

which held by thread B and A has to wait until B 

release the lock, after that the edge will be erased. 

There is a deadlock in the system if there is a 

cycle in dependency graph. Therefore, except 

requesting or releasing the locks, other behavior 

of threads does not play any role in deadlock 

occurrence. For this reason in our proposed 

model we target only the instructions which are 

related to acquiring or releasing the locks. We 

named this type of instructions deadlock-prone 

behavior. The main difference between our 

approach and other online potential deadlock 

detection approaches which we explained in 

Section 2, is that we try to predict the future 

deadlock-prone behavior of threads at runtime 

rather than try to abstract different execution 

traces from the current execution by changing 

threads schedules or noise injection. If we could 

have an accurate view of future deadlock-prone 

behavior of threads then we can accurately result 

about the deadlock occurrence in the future [4]. 

 

 
 

Fig 1. The basis of proposed model [4] 

 

The start point of our model is the "Behavior 

extractor & Time series generator" component. 

Actually this component is composed of two 

elements:  

Two annotated Java functions: one for 

extracting deadlock-prone behavior and another 

for converting extracted behavior to univariate 

time series. Figure 2 shows these two functions: 

1- extractor & convertor () 2- this Period 

behaviors (). The first one task is catching lock () 

and unlock () at runtime and the second one task, 

is appending these instructions to the proper time 

series.  

 

1. @AfterRunning( pointcut = "execution(* 

java.util.concurrent.locks.unlock(..))") 

2. @Before(pointcut = "execution(* 

java.util.concurrent.locks.lock(..))") 

3. public void extarctor&convertor 

(JoinPoint joinPoint) { 

4. String 

functionName=joinPoint.getSignature().ge

tName(); 

5. If(functionName.eguals(“lock”)){ 

6. thisPeriodBehaviors(“1”, 

Arrays.toString(joinPoint.getArgs()),this.n

ame); 

7. } 

8. Else{ 

9. thisPeriodbehaviors(“2”, 

Arrays.toString(joinPoint.getArgs()),this.n

ame); 

10. } 

} 
Fig 2. Functions pseudo code 

 

Line 1, shows an annotation which means: 

whenever an Unlock() instruction executed, the 

extractor&convertor(…) method, should be 

executed immediately. Line 2, shows an 

annotation which means: right before the 

execution of a Lock() instruction, the 

extractor&convertor(…) method, should be 

executed. Line 3 is the method sign and line 4, is 

for obtaining the name of the event which caused 

the extractor&convertor(…) method to be 

executed. In line 5 to 10, based on the name of 

event (lock or unlock), a specific character will 

be appended to a specific time series. In this way 

all the lock() and unlock() events which are 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 31 

issued from threads at runtime, are caught and 

converted to time series. 

ApectJ compiler. The task of this compiler is 

weaving two Java functions to the target 

multithread programs in the locations which are 

specified by annotations above the method. 

We mentioned that, one of the problems in 

runtime verification approaches is source code 

instrumentation step. The instrumentation is a 

time consuming task and when the verification 

logic is complex, it could be inefficient at 

runtime, both in time and space. But our two 

Java functions which are weaved to the target 

multithread program, are easy and light weight 

thus their runtime overhead is negligible. 

As we said, there are two Java functions for 

extracting dedicated behavior and time series 

generating goals. Time series is a set of 

observations from past until present, denoted by 

s(t-i) {i= 0.. P }, where P is the number of 

observations. Time series prediction is to 

estimate future observations, let's say s (t+i) for 

{i= 1.. N}, where N is the size of prediction 

window. Also, a univariate time series refers to 

the set of values over the time of a single 

quantity.  

The next component in our model is "Online 

Lock Tracker". According to Figure 1, this 

component takes the deadlock-prone behavior 

from "Behavior extractor & Time series 

generator" component at runtime and draws a 

dependency graph. This dependency graph will 

be updated whenever a thread issues a deadlock-

prone behavior.  

The "predictor" component takes the 

generated time series from "Behavior extractor & 

Time series generator" and tries to predict the 

next members of the time series. In a multithread 

program, the order of executed instructions of a 

thread could be affected by other threads 

executions. This fact makes the concurrent 

systems nondeterministic thus it is hard to 

predict the future thread behavior. We can't 

assume any pre-defined generator for the time 

series which are representing threads behavior. 

This property makes the statistical prediction 

techniques useless for our purpose. Because the 

statistical prediction techniques, assume that a 

time series is generated by linear or nonlinear 

process, but the selection of the suitable 

nonlinear or linear model and computation of its 

parameters is a difficult task for a practical 

problem without a priori knowledge about the 

time series[10]. The prediction requirements of 

our model lead us to use artificial intelligence 

prediction techniques. Time series prediction 

techniques which are based on AI use several 

Artificial Neural Networks [10]. Based on the 

properties of time series, there are different 

network topologies and learning algorithms. The 

selection of a proper network model and 

adjustment of its parameters should be carried 

out by considering the problem requirements. 

The predictions of the “predictor” component 

are also in the form of time series. These 

predictions and current dependency graph (the 

output of “online lock tracker” component) are 

injected to the "Decision maker" component. 

This component is responsible for deciding about 

the deadlock possibility in the next period. We 

try to clarify our model using an example. 

Assume that we have four threads named 

T1,…,T4 and five locks named L1, …,L5. Also 

assume the current dependency graph is 

something like Figure 3 (a). This graph 

represents that T1 has held L1 and L3 and wants 

to hold L2 which held by T2 thus T1 stops 

proceeding and waits until T2 releases L2. Also 

T4 has held L5 and wants to hold L3 which held 

by T1 thus T4 stops proceeding. Suppose the 

predictions of "Predictor" component are the 

following: 

“Predictor” component predictions  

T3={ will request L5}, T2={ will request L4} 

"Decision maker" takes current lock graph 

and predictions and composes them together to 

construct an abstract graph. Afterwards, decision 

maker searches the abstract graph to find a cycle. 

If so, it reports a possibility of deadlock in the 

next period. Figure 3 (b) shows the abstract 

graph of our example as a composition of 

predictions and dependency graph.  

 

 
Fig 3 (a). Current lock graph                                       Fig 3(b). Resulted abstract graph 

 

 



 

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network 

 

32 

In our example, the abstract graph has a cycle, 

therefore the "Decision maker" component reports: 

(1) a deadlock possibility in the next period and (2) 

T1 to T4 as the threads will be involved in this 

deadlock. But, if the predictions are:  

“Predictor” component predictions  

T3={will request L5}, T2={ will request L4 and 

will release L2} 

For this case, Figure 4 shows the abstract 

graph where there is not any cycle. Therefore, 

the "Decision maker" component will not report 

any possibility of deadlock in the next period. 

 
Fig 4. Resulted another abstract graph 

3.2 Applying the Extensions 

In our previous work we used a recurrent 

neural network named non-linear autoregressive 

(NAR) in predictor component. A NAR network 

tries to predict the future element of a given time 

series using d last values of that series [18]. That 

is, NAR network assumes the future element of a 

series is a function of its last values (Formula 1).  

                           
                  

 

The structure of NAR network has been 

shown in Figure 5. This network has d inputs, 

each for one of the last values of time series. 

 
Fig 5. Structure of a NAR network 

We named d as the delay parameter and it is 

one of the important factors which directly 

imposes the precision of predictions in a 

predictor neural network. Suppose in a time 

series each element is dependent on two last 

elements, That is                      . If 
we try to predict      using a predictor neural 

network such as NAR, the most accurate results 

will be acquired if         . Actually in this 

way the network considers two last elements in 

predicting the future element. In previous work 

we obtained the proper value for delay parameter 

using “try & fail” approach. That is, we gathered 

the runtime behavior of our multithread test 

program and converted them into the time series. 

Then we tried to predict the future members of 

test time series, using multiple NAR networks so 

that every network had a different value for delay 

parameter from others. After that we chose the 

delay value of a network which made the most 

precise predictions.  

In this work we improve the prediction 

precision of our “predictor” component, by 

configuring the delay parameter of network using 

a time series analysis methods. “Embedded 

dimension” is a factor which determines the 

relationships among the past and future members 

of a time series [19]. The value of the 

“Embedded dimension” for a time series 

represents the optimum number of last elements 

which every element is dependent on. Therefore 

we apply the “Embedded dimension “as the 

delay parameter in our predictor network. To 

obtain the “Embedded dimension” of a time 

series there are multiple approaches. The most 

known approach is False-Nearest-Neighbor, 

algorithm. This algorithm was firstly proposed 

by Kennel et al [20]. The calculation of the 

“Embedded dimension” allows one to extract the 

process behavior parameters from the observed 

series of events [19]. The predictor network can 

be further configured according to the obtained 

results from False-Nearest-Neighbor (FNN), in 

order to remember the required number of last 

elements in time series. 

In this work, in addition to applying 

“Embedded dimension” as the delay parameter, 

we use “Nonlinear Autoregressive with External 

input” (NARX) network instead of NAR network. 

Because in our model the major task of the 

predictor network is predicting threads behavior 

at runtime. But the behavior of threads is not 

completely separate from each other, actually the 

future behavior of each thread is affected by 

other threads past and current behavior. Thus we 

need a prediction methodology which could 

satisfy this requirement. As it is obvious, the 

NAR does not consider an external input in its 

prediction procedure. Because of this limitation 

of NAR, it may not meet our prediction 

requirements properly. We need a prediction 

method which could consider other series (that is, 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 33 

other thread‟s behavior) in predicting a time 

series. 

