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Abstract 
Arithmetic units are essential in digital circuit construction, and the enhancement of their operation would optimize the 

whole digital system. Among them, multipliers are the most important operational units and are used in a wide range of 

digital systems such as telecommunication signal processing, embedded systems, and mobile technology. The main 

drawback to a multiplication unit is its high computational load, which leads to considerable power consumption and an 

increased area of silicon. This also reduces the speed, which negatively affects the digital host functionality. Estimating 

arithmetic is a new branch of computer arithmetic implemented by discarding or manipulating a portion of arithmetic 

circuits and/or intermediate computations. Applying estimated arithmetic in arithmetic units would improve the speed, 

power consumption, and the implementation area by sacrificing a slight amount of result accuracy. This article develops 

and analyzes an estimated truncated floating-point multiplier for single precision operands that is capable of compensating 

for errors to a desired level by applying the least significant columns of the partial product matrix. These errors are caused 

by removing a number of carry digits in the partial product matrix which make a direct contribution to rounding the 

floating-point numbers. The evaluation results indicate that the proposed method improves speed, accuracy, and silicon 

area, in comparison with common truncated multiplication methods. 
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1. Introduction 

Multipliers are one of the major arithmetic units 

commonly applied to digital systems like digital signal 

processing, telecommunication signal processing, 

embedded systems, and mobile systems. The major 

deficiency in these systems is their low speed, high power 

consumption, and high silicon-covered area, which cause 

a shortfall in digital system operation [1]. The Fast 

Fourier Transform (FFT) constitutes the basis of most 

telecommunication systems, like DVBT, UWB, WIMAX, 

WLAN, ADSL, and wireless telecommunication systems 

[2]. This function is implemented by multiplication and 

represents a complex function of products applied for 

converting the signal from frequency to time phase and 

vice versa. 
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This function is applicable in telecommunication 

signal processing as well as image processing and digital 

signal processing. Optimized implementation of this 

block influences telecommunication systems with respect 

to speed and accuracy [3]-[4]. In addition to its 

multiplication or Multi-Accumulate (MAC) on some 

sources of Fused Multiply-Add (FMA), this function is a 

component other major arithmetical factors like Finite 

Impulse Response (FIR) [5], Discrete Cosine Transform 

(DCT) [5]-[6], and Multiple Input Multiple Output 

(MIMO) [7]. Consequently, any improvement in the 

multiplying algorithm would also contribute to both of 

these functions and to the telecommunication system in 

general. 

 In today’s applications, where high-value calculation 

is of the essence, applying floating-point unit in FFT 

calculations and other telecommunication signal 

processing functions could be beneficial and efficient. In 

the recent past, the mentality and assumption was that 

floating-point has big area and high power; therefore, 

designs preferred to convert codes into fixed points or 

simulate floating-point functionality. This, of course, was 

a time-consuming and erroneous, with 30% of software 

design time attributed to it [8]. Nevertheless, this point is 

not always accurate , while applying optimized floating-

point unit in telecommunication digital signal can even 

reduce energy consumption by 30% [9]-[10]. The focus of 

most research is now on approximated or estimated 

computations as a new approach in applications where the 

circuit would be able to generate inaccurate and faulty 

results. This approach is implemented by eliminating a 

portion of intermediate calculation. Although this 

function causes an increase in speed and a decrease in the 

silicon-covered area and power consumption, it slightly 

reduces arithmetic circuit accuracy [11]. Implementation 

of arithmetic units like multiplication have different 

methods. This counter, which replaces the common 

method and 3:2 counters, when using a 4:2 counter (four 

entry and two exit bits) in an 8  8 tree multiplier, is 

illustrated in Fig. 1. When all four bits are 1, an error 
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occurs. In part (b) of Fig. 1, a reduction in multiplication, 

circuit capacity, and implementation time are observed 

[12]. 

Figure.1. a) 4:2 and 3:2 counters, b) partial product generation in             

(    -bit multiplier, c) the       marked accurate multiplier using 

3:2 counter, d) the(     estimated marked accurate multiplier using 
4:2 counter[12] 

The parallel truncated multiplier, developed in 1992 

[13], was the first sample applied in estimated computing 

techniques and accepted in this field. In this method, 

eliminating the partial product LSP (Least Significant 

Part) matrix and keeping the MSP (Most Significant Part) 

section would lead to circuit area reduction. Of course, 

this phenomenon would generate error; so far, there exist 

no studies regarding removal of these errors [14]-[15].  

 
Figure. 2. The       truncated multiplier and different elements of the 

partial product matrix for errror correction 

Applying the LSP column of partial products to 

estimate the carry digit to MSP is another method that has 

been used in [16]-[17]. This method depends on 

multiplying the circuit entrance by a complicated 

estimating circuit but retaining accuracy. Here, we see 

implementation of a sequential estimated truncated 

floating-point digit at single precision, where the partial 

product of the matrix yield from the multiplication of 

mantissas of two digit floating-points are involved. By 

applying the four columns in LSP of the matrix and 

applying one small circuit for the carry digit estimation 

from the 5
th

 column, the error is reduced in a significant 

manner and the outcome converges to the real value of 

multiplication. 