NARX network, like NAR network, is a 

recurrent network with an external input [21]. 

The main idea of recurrent networks is providing 

a weighted feedback connection between layers 

of neurons and adding time significance to entire 

network. Therefore, recurrent neural networks 

simulate a temporal memory and are suitable for 

tasks like prediction which need a memory for 

the past events. NARX network assumes the 

future element of a given time series is a function 

of its last elements and another series last 

elements (Formula 2). 

        (                  

                      

   )                
Using this external input, it is possible to 

predict a time series considering the last 

elements of the time series under prediction and 

also considering other time series last elements. 

Figure 6 shows our extended “Predictor” 

component. 

 
Fig 6. The extended “Predictor” component 

 

 
Fig 7. The NARX networks of example 

 

To clarify the differences between the 

previous and current “Predictor” component at 

runtime, we use an example. Suppose there are 

three time series at runtime, then the "predictor" 

component will have three networks, each for 

predicting one of the series future elements. Each 

network uses some last members of target time 

series named y(t), and some last members of the 

other series named x(t), as its inputs. Therefore 

the new predictor networks have been shown in 

Figure 7, but the networks of our “previous” 

predictor component have been shown in Figure 

8. It is obvious from the Figure 7 that, in the 

“predictor” component there are three NARX 

networks, each for predicting one of the threads 

(time series) future behavior. The output of a 

NARX network is a function of its two inputs 

named x(t) and y(t), therefore each network takes 

a target time series last behavior and another 

time series which represents the last behavior of 

the other threads. Future behavior of y(t) 

predicted by its past behavior and also the past 

behavior of x(t) and the number of last behavior 

obtained by FNN algorithm. 



 

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network 

 

34 

But in our previous work for this example, 

we there were three NAR networks and Future 

behavior of y(t) predicted by only its past 

behavior and the number of last behavior 

obtained by “try & fail ” approach. 

 

 
 

Fig 8. The NAR networks of example 

 

4. Evaluation of the results 

4.1 Experiments 

Our model needs a preparation phase before 

that it could be used at runtime. This phase is 

related to configuring and training the predictor 

networks. For this reason first of all we should 

run the target multithread program for a while 

and gather the generated time series by 

"Behavior extractor & Time series generator" 

component during these test runs. We named 

these time series training phase information. 

Therefore we have to apply this information to 

train the networks and to measure the embedded 

dimension of time series using False-nearest-

neighbor algorithm. Afterwards the obtained 

embedded dimensions should be used as the 

delay parameters in the networks. After this 

phase our model is ready to be used at runtime. 

We tested our proposed model using a Java 

written multithread program which consists of 50 

threads and 10 shared locks. We will refer to the 

test multithread program as the target program in 

the remaining of this paper. We ran the target 

program 100, 500 and 1000 times. We measured 

and divided the failure rate in predicting future 

behavior of threads in four categories:  

1. Failure rate based on our previous work [4] 

(which we: (1) considered no embedded 

dimension as the delay parameter and (2) did not 

count the other threads behavior in predicting 

each thread behavior)  

2. Failure rate when we count the other 

threads behavior in predicting each thread 

behavior  

3. Failure rate when we include embedded 

dimension as the delay parameter  

4. Failure rate when we: (1) include 

embedded dimension as the delay parameter and 

(2) count the other threads behavior in predicting 

each thread behavior  

Each category was considered using different 

trains, validations and test sets. Tables 1 to 4 

show results using Markov Chain where 15%, 

20%, 30% and 40% of data were respectively 

used for testing and 85%, 80%, 70% and 60% of 

data were respectively used for validating and 

training the networks. Similarly, Tables 5 to 8 

show results using NARX model where 15%, 

20%, 30% and 40% of data were respectively 

used for testing and 85%, 80%, 70% and 60% of 

data were respectively used for validating and 

training the networks.  

 

 

 

 

 

 

 

 
 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 35 

Table 1. Failure rate using markov chain with 15% test data and 85% validation and train data 

Train Data Percentage Validation Data Percentage Test  Data Percentage Failure Rate Runs 

70% 15% 15% -2.16 100 

70% 15% 15% -2.3 500 

70% 15% 15% -2.5 1000 

 
Table 2. Failure rate using Markov Chain with 20% test data and 80% validation and train data 

Train Data Percentage Validation Data Percentage Test Data Percentage Failure Rate Runs 

65% 15% 20% -2.2 100 

65% 15% 20% -2.45 500 

65% 15% 20% -2.36 1000 

 
Table 3. Failure rate using Markov Chain with 30% test data and 70% validation and train data 

Train Data Percentage Validation Data Percentage Test  Data Percentage Failure Rate Runs 

55% 15% 30% -2.39 100 

55% 15% 30% -2.49 500 

55% 15% 30% -2.62 1000 

 
Table 4. Failure rate using Markov Chain with 40% test data and 60% validation and train data 

Train Data Percentage Validation Data Percentage Test  Data Percentage Failure Rate Runs 

45% 15% 40% -3.59 100 

45% 15% 40% -3.89 500 

45% 15% 40% -3.87 1000 

 
Table 5. Failure Rate using NARX with 15% test data and 85% validation and train data 

Failure Rate Train Data 

Percentage 

Validation Data 

Percentage 

Test Data  

Percentage 

Environment 

Conditions 

Embedding  

Dimension 

Runs 

6.119e-1 70% 15% 15% NO NO 100 

6.054e-1 70% 15% 15% NO YES 100 

6.043e-1 70% 15% 15% YES NO 100 

5.801e-1 70% 15% 15% YES YES 100 

8.719e-1 70% 15% 15% NO NO 500 

4.57e-1 70% 15% 15% NO YES 500 

5.962e-1 70% 15% 15% YES NO 500 

4.411e-2 70% 15% 15% YES YES 500 

8.212e-1 70% 15% 15% NO NO 1000 

4.008e-1 70% 15% 15% NO YES 1000 

6.009e-1 70% 15% 15% YES NO 1000 

3.089e-1 70% 15% 15% YES YES 1000 

 
Table 6. Failure Rate using NARX with 20% test data and 80% validation and train data 

Failure Rate Train Data  

Percentage 

Validation Data  

Percentage 

Test Data  

Percentage 

Environment  

Conditions 

Embedding  

Dimension 

Runs 

6.093e-1 65% 15% 20% NO NO 100 

6.043e-1 65% 15% 20% NO YES 100 

6.085e-1 65% 15% 20% YES NO 100 

5.221e-1 65% 15% 20% YES YES 100 

8.332e-1 65% 15% 20% NO NO 500 

4.431e-1 65% 15% 20% NO YES 500 

5.101e-1 65% 15% 20% YES NO 500 

4.01e-2 65% 15% 20% YES YES 500 

8.77e-1 65% 15% 20% NO NO 1000 

3.981e-1 65% 15% 20% NO YES 1000 

6.764e-1 65% 15% 20% YES NO 1000 

3.821e-1 65% 15% 20% YES YES 1000 

 



 

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network 

 

36 

Table 7. Failure Rate using NARX with 30% test data and 70% validation and train data 

Failure Rate Train Data 

Percentage 

Validation Data 

Percentage 

Test Data  

Percentage 

Environment 

 Conditions 

Embedding  

Dimension 

Runs 

7.498e-1 55% 15% 30% NO NO 100 

6.327e-1 55% 15% 30% NO YES 100 

6.59e-1 55% 15% 30% YES NO 100 

6.481e-1 55% 15% 30% YES YES 100 

10.112e-1 55% 15% 30% NO NO 500 

6.001e-1 55% 15% 30% NO YES 500 

6.439e-1 55% 15% 30% YES NO 500 

5.021e-1 55% 15% 30% YES YES 500 

9.114e-1 55% 15% 30% NO NO 1000 

5.11e-1 55% 15% 30% NO YES 1000 

7.872e-1 55% 15% 30% YES NO 1000 

5.082e-1 55% 15% 30% YES YES 1000 

 
Table 8. Failure Rate using NARX with 40% test data and 60% validation and train data 

Average 

Failure 

Failure 

Rate 

Train Data  

Percentage 

Validation Data  

Percentage 

Test Data  

Percentage 

Environment 

Conditions 

Embedded  

Dimension 

Runs 

8.61E-01 13.309e-1 45% 15% 40% NO NO 100 

7.006e-1 45% 15% 40% NO YES 100 

8.12e-1 45% 15% 40% YES NO 100 

6.006e-1 45% 15% 40% YES YES 100 

7.99E-01 14.589e-1 45% 15% 40% NO NO 500 

5.043e-1 45% 15% 40% NO YES 500 

8.229e-1 45% 15% 40% YES NO 500 

4.1e-1 45% 15% 40% YES YES 500 

4.90E-01 12.984e-1 45% 15% 40% NO NO 1000 

9.034e-2 45% 15% 40% NO YES 1000 

5.002e-1 45% 15% 40% YES NO 1000 

7.001e-2 45% 15% 40% YES YES 1000 

 

The 1st, 5th and 9th rows from every NARX 

table show the results of prediction based on our 

previous work. The failure rate of the rows 

which consider the extensions is much more 

accurate. Therefore we can say, importing the 

new extensions in this work, that is, embedded 

dimension as the delay parameter and 

considering each thread behavior in predicting 

other threads future behavior, made considerable 

improvement in prediction results particularly 

when the number of runs increases. We also 

showed the prediction results of NARX networks 

was much more accurate than the results 

obtained by Markov Chain, which is a statistical 

approach. As we stated, our test target program 

behaves randomly at runtime. Therefore, it was 

not possible to suppose an accurate model for 

Markov Chain prediction strategy. This is why 

that the failure rate of this strategy, as shown in 

Tables 1 to 4, are imprecise in comparison with 

the similar tables of the NARX prediction. 

The average results of every NARX table 

(Figure 9) show a comparative view of the 

results of this strategy. Every line marked with a 

(X,Y,Z) statement, which X means the test set 

percentage, Y means validation set percentage 

and Z means the training set percentage.  When 

the training set percentage is significantly lower 

than twofold test set percentage, the failure rate 

will increase. Also as the number of runs 

increases the effect of training is much more 

visible. According to the chart, the best overall 

result is in the case of (20, 15 and 65). This result 

is dedicated for our target multithread program 

and it may differ for other multithread programs. 

In [4], after training networks we ran target 

program 500 times and tried to predict the 

deadlock possibility during these runs. During 

these runs deadlock occurred 17 times. Our 

approach reported 13 before their occurrences 

and missed 4. Also in 3 cases, it reported false 

positive, thus the precision was about 74%. In 

this work, after training the networks using 

considered extensions, we again ran test 

multithread program 500 times to see how many 

deadlocks will be reported correctly. It results 15 

deadlocks during 500 times. Our model, this time, 

reported 14 and missed just one deadlock not 

reported; also it didn‟t report any false positive. 

This time, the precision was about 88%. In 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 37 

comparison with our previous work [4], the 

extensions made a clear improvement in the 

results up to 15%. 

5. Conclusion 

Online potential deadlock detection 

techniques received lots of attention in recent 

years. But these techniques often are not cost 

efficient, neither in time or space. Also they need 

extra programmer effort to instrument the code 

and in some cases the results of these techniques 

may come too late. Considering these problems 

we proposed a novel online model to predict the 

deadlock at runtime in multithread programs 

rather than discovering deadlocks by pre-running 

some execution traces to find the potential 

deadlocks. In our proposed model the main 

runtime overhead is through the predictor 

component which predicts the future behavior of 

threads using neural network. In this work we 

used the "Nonlinear Autoregressive with external 

input (NARX)" network. The learning phase of 

NARX network has the order of complexity 

)( 3nO  in worst case [22]. But this complexity is 

related to offline phase of our proposed model 

and once the networks were trained, then at 

runtime the output of predictor will be generated 

with a lower order of complexity, therefore our 

model doesn„t force considerable overhead at 

runtime. Also our model could be execute on a 

completely different core from the main program 

and because of the simplicity of instrumentation 

logic it doesn„t interfere in the target program 

execution. 

In this work we extended our previous work 

in two ways:  

1. Using time series analysis approaches in 

configuring predictor network parameter  

2. Using NARX network instead of NAR 

network.  

The obtained results showed that the 

extensions described in this paper, made 

improvement in the prediction of potential 

deadlocks. The configuring a predictor neural 

network considering the problem specification 

and requirements resulted the more precise 

predictions. Because of this experience, in our 

future work, we are planning to configure the 

predictor networks parameters based on the static 

analysis and structure of the target multithread 

program, we hope to obtain more accurate results. 

 

 

 
Fig. 9. Average results of NARX strategy with different test, validation and train data 

 

 

 

 

References 
[1] D. Engler, K. Ashcraft,“ RacerX: effective, static 

detection of race conditions and deadlocks,” ACM 

SIGOPS Operating Systems Review, vol. 37, no. 5, 

pp. 237–252, 2003.  

[2] P. Joshi, C. S. Park, K. Sen, and M. Naik, “ A 

randomized dynamic program analysis technique 

for detecting real deadlocks,” in ACM Sigplan 

Notices, 2009, vol. 44, pp. 110–120.  

 

 

 

 
 

[3] H. Jula, D. Tralamazza, C. Zamfir, G. Candea, 

“ Deadlock immunity: Enabling systems to defend 

against deadlocks,” in Proceedings of the 8th 

USENIX conference on Operating systems design 

and implementation, 2008, pp. 295–308. 

[4] E. Hasanzade , S. M. Babamir, “An Artificial 

Neural Network Based Model for Online 

Prediction of Potential Deadlock in Multithread 

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

100 run 500 run 1000 run

(15,15,70)

(20,15,65)

(30,15,55)

(40,15,45)



 

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network 

 

38 

Programs,” in 16th Symposium of Artificial 

Intelligence and Signal Processing, AISP 2012, 

IEEE Society, pp. 417-422, 2012. 

[5] Klaus Havelund. Using runtime analysis to guide 

model checking of java programs. In Proc. 7th Int'l. 

SPIN Workshop on Model Checking of 

Software,volume 1885 of Lecture Notes in 

Computer Science, pages 245-264. Springer-

Verlag, August 2000. 

[6] R.  Agarwal,  L.  Wang,  S.  Stoller, “ Detecting  

potential  deadlocks  with  static  analysis  and  

run-time  monitoring,” Hardware and Software, 

Verification and Testing, pp. 191–207, 2006. 

[7] S. Bensalem, K. Havelund, “Scalable deadlock 

analysis of multi-threaded programs,” in 

Proceedings of the Parallel and Distributed 

Systems: Testing and Debugging (PADTAD) 

Track of the 2005 IBM Verification Conference. 

Springer-Verlag, 2005. 

[8] Y. Nir-Buchbinder, R. Tzoref, S. Ur, “Deadlocks: 

From exhibiting to healing,” in Runtime 

Verification, 2008, pp. 104–118. 

[9] O. Voitcu, Y. Wong, “On the construction of a 

nonlinear recursive predictor,” Science B.V., 

Journal of Computational and Applied 

Mathematics, 2004. 

[10] N. Baccour, H. Kaaniche, M. Chtourou, M. B. 

Jemaa, “ Recurrent neural network based time 

series prediction: Particular design problems,” 

studies, vol. 1, p. 7.  

 [11] Y. Chen B. Yang J. Dong A. Abraham, “ Time-

series forecasting using flexible neural tree model,” 

Science, Information Sciences pp 219–235, 2004. 

[12] C.J. Lin, Y.J. Xu, “A self-adaptive neural fuzzy 

network with group-based symbiotic evolution and 

its prediction applications,” Science, Fuzzy Sets 

and Systems, 2 September 2005. 

[13] R. Zemouri, P. Ciprian Patic “Recurrent Radial 

Basis Function Network for Failure Time Series 

Prediction,” World Academy of Science, 

Engineering and Technology 72, 2010. 

[14] R. Zemouri, D. Racoceanu, N. Zerhouni, 

“Recurrent radial basis function network for time-

series prediction,” Engineering Applications of 

Artificial Intelligence pp. 453–463, 2003. 

[15] M. Khashei, M. Bijari, “ An artificial neural 

network (p,d,q) model for time series forecasting” 

Journal of Expert Systems with Applications, pp. 

479-489,  2010. 

[16] R. Rojas, “Neural networks: a systematic 

introduction,” Springer. pp. 336, 1996. 

[17] H. Hyotyniemi, “ Turing Machines are Recurrent 

Neural Networks,” Proceedings of STeP'96. Jarmo 

Alander, Timo Honkela and Matti Jakobsson, pp. 

13-24, 1996. 

[18] G. Dorffner,  “Neural  Networks  for  Time Series  

Processing,” Neural  Network World, Vol. 6, No. 

4, 447-468, 1996 

[19] E. Dodonov, R. F. de Mello, “A  novel  approach  

for  distributed  application  scheduling  based  on  

prediction  of communication events,” Future 

Generation Computer Systems, vol. 26, no. 5, pp. 

740–752, 2010.  

[20] M.B. Kennel, R. Brown, H.D.I. Abarbanel, 

“Determining embedding dimension for phase-

space reconstruction using a geometrical 

construction”, Physical Review A 45 (6) (1992) 

34033411. 

[21] T.Lin, B.G. Horne, P.Tino, C. Lee Giles, “ Learning  

long-term dependencies in NARX recurrent neural 

networks,” IEEE Transactions on Neural Networks, 

Vol. 7, No. 6, 1996, pp. 1329-1351 

[22] G. Ferrari, G. De Nicolao, “NARX models: 

optimal parametric approximation of 

nonparametric estimators,” in American Control 

Conference, 2001. Proceedings of the 2001, 2001, 

vol. 6, pp. 4868–4873. 

 

 

 

 

 

http://books.google.com/books?id=txsjjYzFJS4C&pg=PA336&dq=%22Bidirectional+associative+memory%22+%22recurrent%22
http://books.google.com/books?id=txsjjYzFJS4C&pg=PA336&dq=%22Bidirectional+associative+memory%22+%22recurrent%22
http://www.hut.fi/TKK/Yksikot/Osastot/T/Saatotekniikka/homepage/heikki_h.htm


 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 

 

39 

* Corresponding Author 

Network RAM Based Process Migration for HPC Clusters 

Hamid Sharifian
* 

 
Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran 

sharifian@comp.iust.ac.ir 

Mohsen Sharifi
 

Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran 

msharifi@iust.ac.ir 

 

Received: 04/Dec/2012            Accepted: 09/Feb/2013 

 

Abstract 
Process migration is critical to dynamic balancing of workloads on cluster nodes in any high 

performance computing cluster to achieve high overall throughput and performance.   Most existing 

process migration mechanisms are however unsuccessful in achieving this goal proper because they 

either allow once-only migration of processes or have complex implementations of address space 

transfer that degrade process migration performance. We propose a new process migration mechanism 

for HPC clusters that allows multiple migrations of each process by using the network RAM feature of 

clusters to transfer the address spaces of processes upon their multiple migrations. We show 

experimentally that the superiority of our proposed mechanism in attaining higher performance 

compared to existing comparable mechanisms is due to effective management of residual data 

dependencies. 