 In this article, the rounding of floating-point 

technique is introduced in Sec. 2, the combinational 

estimated multiplier is described in Sec. 3, the probability 

of maximum error is computed in Sec. 4, the proposed 

simulation method and its comparison with other states is 

addressed in Sec. 5, and the article is concluded in Sec. 6. 

 

 

2. Rounding Floating –Point Numbers 

Since 1990, floating-point numbers have been 

exhibited in accordance with IEEE 754-2008 standard. 

The two single and double precision widths are 

introduced for these numbers in this standard [1]. The 

partial product matrix generated from multiplying the 

mantissas by two floating-point digits at single precision 

is shown in Fig. 3. This product has 48 bits, but due to the 

standard limitations, only 24 MSP bits (23 bits of 

mantissas and one bit, the product of normalization) are 

held. To compensate for the error caused by eliminating 

the LSP bits, the rounding is performed by applying the 

three sticky (S), Gard (G) and Round (R) bits located in 

the LSP, calculated in accordance with Standard S from 

Eq. (2) [1]. 

 
Figure. 3. Partial product matrix and the two mantissas floating-point 

digits at single precision 

21PS  OR
20

P OR…
0P  (2) 

3. Sequential Estimated Multiplier Capable 

of Error Compensation 

3.1 Algorithm 

Hardware implementation of this multiplier, including 

the 20 bits register A (for storing the 1
st
 to 20

th
 

multiplicand), the 24 bits register B (for storing the 

multiplier), and 28 bits register P (for storing the product) 

with initial value of zero, is illustrated in Fig. 4. Since this 

multiplier is a sequential truncated to 28 bits and there is 

no need for the final response of the 20 LSP bits, the 

section of the circuit that computes these 20 LSP bits can 

be eliminated. To accomplish this, the 27 bits register, the 

Extended Register (Ex) with its initial value, is defined 

according to Eq. (3). 
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Figure. 4. Hardware implementation of multiplier, W4CE state 

The operation of this multiplier is subject to the 

following steps: 

1. In the first cycle, provided that the least significant bit 

of register B (b0) is 1, the initial value of EX is added to P 

and the product is placed in P; otherwise, P holds its 

previous value. 
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2. In every cycle i, first the P and A registers shift to the 

left by one bit and the exiting bit enters the EX register. 

Here, B shifts to the right by one bit. 

3. In cycle  , step one is repeated 24 times until the last 

cycle yield is placed in P. 

3.2 Error Compensating Circuit 

As explained earlier, in the proposed multiplier, 20 

columns have been eliminated from the LSP section of the 

partial product matrix, which in turn would lead to the 

elimination of the carry digit in this section, an error occurs. 

To compensate for this error, it should be estimated 

somehow; hence, what bits are involved in the creation of 

this carry digit should be known. 
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Figure. 5. Adding function in cycle     of partial product matrix 

In this proposed method, this digit is estimated from 

the 19
th

 column in cycle  iinc ,4
, three bits are required: 

 The partial product created in the thi  cycle and at the 

 thin 4 space of  iinpp ,4
 

 The intermediate total product in the  thi 1  cycle of 

 )3(1  inPi
 

 The carry generated in the 
thi cycle and  thin 5

space of  iinc ,5
 

These three elements are the entries of full adder; 

therefore, circuits must be designed that would receive 

these three entries and produce the iinc ,4  and 
iinP ,4

outputs. Since this proposed multiplier is of a sequential 

type and multiplication occurs in any part of the cycle, not 

all the above-mentioned entries are accessible. And 

among them, only 
iinpp ,4
are accessible in every cycle 

and iinc ,5  is the carry digit of the column adjacent, 

which in turn requires these three similar elements for its 

production and makes the circuit issue more complicated; 

for that reason, it is not considered. To compute 

),3(1  inPi
 it can be said that this value in 

approximation is equal to the total of intermediate 

multiplication products in previous cycles, where the 

computation of function iinc ,5  is not considered. Hence, 

to make a distinction between this estimated value and 

)3(1  inPi
, it is presented as an accumulated value       

(
1,3  iinAV ) with a name change; that is, the total partial 

product must be protected in any cycle to allow access to 

.1,3  iinAV  Here, a flip-flop with an initial  value of 0 can 

be applied, the value of which in the 
thi  cycle would 

equal .iFF  
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Equation 5 describes the total of two bits, for 

implementation of which a half adder could be applied. 

According to the descriptions above and the half-adder 

equation, the iinc ,4 value can be obtained from Eq. (6-7). 