 

Keywords: High Performance Computing (HPC) Clusters, Process Migration, Network RAM, Load 

Balancing, Address Space Transfer. 
 

 

1. Introduction 

A standard approach to reducing the runtime 

of any high performance scientific computing 

application on a high performance computing 

(HPC) cluster is to partition the application into 

several portions that can be run in parallel by 

multiple cluster nodes simultaneously.  

HPC clusters generally consist of three main 

parts: a collection of off-the-shelf (COTS) 

computing and storage nodes, a network 

connecting the nodes, and a cluster manager 

system software that manages all nodes and 

presents a single system image to applications 

while exploiting the parallel processing power of 

multiple nodes. 

The cluster manager system software 

provides a set of global services that aim at 

making resource distribution transparent to all 

applications, managing resource sharing between 

applications, deploying as much cluster resources 

as possible for demanding applications, and 

scheduling parallel processes on all cluster nodes. 

The services include global resource 

management, distributed scheduling, load 

sharing, process migration, and network RAM.  

Dynamic load sharing can be achieved by 

moving processes from heavily-loaded nodes to 

lightly-loaded nodes at runtime. This can lead to 

fault resilience, ease of system administration, 

and data access locality in addition to an 

enhanced degree of dynamic load distribution [1].  

Upon migration of a process, the process 

must be suspended and its context information in 

the source node extracted and transferred to the 

destination node. The process can only then 

resume executing from the point it was 

suspended. Two critical challenges of process 

migration are the transfer of the process address 

space from the source node to the destination 

node, and access to the opened files in the 

destination node after process migration [2].  

In this paper we only focus on resolving the 

first challenge of process migration by 

introducing a new process migration mechanism 

by using the network RAM feature of HPC 

clusters, wherein the aggregate main memory of 

all cluster nodes in a cluster represents the 

network RAM of that cluster [3]. In addition to 

achieve comparably higher performance than 

existing process migration mechanisms, our 

proposed mechanism is intended to allow for 

multiple-migration of each process that is a 

missing feature in existing process migration 

mechanisms that is accounted as a source of 

inefficiency. 

The rest of paper is organized as follows. 

Sections 2 and 3 introduce process migration and 

network RAM. Section 4 reviews related works 

on process migration with respect to transfer of 

mailto:sharifian@comp.iust.ac.ir
mailto:msharifi@iust.ac.ir


 

Sharifian & Sharifi, Network RAM Based Process Migration 48 for HPC Clusters 

 

40 

process address space. Sections 5 and 6 present 

our network RAM based mechanism and its 

evaluation, and Section 7 concludes the paper. 

2. Process Migration 

Process migration is the act of transferring an 

active process between two computers and 

restoring its execution in a destination node from 

the point it left off in the source node. The goals 

of process migration are closely tied to 

applications that use migration. The primary 

goals include resource locality, resource sharing, 

dynamic load balancing, fault resilience, and 

ease of system administration [1]. Any process 

migration mechanism can thus be benchmarked 

and evaluated with respect to the degree it 

satisfies these goals.   

Considering an HPC cluster, process 

migration has three main phases [4] (note that 

these phases are applicable to process migration 

in all types of networks of computers in general 

including HPC clusters that are the main focus of 

this paper): 

1. Detaching Phase that involves the 

suspension and the extraction of the 

context of a migrant process in its current 

node. These activities must be done in a 

way that none of the other processes 

running on the current node or in other 

nodes of the cluster experience any 

execution inconsistencies. At the start of 

this phase, the execution of the migrant 

process is frozen. 

2. Transfer Phase that involves the transfer 

of the extracted context of the migrant 

process to the destination node. 

3. Attaching Phase that involves the 

reconstruction of the migrant process on 

the destination node. The reconstruction in 

turn involves the allocation of resources on 

the target node to the migrant process, 

informing the beneficiaries and/or brokers 

of the migrant process about the current 

executing place of the migrant process, 

and resuming the execution of the migrant 

process on the destination node from the 

point it left off on the source node. 

The time interval between freezing a migrant 

process on a source node and resuming its 

execution on a destination node is called the 

freeze time representing the status wherein the 

migrant process is neither executing on the 

source nor executing on the destination node. 

The longer the freeze time the lower will be the 

performance of the process migration. 

The context of a process to be migrated 

includes the process’s running state; stack 

contents; processor registers; address space; heap 

data; and process’s communication state (like 

open files or message channels). The whole 

context must be transferred to the destination 

node before the process can continue its 

execution on the destination node. The process 

address space is the largest part of the process 

context that might have hundreds of megabyte of 

data [5] taking longest to be transferred to the 

destination node. This can adversely affect the 

performance of process migration. Therefore, the 

performance of any process migration 

mechanism largely depends on how long it takes 

to transfer the context of migrant processes to 

destination nodes.  

Various data transfer techniques have been 

presented in the literature that try to reduce the 

high cost of address space transfer [6]. A well-

known technique is to transfer only parts of 

process address space to allow resumption of 

processes on destination nodes without waiting 

for the transfer of the whole process address 

space and context. Though very attractive on 

grounds of improving the performance of process 

migration, this technique leaves parts (pages) of 

process address space on different nodes when 

multiple migrations in the lifetime of process is 

allowed and occurs. In other words, the process 

address space is scattered on multiple nodes 

resulting in residual dependencies. Management 

of residual dependencies increases the 

implementation complexity of process migration 

that in turn results in performance degradation of 

process migration.  

Our proposed mechanism is particularly 

useful to strong migrations wherein the entire 

process state (rather than code and some 

initialization data in weak code migration) must 

be transferred to destination. 

3. Network RAM 

Large-memory high-performance applications 

such as scientific computing, weather prediction 

simulations, data warehousing and graphic 

rendering applications need massive fast 

accessible address spaces [7] that are not provided 

by even high capacity DRAMs. The runtime 

performance of these applications degrades 

quickly when system encounters memory shortage 

and starts swapping memory to local disks. 

In today’s clusters with very low-latency 

networks, the idle memory of other nodes can be 

used as storage media faster than local disks, 

called network RAM. The goal of network RAM 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 41 

is to improve the performance of memory 

intensive workloads by paging to idle memory 

over the network rather than to disk [8].  

Some common uses of network RAM are 

remote memory paging [9], network memory file 

systems, and swap block devices [10,11]. 

Locating unused memory in every node requires 

that network RAM keeps up-to-date information 

about all unused memories.  

Since network RAM stores data on remote 

memories, it includes remote memory paging 

facility to keep information on all remote data. 

This functionality of network RAM can be used 

to alleviate the performance overhead of process 

migration in transferring and managing the 

address spaces of migrant processes. This 

describes why we have deployed network RAM 

technology to propose a novel process migration 

mechanism for HPC clusters in this paper. 

4. Related Works 

We can categorize into three categories the 

works on process migration that have presented 

solutions to cope with the address space transfer 

issue in particular into three categories. 

4.1 Address Space Transfer Techniques 

To avoid the high cost of process address 

space transfer, several techniques have been 

introduced. In the total-copy technique, which is 

the simplest and weakest one, the whole process 

address space is copied to destination node at the 

migration time [12,13,14,15,16]. The pre-copy 

technique transfers the whole process address 

space to destination node before starting to 

migrate the process in order to reduce the freeze 

time of the process [17]. The copy-on-reference 

technique transfers only the process state to the 

destination node and pages of process address 

space are transferred on demand [18,19]. In the 

flushing technique, dirty pages are flushed to disk 

and the process accesses them on demand from 

disk instead of memory on the source node [20]. 

4.2 Prefetching Techniques 

Besides techniques for transferring process 

address space, another technique is proposed to 

increase the performance of address space 

transfer while migrant is running on the 

destination node. This technique includes 

prefetching of those pages that are likely to be 

accessed by the migrant to avoid remote page 

faults. This solution is used in openMosix and it 

is called Lightweight Prefetching [21]. 

4.3 DSM-based Techniques 

Some HPC clusters have used the distributed 

shared memory (DSM) mechanism to transfer 

process address spaces between nodes upon 

process migrations. Pages stored on DSM need 

not be transferred at all during process migration. 

Only pages accessed by the migrant after 

migration are provided to the migrant process 

using the DSM mechanisms. Kerrighed is a kind 

of SSI operating system that has used this 

technique for process migration [2]. CORAL [4] 

and Mach [6] use the same technique for process 

migration and MigThread [22] uses a DSM 

framework for thread migration. 

4.4 Comparison 

DSM-based and copy-on-reference techniques 

in support of process address space transfer are 

more efficient than their counterparts because they 

do not transfer the whole process address space 

and avoid storing pages on disk. However, 

systems such as Mosix [15], Accent [19] and 

RHODOS [18] that have used the copy-on-

reference migration technique allow processes to 

migrate just once in their lifetime in order to avoid 

the complex implementation of multiple process 

migrations or better said the complex management 

of dependencies of data residual on different 

nodes if multiple migrations were allowed. On the 

other hand, systems that have used the DSM-

based technique are quite dependent on the 

implementation of their DSM manager for 

handling dependencies between residual data on 

different nodes that are provided to migrant 

processes on demand. In this paper, we propose a 

transfer technique in the face of multiple process 

migration allowance whose performance is higher 

than existing implementations of the DSM-based 

technique. 

5. Motivation 

Process migration has gained popularity for 

several reasons. Traditional process scheduling 

mechanisms lack enough flexibility to cope with 

changing loads of very large HPC clusters and 

process migration can be beneficial here. Unlike 

other mechanisms such as check-pointing, 

process migration needs no server coordination 

[20] and is more suited to make clusters scalable. 

By growing the size of data in high performance 

applications rather than process code size which 

is quite stable, process migration will be very 

promising when data are located on several 

nodes.  

In spite of above advantages, process 

migration has not been widely used in HPC 



 

Sharifian & Sharifi, Network RAM Based Process Migration 48 for HPC Clusters 

 

42 

clusters.  This is mainly due to the low 

performance of process migration mechanisms 

and the complexity of implementing the 

migration support in commodity operating 

systems.  

In HPC clusters executing applications with 

huge address spaces, the use of idle memories of 

remote cluster nodes instead of disk is more 

attractive. This can be achieved by network 

RAM. With growing applications with large data, 

the use of network RAM has become more 

advantageous. That is why various models have 

been implemented in recent years 

[7,9,10,11,23,24]. In such applications whose 

address spaces are very large and distributed 

among multiple nodes, process migration is more 

beneficial because of the smaller sizes of the 

process states, though data distribution makes 

data provision to migrant processes more 

difficult. 

By using the network RAM technology, 

memory is managed without any direct 

interference of process migration mechanism 

simplifying the implementation of process 

migration and improving the overall performance 

of process migration mechanism. 

6. Proposed Mechanism 

Network RAM uses memories of remote cluster 

nodes to store data. When a process migrates to 

another node, some parts of its address space are 

remained on the source node. This is similar to 

the case that the process is on the destination and 

data are stored in remote memory of the network 

RAM that becomes accessible to the migrant 

process on demand. Inspired by this similarity, 

we propose a new process migration mechanism 

that uses network RAM for the purpose of 

transferring process address spaces during 

process migrations. This approach decreases the 

implementation complexity of our process 

migration mechanism, reduces the overhead of 

residual data dependencies, and improves the 

performance of migrant processes. 

Network RAM has good facilities that can 

be used in process migration. These facilities 

include remote memory pager and an efficient 

module to locate remote pages across an HPC 

cluster. Thanks to these facilities, we can transfer 

only the required pages and at the same time, 

allow processes to migrate multiple times on 

various nodes. 

In our mechanism, there is no need for 

transfer of the whole process address space and 

pages required by the migrant process can be 

accessed through the network RAM remotely. 

Fig. 1 shows the schema of our proposed 

mechanism. 

When a process is selected for migration, no 

pages are transferred. Instead, each page in 

address space of the migrant process is added to 

the data structures of the network RAM and 

marked as a remote page. Then, page faults of 

migrant are handled by the network RAM faster 

than DSM-based solutions. 

The network RAM module manages all 

memory-related issues of process migration 

mechanism including the transfer of process 

address space during migration, management of 

residual dependencies and handling page faults 

in addition to its own work. This simplifies the 

implementation of process migration mechanism. 

 

 

Fig.1. A schematic view of our network RAM-based process 

migration mechanism 

7. Experimental Result 

To evaluate our proposed mechanism, we 

simulated our mechanism by running it on a 

homogenous cluster with 20 nodes connected to 

an Ethernet switch via a 10Gbps cluster network 

connection. Each node had a 3GHz CPU. The 

cluster has global distributed shared memory, 

global network RAM and global process and 

network management features in addition to 

process migration facility. 

We evaluated our mechanism by DGEMM 

HPC benchmark. Fig. 3 shows the migration 

times of processes with different sizes of address 

spaces under DSM-based, network RAM-based 

and copy-on-reference process migration 

mechanisms. Among previous solutions only 

DSM-based migration method support multiple 

migration of a process in its lifetime on different 

workstations. 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 43 

0

10

20

30

40

50

60

70

20x20 50x50 100x100 250x250 500x500

T
o

ta
l 

M
ig

r
a

ti
o
n

 T
im

e
 (

m
s)

 

Matrix Size 

Copy_on_Reference

DSM-based

NetworkRAM-based

As Fig. 3 shows, the migration times under 

DSM-based and our proposed mechanisms were 

almost equal. The migration time has increased 

linearly with increases in the size of process 

address space. In both mechanisms, the whole 

process address space was not transferred to the 

destination node at migration time. However, the 

larger the process address space the higher was 

the migration time implying that bigger address 

spaces take longer to be managed that is quite 

logical and sensible. The migration time under 

copy-on-reference mechanism is not dependent 

on address space size of process and almost 

remains unchanged. 

So far our experiments showed the same 

performance for DSM-based vs. network RAM-

based process migration mechanisms. 

Fig.2. Total migration time for different matrix Sizes 

 

Fig.3. Page fault handle time for process migration 

mechanisms 

The key improvement in our network RAM-

based mechanism is handling page faults of the 

migrant process on destination node.  Fig. 3 

shows the average page fault handling time for 

DSM-based, copy-on-reference and network 

RAM-based mechanisms. As Fig. 3 shows, our 

proposed mechanism handle page fault of the 

migrant process faster than DSM-based 

mechanism. That is because network RAM-

based does not consider memory sharing issues 

and providing pages to the demanding process is 

performed without locking operations. However, 

copy-on-reference mechanism has minimum 

page fault time, because in this way, requested 

pages are being brought from one specified 

workstation namely the source workstation. 

Due to the fact that page faults may occur 

thousands of times while executing the migrant 

process on destination node, improvement of 

page fault time in our proposed mechanism 

results in improvement of execution time of 

process compared to DSM-based mechanism. 

Given that our network RAM-based 

mechanism supports multiple migration of the 

process, the advantage of our network RAM-

based mechanism showed even more when a 

process was allowed to migrate to more than one 

cluster node in its lifetime. The more a process is 

selected to migrate, the more page faults it may 

experience in its execution.  

Fig. 4 shows the execution times of the 

DGEMM process with 500×500 matrix size after 

multiple migrations on different cluster nodes in 

its lifetime. As a result of effective page fault 

handling by the network RAM, the execution 

times of the migrant were reduced compared to 

those of DSM-based mechanism. 

8. Conclusion and Future Works 

In this paper, we proposed a mechanism that 

exploited the network RAM facility existing in 

clusters to transfer  

 

 

Fig.4. Execution time of DGEMM process after multiple 
migration in DSM- and Network RAM-based process migrations 

 

 

 

 



 

Sharifian & Sharifi, Network RAM Based Process Migration 48 for HPC Clusters 

 

44 

process address spaces during process 

migrations in HPC clusters. 

Our simulative experiments showed higher 

overall performance of migrant processes under 

our proposed mechanism compared to a 

simulated DSM-based process migration 

mechanism when processes were allowed to 

migrate to more than one cluster node in their 

life-time. This implies that our proposed 

mechanism is especially attractive to scientific 

applications with coarse-grain long-lived 

processes that may require multiple migrations in 

their life-time; we know as a fact that migration 

of short-lived processes is not efficient [6]. The 

network RAM facility we used in our proposed 

process migration mechanism managed access to 

remote memory and consequently simplified the 

implementation of our mechanism.  

We can further improve the performance of 

our proposed process migration mechanism by 

reducing the numbers of required page transfers 

by coordinating the network RAM as to where to 

store remote pages with the task that selects a 

node as destination upon migration. 

Acknowledgments 

We hereby acknowledge the help of Mr. 

Reza Azariun in drafting this paper. We also 

wish to thank Mr. Ehsan Mousavi and Ms 

Mirtaheri for their guidance in initiating research 

on migration in HPC clusters. We also thank 

ITRC for partially supporting the research whose 

results are partially reported in this paper 

.

 

 

 

 

 

References 
[1] Nalini Vasudevan and Prasanna Venkatesh, 

"Design and Implementation of a Process 

Migration System for the Linux Environment," 3rd 

International Conference on Neural, Parallel and 

Scientific Computation, August 2006, pp. 1 - 8. 

[2] Geoffroy Vall´ee, Christine Morin, Jean-Yves 

Berthou, Ivan Dutka Malen, and Renaud Lottiaux, 

"Process Migration based on Gobelins Distributed 

Shared Memory," Proceedings of the 2nd 

IEEE/ACM International Symposium on Cluster 

Computing and the Grid, May 2002, pp. 325 - 325 

[3] Michail D. Flouris and Evangelos P. Markatos, 

"Network RAM," High Performance Cluster 

Computing, Architectures and Systems.: Prentice 

Hall, vol. 1, ch. 16, pp. 383-408, 1999. 

[4] Ivan Zoraja, Arndt Bode, and Vaidy Sunderam, "A 

Framework for Process Migration in Software 

DSM Environments," Proceedings of 8th 

Euromicro Workshop on Parallel and Distributed 

Processing, 2000, pp. 158 - 165. 

 [5] Ehsan Mousavi Khaneghah, Najmeh Osouli 

Nezhad, Seyedeh Leili Mirtaheri, Mohsen Sharifi, 

and Ashakan Shirpour, "An Efficient Live Process 

Migration Approach for High Performance Cluster 

Computing Systems," Communications in 

Computer and Information Science, 2011, vol. 241 

part 8, pp. 362 - 373. 

[6] Dejan S. Milojicic, Fred Douglis, Yves 

Paindaveine, Richard Wheeler, and Songnian 

Zhou, "Process Migration," ACM Computing 

Surveys (CSUR), vol. 32, no. 3, September 2000, 

pp. 241 - 299. 

[7] Michael R. Hines, Mark Lewandowski, and Katrik 

Gopalan, "Anemone: Adaptive Network Memory 

Engine," Proceedings of the twentieth ACM 

symposium on Operating systems principles, 2005. 

 

 

 

 

 

 

 

 
 

[8] Eric A. Anderson and Jeanna M. Neefe, "An 

Exploration of Network RAM", University of 

California at Berkeley, 1999. 

[9] Hiroko Midorikawa, Motoyoshi Kurokawa, Ryutaro 

Himeno, and Mitsuhisa Sato, "DLM: A Distributed 

Large Memory System using Remote Memory 

Swapping over Cluster Nodes," Proceedings of 

2008 IEEE International Conference on Cluster 

Computing, 2008, pp. 268 - 273. 

[10] Hui Jin, Xian-He Sun, Yong Chen, and Tao Ke, 

"REMEM: Rmote Memory as Checkpointing 

Storage," 2nd IEEE International Conference on 

Cloud Computing Technology and Science, 2010. 

[11] Changgyoo Park, Shin-gyu Kim, Hyuck Han, 

Hyeonsang Eom, and Heon Y. Yeom, "Design and 

Evaluation of Remote Memory Disk Cache," 

Proceedings of 2010 IEEE International 

Conference on Cluster Computing Workshops and 

Posters (CLUSTER WORKSHOPS), 20-24 Sept. 

2010, pp. 1 - 4. 

[12] Michael L. Powell and Barton P. Miller, "Process 

Migration in Demos/MP," Proceedings of the ninth 

ACM symposium on Operating systems principles, 

1983, New York, NY, USA, pp. 110 - 119. 

[13] Yeshayahu Artsy and Raphael Finkel, "Designing 

a Process Migration Facility: The Charlotte 

Experience," IEEE Computer, vol. 22, no. 9, 

September 1989, pp. 47 - 56. 

[14] Chris Steketee, Piotr Socko, and Bartosz 

Kiepuszewski, "Experiences with the 

Implementation of a Process Migration 

Mechanism for Amoeba," Proceedings of the 19th 

ACSC Conference, January-February 1996, 

Melbourne, Australia, p. 140—148. 

[15] Amnon Barak, Oren Laden, and Yuval Yarom, 

"The NOW MOSIX and its Preemptive Process 

Migration Scheme," Bulletin of the IEEE 

Technical Committee on Operating Systems and 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 45 

Application Environments (TCOS), vol. 7, no. 2, 

Summer 1995, pp. 5 - 11. 

[16] Gerald Popek and B. WALKER, The Locus 

Distributed System Architecture: MIT Press, 1985. 

[17] Marvin M. Theimer, Keith A. Lantz, and David R. 

Cheriton, "Preemptable Remote Execution 

Facilities for the V-System", Proceedings of the 

10th ACM symposium on Operating systems 

principles, 1985, New York, pp. 2 - 12. 

[18] Damien De Paoli and Andrzej Goscinski, "Copy 

on Reference Process Migration in RHODOS," 

1996 IEEE Second International Conference on 

Algorithms and Architectures for Parallel 

Processing(ICAPP 96), Jun 1996, pp. 100 - 107. 

[19] Edward R. Zayas, "Attacking the Process 

Migration Bottleneck," Proceedings of the 11th 

ACM Symposium on Operating systems principles, 

1987, New York, USA, pp. 13 - 24. 

[20] Fred Douglis and John Ousterhout, "Transparent 

Process Migration: Design Alternatives and the Sprite 

Implementation," Software - Practice and Experience, 

vol. 21, no. 8, August 1991, pp. 757 – 785. 

[21] Roy S.C. Ho, Cho-Li Wang, and C.M. Francis 

Lau, "Lightweight Process Migration and Memory 

Prefetching in openMosix," IEEE International 

Symposium on Parallel and Distributed Processing 

(IPDPS 2008) , April 2008, Hong Kong, pp. 1 - 12. 

[22] Hai Jiang and Vipin Chaudhary, "MigThread: 

Thread Migration in DSM Systems," Proceedings 

of International Conference on Parallel Processing 

Workshops, 2002, pp. 581 - 588. 

[23] Nan Wang et al., "Collaborative Memory Pool in 

Cluster System," IEEE International Conference 

on Parallel Processing, 2007, Boston MA, USA, 

pp. 17 - 24. 

[24] Paul Werstein, Xiangfei Jia, and Zhiyi Huang, "A 

Remote Memory Swapping System for Cluster 

Computers," Proceedings of Eighth International 

Conference on Parallel and Distributed Computing, 

Applications and Technologies, 3-6 Dec. 2007, pp. 

75 - 81. 

 

  



 

 

 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 

 

47 

* Corresponding Author 

Accurate Fire Detection System for Various 

Environments using Gaussian Mixture Model  

and HSV Space  

Khosro Rezaee
*
 

Department of Electrical and Computer Engineering, Hakim Sabzevari University, Iran 
rezaeekhosro@ymail.com 

S. Jalal Mousavirad 
Department of Computer and Information Technology, University of Kurdestan, Iran 

jalalmoosavirad@gmail.com 

Mohammad RaseghGhezelbash 
Department of Electrical and Computer Engineering, Hakim Sabzevari University, Iran 

m.rasegh@gmail.com 

Javad Haddania 
Department of Electrical and Computer Engineering, Hakim Sabzevari University, Iran 

jhaddania@yahoo.com 

 
Received: 23/Sep/2012            Accepted: 21/Oct/2012 

 

 
Abstract 

Smart and timely detection of fire can be very useful in coping with this phenomenon and its inhibition. 

Enhancing some image analysis methods such as converting RGB image to HSV image, smart selecting 

the threshold in fire separation, Gaussian mixture model, forming polygon the enclosed area resulted 

from edge detection and its combination with original image, this papers addresses fire detection. 

Accuracy and precision in performance and rapid detection of fire are among the features that 

distinguish this proposed system from similar fire detection systems such as Markov model, GM, 

DBFIR and other algorithms introduced in valid articles. The average accuracy (95%) resulted from 

testing 35000 frames in different fire environments and the high sensitivity (96%) was quite significant. 

This system be regarded as a reliable suitable alternative for the sensory set used in residential areas, but 

also the high speed image processing and accurate detection of fire in wide areas makes it low cost, 

reliable and appropriate. 

Keywords: Fire Detection, Gaussian Mixture Model, Image Processing, HSV Space, Edge Detection. 

 

 

1. Introduction 

Fire Detection is an important issue in today's 

world because it directly threatens the life of 

living organisms, especially human life. 

Researches dealing with fire detection have 

always been important since the spread and the 

impact of fire detection in residential areas, 

business centers, industrial areas and open areas 

is critical. However, the field of smart fire 

detection is not confined to these areas. Fire 

detection without human intervention seems 

necessary in jungles, parks and farms too. The 

conventional sensors of fire detection such as 

environmental heat detector or smoke detector 

has a significant role in fire and smoke detection. 

Nevertheless, recent studies have shown that in 

large places and buildings, smoke detectors and 

heat sensors are not desirables due to point 

detection [1]. On the other hand, the employment 

of these systems in such open areas as jungles 

and spacious storages is expensive, having 

reduced capability and accuracy and unable to 

entirely cover these areas. In jungles, we need 

monitoring, employing human resources and 

large quantity of sensory network. Fire detection 

through image processing system is a new 

method based on one or some main color 

indexes, composition or formal structure and 

brightness. In some methods, colored mass of 

fire used for fire detection. Turgay et al [2] 

attempted to detect fire using fuzzy logic and 

colored mass of fire. Of course they first attempt 

to trace the smoke in video sequences, but they 

detect fire flames by using combine methods in 

next steps. Wirth and Zaremba [3] developed an 

efficient system by analyzing Back projection 

histogram image and properties of fire pixels in 

the image. Flame region is target for them in 

video sequences with high rate detection to 



 

Rezaee, Mousavirad, RaseghGhezelbash & Haddania, Accurate Fire Detection System for Various ……. 

 

48 

prevention from sudden firing in apartments. 

Cho and Bae [4] proposed a system which drew 

upon statistical models of flame 

color combination and image processing 

techniques. Xu and He [5], using neural-fuzzy 

grids in residential buildings, developed a fire 

detection system. This system is designed as 

alarm system in high-rise building. The main 

application in high-rise building was reason to 

detect the fire events. Chen and Chiou [6] also 

used image processing method for fire detection. 

But the main advantage of this system is 

prediction of fire events. Firstly the proposed 

system by tracking smokes in ambient, predicts 

the probability of fire event and so is called early 

fire-detection system. Phillips et al. [7] suggested 

an algorithm based on color and data obtained 

from flame movement in video images. Video 

sequences are analyzed by using image and 

video processing techniques in their work. 

Haralick et al. [8] detected fire flames using 

gray-level matrix (GLCM) and wavelet analysis 

as well as extraction of contextual features of 

image. Another method suggested by Healey et 

al. [9] drew on colored data of image for fire 

detection. But their work was real-time system 

that uses image processing techniques and 

features extracted from fire flames in images. Liu 

and Ahuja [10], used formal combination of fire 

for the sake of fire detection in Fourier transform 

space. They attempt to develop the accuracy and 

process speed for early fire detection. 

In some of these systems, fire detection takes more 

than tens of seconds. Obviously, this problem 

would be very serious because the fire detection in 

early stages is very important in extinguishing fire. 

Low accuracy in detecting fires is another problem 

observed in some other methods. For example, the 

location of growing areas of fire is not addressed in 

some methods. Thus, there seems to be a need for 

a smart efficient system which is capable detecting 

fire accurately and rapidly. Using enhanced image 

processing techniques, this paper introduces an 

accurate reliable system.  

2. The Proposed System 

The method proposed for detection of the fire 

flames in this paper draw mainly on video 

processing techniques to detect the target area.   

2-1Threshold 

The brightness intensity of a gray-scale image 

can only vary between [0-255]. This is a very 

useful feature. Partial separation of an image 

through selecting appropriate threshold is based 

on dividing the image into background and 

foreground classes [11].  One of the effective 

methods in image processing, which is often 

used to separate the background from image, is 

threshold method which is based on selecting an 

appropriate threshold from image histogram. The 

more careful is this selection, the more accurate 

will be the accuracy of separating image 

background from its main framework. In image 

processing, mainly symmetrical threshold 

method is used. Image histogram will be split in 

half at t0. Then, as to brightness intensity of t < 

t0, t > t0 average value will be calculated and we 

will be able to witness the greater average (either 

on left or right side). Thus, by changing the value 

of t0 within certain brightness intensity, the 

means become equal, or at least, the difference 

between these two means becomes smaller than a 

minimal number. However, if partial separation 

of image is conducted according to brightness 

intensity, the threshold value or boundary is 

considered as the basic brightness intensity in 

division. That is, brightness intensities greater 

than threshold value will be equal to 1 and 

brightness intensities less than that will be equal 

to 0. Thus, we will have a binary image 

consisting of zero and one elements. Hence, the 

threshold of the image f (x, y) means to convert 

it into a binary image according to Eq. (1): 

(1)                      
1 ( , )

( , )
0 ( , )

f x y T
g x y

f x y T

ì ³ï
= í

£ïî
 

where T is the selected threshold in separating 

background and foreground of the image. Figure 

1 displays the stages of separation process based 

on overall separation for selecting appropriate 

threshold.  

 

Figure 1.  separation based on overall threshold selection 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 49 

Drawing on this procedure, which is commonly 

called overall thresholding, the ideal condition takes 

place when there are sufficient changes between 

different parts of image. To select proper threshold 

for separating fire from other parts of image, in 

some methods, the formal and colored combination 

property will be used [12]. In Figure 2, the 

histogram of three constituting spectrum of RGB 

image for a random frame has been displayed. The 

main advantage of the histogram is capability 

detection the adequate threshold in image. 

 

Figure 2.  (a) Histogram of Red (b) Green and (c) Blue 

components in original frame 

2-2 Gaussian Mixture Model 

The subtraction of the backgrounds of a video 

sequence from each other is a method by which 

the target foreground section in each frame is 

separated. Among the conventional methods of 

thresholding, Gaussian mixture model is one of 

the techniques used for separation and display of 

different background images [13]. According to 

Eq. (2), Gaussian model for each pixel is the 

Gaussian density, i.e.: 
2

1 1
( ) exp

22

x
p x





  
   

   

                  (2) 

Where μ is the mean intensity of pixels 

brightness and σ is the variance. By constructing 

probability density function (PDF) with μ and σ 

variables, each pixel in each frame is distributed 

by K mixture in Gaussian model and the 

probability of the pixel having the value of Xn at 

the time of N is calculated according to Eq. (3): 

 
1

( ) ,
K

N j N j

j

P x w x 


                                   (3) 

In which wK is the weight parameter of K Gaussian 

factor and ɳ (x,θK) is the normal distribution of K 

factor, which is calculated according to Eq. (4). 

1/2/2

1
( , ) ( , , ) exp( )

(2 )
k k k D

k

x x Z   


 


   (4) 

μk and Σk are respectively mean and 

covariance of K factor and 

11
( ) ( )

2

T

k k kZ x x  
     
 

. The number of 

distribution K is estimated according to the wK 

divided σk sufficiency function and the first 

distribution of (B) is used as a foreground model. 

B function is calculated according to Eq. (5)  

1

arg min
b

j
b j

B w T


 
  

 
                                      (5) 

where T threshold is the lowest decimal value in 

the foreground model.  

2-3 HSV Space 

The space which is useful for segmentation of 

the fire is the conversion of HSV space. Using 

the features of color space change in HSV, the 

fire position can be detected by calculating the 

final area relative to the area of the original 

image. Using features of color space change in 

HSV space, the complexity between the level of 

image and undesired light intensity, which can 

produces error, is largely reduced. Section H is 

formed after converting RGB input image into 

HSV space according to M=max (R, G, B), 

m=min (R, G, B) and d=M-m. Finally RGB 

image in form of Figure 1 is converted into HSV 

space. The values of r, g and b is calculated as a 

set of ( ) /b M B d  , ( ) /g M G d  and

( ) /r M R d  . All three H, S and V components 

change in [1-0] interval. 

 

Figure 3.  The final diagram of converting RGB space into 
HSV space for input frames contain fire flames 

After converting image from RGB to HSV 

space, considering the difference between fire 

color and changes in the image histogram, we 

will separate the fire. During the conversion, the 

foreground and background are separated. Figure 

4 shows a set of frames taken from a video 

sequence with threshold implementation as well 

as application of conversion to HSV space and 

Gaussian mixture model. 

 



 

Rezaee, Mousavirad, RaseghGhezelbash & Haddania, Accurate Fire Detection System for Various ……. 

 

50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Images from top left to the right show 89 to 94 frames of a sample video sequence from the a fire event, in amidst 

column frames is converted to the HSV space and in the bottom column, the images produced after using Gaussian mixture model 

and thresholding has been presented in RGB format. 

2-4 Edge Detection and Image Combining 

Edge detection is one of the most widely used 

techniques in image processing in which basic 

components of the image like the framework of 

original image are extracted. Edge detection is 

the use of gradient matrix to detect those image 

pixels whose brightness intensities have sudden 

changes in contrast to their adjacent pixels [14]. 

This technique usually draws on first order and 

second order derivatives for each pixel. The 

operator of the first order derivative displays 

pixels in which the range of brightness intensity 

is greater than defined threshold value in the 

same part of image, and second order derivative 

seeks to find intersecting points of zero-crossing. 

If we display original image with f (x, y) the first 

order derivative will be 
x

f




and

y

f



  . Pixel 

gradient of (x, y) is f


  which has been shown in 

Eq. (6): 




































y

f
x

f

G

G
f

y

x


                                            

(6) 

Where Gx and Gy respectively are the gradient 

along the x and y-axis, and the value of gradient 

operator has been introduced in Eq. (7):  

  2122

yx GGf 
                                             

(7) 

In discrete space, variables x and y are replaced 

by quantized values of discrete m and n that 

represent the position of pixels in the image. 

Thus, the gradient is calculated in form of 

equation (8):  

)(
2

)(
2 ,+,=∇ nmfnmff

yx                                
(8) 

Where fx and fy are resulted gradients along X 

and Y axis respectively. To remove the extra 

elements that are associated with the threshold 

process, we use a range between [1-0] in edge 

detection. That is, if after processing of an edge 

pixel, the number of its adjacent pixels is less 

than a basic value, the brightness intensity of the 

target pixel becomes zero; otherwise, it will 

retain its previous brightness intensity. These 

two operators are applied to the images obtained 

from threshold stage. 

For graphical display of fire and precise 

detection of its location, the brightness intensity 

of new edge color spectrum is turned into a red 

spectrum. If the original image is F and 

restructured colored edge matrix is t, then 

according to equation (9) we will have: 

( ) 0 F t =                                                         (9) 

Thus, all elements of F matrix which are similar 

to zero elements of t remain and other elements 

become zero. Filling polygons of empty and 

enclosed areas is an algorithm which is carried 

out according to data structures, morphological 

properties and partial image processing. Filling 

the internal area of an enclosed region takes 

place within two classes of polygon filling and 

pixel filling [15]. Drawing on 

morphological reconstruction algorithm [16][17] 

of image which is based on technique of edge 



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 51 

formal repairing, and using constructive lines of 

polygon, we will retrieve the data lost during 

threshold stage. It, thus, increase the accuracy of 

this stage. In Figure 5, the Filling polygons edge 

detection and combining images to trace the fire 

flames is shown. 

 

Figure 5.  Images from top left to the right show new edge image after filling polygon and and in the bottom column the final 

composition of the fire location and original image is shown. 

3. Performance Analysis 

The system was implemented on 57425 video 

frames taken from AMC channel [18] and video 

sequences containing the occurrence of the fires. 

There were 7 fire event cases in video sequences. 

All sequences were randomly converted into 4 

categories of Movie with these details: AVI 

format, 120 × 160 pixels resolution and 15 fps. 

In Table 1, mean accuracy (MAC) and detection 

rate (DR) and false alarm rate (FAR) have been 

calculated according to Eq. (10) to Eq. (12) 

which are used for measuring the accuracy of 

detection in video sequences.    

( ) 100TP TN

TP TN FP FN

N N
AAC

N N N N


 

  
   (10) 

 

Number of True Positive
DR

Number of Fire Video Frames
         (11) 

Detected ROI
FAR

Number of Video Frames



             (12) 

In these equations, 

NTP is the number of frames in which fire flames 

has been detected by the algorithm.  

NFN is the number of frames in which the 

algorithm has failed to detect fire flames.  

NTN is the number of frames in which there is no 

sign of fire flames and the algorithm has not 

detected any by mistake. 

NFP is the number of frames in which there is no 

sign of fire but the algorithm has detected some 

by mistake. 

And ROI is also the objective area in the image 

which includes all three signs of fire in the 

ambient. 

Table 1: How average accuracy, detection rate and false alarm rate are calculated. 

False 

Alarm 

Rate 

(FAR) 

Detection 

Rate (DR) 

Average 

Accuracy 

(AAC) 

The number frames 

without any fire events 

The number frames 

with fire flames No. 

Frames 
Video 

Clips 
NFP NTN NFN NTP 

4.71% 94.81% 95.13% 14 283 7 128 10755 Movie 1 

5.63% 100% 95.72% 8 134 0 45 5690 Movie 2 

8.69% 96.96% 93.28% 16 168 3 96 9661 Movie 3 

4.36% 97.80% 96.29% 9 197 2 89 8917 Movie 4 

5.84% 97.39% 95.105% 47 782 12 358 35023 Total 

 

 

( ) 100TN

TN FP

N
SP

N N
= ´

+
and

( ) 100TP

TP FN

N
SE

N N
= ´

+
are specificity and 

sensitivity which were respectively equal to 

94.33% and 96.75%. It should be noted that this 

method is a new technique and a comparison 

has been drawn between the performance of this 

system and other methods used for detection of 

the fire events. Different methods use various 

databases. The proposed method in this paper, 

however, has been applied to a greater database. 

At first, it should be noted that the use of a 

single camera would decrease the sensitivity 

and specificity of the third technique in contrast 

to other two techniques. Figure 6 displays the 

implementation of this method as well as 



 

Rezaee, Mousavirad, RaseghGhezelbash & Haddania, Accurate Fire Detection System for Various ……. 

 

52 

detection of the location and condition of fire 

spread in different spaces. The experiments 

show that the algorithm is reliable and accurate. 

Also the fire experiments show that the shape 

and color of flame change randomly in fire 

image sequences.  

 

 

 

 
 

 

 
 

Figure 6.  Implementation the proposed algorithm on 2 clips which contain fire events. The algorithm is implemented on two 

images in bottom coloumn  

3-1 Discussion  

The occurrence of error is only natural. Using 

multiple cameras, which simultaneously identify 

fire events, increases the accuracy, sensitivity 

and specificity of this system more than the other 

two techniques. Table 2 shows the greater ability 

of the system in detecting the occurrence of a 

fire. Inconsistency is another problem that may 

occur when decreasing the frames and the 

resulted time delay might result in lower 

sensitivity. In Figure 7 the proposed algorithm 

has been compared in 15 images using DFBIR 

and GM [19][20] methods. Randomly selecting 

15 images out of 83 tested images, the average 

accuracy of 95% was compared in Table 2 with 

valid techniques. The highest accuracy belonged 

to the jungle image with 515×972 resolution and 

99.58% accuracy. The least accuracy in detection 

of fire belonged to the image of house flames 

with 689×1034 resolution and 94.07% accuracy.   



 

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 53 

 
Figure 7.  Comparison of the proposed algorithm with 

DFBIR and GM 

Table 2. Comparison of detection rates and false alarm rates 
in different techniques with proposed algorithm 

Technique 
Detection 

Rate  

False Alarm 

Rate  

Chen et al [6] 93.90% 66.42% 

Celik et al [21] 78.50% 28.21% 

Celik et al [22] 97.00% 78.39% 

YCbCr [2] 99.00% 31.00% 

Lee [23] 85.2% 1.7% 

Proposed 

Algorithm 
97.39% 5.84% 

4. Conclusions 

This paper proposed a system with high accuracy 

and efficiency which was able to detect fire and 

its expansion pattern in a short time. In contrast 

to other fire detection, the performance of the 

proposed algorithm was at an acceptable level 

with an average error of 5% and sensitivity of 

96%. The implementation of this system in 

residential and industrial areas as well as open 

areas such as jungles and farms obviates the need 

for employment of expensive sensory networks 

since such factors as low design cost, fast 

processing and response as well as high accuracy 

distinguishes this system from similar ones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

5. References 
[1] Toreyin, U. and Dedeoglu, Y., "Contour Based 

Smoke Detection In Video Using Wavelets", IEEE 

Trans. on Signal Processing, Vol. 42, 2002, pp. 

194–196. 

[2] Çelik, T. and ÖzkaramanlÆ, H., "Fire Pixel 

Classification Using Fuzzy Logic And Statical 

Color Model", ICASSP 2007, Proc IEEE, Conf. on 

Image Processing, 2007, pp. 1205-1207. 

[3] Wirth, M. and Zaremba, R., "Flame region 

detection based on histogram back projection", 

IEEE Canadian Conference Computer and Robot 

Vision, China, pp. 167-174. 

[4] Cho, B.H., Bae, J. W., "Image Processing-based 

Fire Detection System using Statistic Color 

Model",  International Conference on Advanced 

Language Processing and Web Information 

Technology, July, 2008, Dalian Liaoning, China 

pp. 245-250. 

[5] Xu, L.M. and He, W., "Application of Fuzzy 

Neural Network to fire alarm system of high-rise 

building", Journal of Communication and 

Computer, Vol.2, No.9, Sep 2005, pp. 18–21. 

[6] Chen, T., Wu, P., Chiou, Y., "An early fire-

detection method based on image processing" In: 

Proc. IEEE International Conf. on Image 

Processing, ICIP 04, 2004, pp. 1707–1710. 

 

 

 

 

 

 
 

[7] Phillips, W., Shah, M., Lobo, N., "Flame 

recognition in video", Pattern Recognition Lett., 

Vol. 23, No. (1–3), 2002, pp. 319–327. 

[8] Haralick, R.M., Shanmugam, K. and Dinstein, I., 

"Textural Features for Image Classification", IEEE 

Transactions on Systems, Man, and Cybernetics, 

1973, pp. 610-621. 

 [9] Healey, G., Slater, D., Lin, T., Drda, B. and 

Goedeke, A. D., "A system for real-time fire 

detection", in CVPR ’93, 1993, pp. 17-15. 

[10] Liu, C. B. and Ahuja, N., "Vision based fire 

detection", in ICPR ’04, 2004, vol. 4. 

[11] Anjos, A., Leite, R., Cancela, M. L., Shahbazkia, 

H., "MAQ–A Bioinformatics Tool for Automatic 

Macro array Analysis" International Journal of 

Computer Applications. 2010. Number 7 - Article 1. 

[12] Collins, R. T., Lipton, A. J. and Kanade, T., "A 

system for video surveillance and monitoring", in 

8th Int. Topical Meeting on Robotics and Remote 

Systems, 1999, American Nuclear Society. 

[13] Stauffer, C., and Grimson, W.E.L, "Adaptive 

background mixture models for real-time 

tracking", Proc. CVPR, Fort Collins, Colorado, 

USA, 1999, pp. 246–252. 

[14] Anderson, W.F., Pfeiffer R.M., Dores G.M., 

Sherman M.E., "Comparison of age distribution 

patterns for different histopathologic types of 



 

Rezaee, Mousavirad, RaseghGhezelbash & Haddania, Accurate Fire Detection System for Various ……. 

 

54 

breast carcinoma", Cancer Epidermal Biomarkers 

Prev. 2006; Vol. 15 No. 10, 1899-1905. 

[15] Pavlidis, T., "Filling algorithms for raster 

graphics", Computer Graphics and Image 

Processing, Vol. 10, 1979, pp.126-141. 

[16] Soille, P., "Morphological Image Analysis: 

Principles and Applications", Springer-Verlag, 

1999, pp. 173-174. 

[17] Vincent, L., "Morphological Gray scale 

Reconstruction in Image Analysis: Applications and 

Efficient Algorithms", IEEE Transactions on Image 

Processing, Vol. 2, No. 2, April, 1993, pp. 176-201. 

[18]AMC Channel and Company, available at: 

http://bobrelease.blogspot.com.   
[19] Jun, C., Yang, D., Dong, W., "An Early Fire 

Image Detection and Identification Algorithm 

Based on DFBIR Model", World Congress on 

Computer Science and Information Engineering, 

2009, pp. 229-232. 

[20] Tingting, L., Shuhai, Q., "An Application of Directional 

Fractal Parameter Vehicle License Plate Location", 

Journal of WUT (Information & Management 

engineering, Vol. 29, No. 3, 2007, pp.14-17. 

[21] Celik, T., Demirel, H., Ozkaramanli, H., 

Uyguroglu, M., "Fire Detection in Video 

Sequences Using Statistical Color Model", Proc. 

International Conferences on Acoustics, Speech, 

and Signal Processing, May 2006, Vol. 2, No. 2, 

pp. II-213 - II-216. 
[22] Celik, T., Demirel, H., Ozkaramanli, H., 

"Automatic Fire Detection in Video Sequences", 

European Signal Processing Conference, 

EUSIPCO-06, Sept. 2006. 
[23] Lee Chen, Y., Chin, T. L., "Spatio-Temporal 

Analysis in Smoke Detection", 2009 IEEE 

International Conference on Signal and Image 

Processing Applications, 2009, pp. 80-83.

 

http://bobrelease.blogspot.com/

	first pages ok
	1-1017-k
	2-1021-k
	3-1023-k
	4-1028-k
	5-1037-k
	6-1040-k
	7-1022-k