13,3   iiiin FFFFAV XOR
3,3  iinpp  (6) 

1,3,4   iiniin AVc AND
iinpp ,4
 (7) 

The implementation of this circuit is illustrated in Fig. 

6, where ECV is the carry digit that is added to the 20
th

 

column in every cycle. 

 
Figure. 6. Error compensation circuit 

4. Computing Probability of Maximum Error 

Maximum error occurs when the R, G, S bits and other 

effective bits are not available or, if available, their values 

are not appropriate for computing S; thus, no rounding 

takes place. 

The bits R and G, in fact, represent the bits 
23P  and 

22P
 
respectively, (refer to Fig. 3), and 

21PS  OR
20P OR
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19P  . To compute the maximum error probability, it is 

necessary to calculate the probability of each one of 
19P  

to
23P  bits being 1 (here 

19P  is computed in both the 

truncated and estimated states). 

To accomplish this task, the probabilities of the 

elements from partial product matrix involved in 

computing these bits being 1 must be computed. For 

example, the probability of 
23P or R being 1 depends on 

the probability of every element being 1 in the 23
rd

 

column (Fig. 3) in every cycle, and each of these 

intermediate elements depends on another element; that is, 

every intermediate product like )1(  inPi
 in cycle i 

depends on 
iinpp ,1

(intermediate product in cycle i), 

)2(1  inPi
 (intermediate product in thi )1(   cycle), 

and iinc ,  (carry bit from adjacent column in cycle i). 

If the probability of )1(  inPi
being 1 is defined as

))1((1  inPP i
. According to Table 1, its being 1 is 

achieved in different states. 
 

Table 1. Possible states in computing           

)2(1  inPi

 

iinpp ,1
 

iinc ,  )1(  inPi

 
iinc ,1  

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Consequently, the following equation is obtained: 
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)( ,11 iinppP 
, ))2(( 11  inPP i

, and )( ,1 iincP 
 are the 

probability of the intermediate product being 1 at 
thi

cycle, their being 1 at thi )1(  cycle, and their being 1 for 

carry digit bits from the adjacent column and 
thi cycle, 

respectively (probability of being 0 is defined in the same 

order). 

To compute the probability of 
iinpp ,1

being 1, 

represented by )(1 ppP , it can be assumed that every 

intermediate bit is a random variable; thus: 
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Likewise, it can be said that the probability 

)2(1  inPi
is in fact the probability )1(  inPi

, in the
thi )1(  cycle; therefore, it depends on the same 

parameters but at
thi cycle, in a sense that it has a recessive 

state, the end condition of which is computation of 

))1(( 11 nPP (an addition that occurs in the first cycle). 

This value in the first cycle is subject to values
1,1npp , 

2,1npp and 2,3nc . By applying a table similar to Table 1, 

this can be presented as: 
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All values in Eq. (11) are random variables, the 

probability of which is computable through Eq. (9-10). To 

compute )( ,1 iincP 
 in Eq. (8), Eq. (12) must be applied, 

which is obtained from Table 1. 

)](

)()1(({

)}()1(([{

)]())1(([)(

,11

,110

,011

,111,1

iin

iini

iini

iiniiin

cP

ppPinPP

ppPinPP

ppPinPPcP

















 

 
 
 
 
(12) 

Eq. (12) is a returnable one, the ending condition of it 

is determining the second cycle carry digit ( 2,2nc ).  

According to Fig. 7, computing 
2,2nc is subject to two 

2na and 
2nb values (intermediate product) and its value 

is1 when the volume of either 
2na or 

2nb is 0 and the 

other is 1 and the carry digit of the adjacent column          

( 3nc ) is 1. This equation is a returnable one as well. 

Eventually, the need to compute the probability of 
1

c  

would rise, which would be subject to the probability of 

0a and 0b being 1; hence: 

16

1

4

1

4

1
)()()( 010111  bPaPcP  

 

(13) 

Consequently, the probability of 
2nc being 1 can be 

computed through Eq. (14). 
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Figure. 7. Adding function of the two-bit digits 

The )( 2,31 ncP and )( 2,30 ncP in Eq. (11) are computed 

with respect to the above-mentioned description. In the 

same sequence, all parameters in Eq. (8) can be 

computed. 

4.1 Maximum Error Probability for No Error 

Compensation State 

To determine the effectiveness of this proposed 

method of compensating for errors caused by truncation 

in a partial product matrix, different state of truncation is 

of concern. 

In the first state, the product contains only 24 bits and 

no extra bit is held for rounding (WO3C). In the second 

state, in addition to the 24 bits, bits
23P , 

22P  and 
21P  are 

considered as R, G, and S bits held (W2CE). In the next 

state, bits ,23P  
22P , and 

21P are considered as R, G, and S, 

and 
20P is considered as a bit following S (W3CE). In the 

last state, bits ,23P  
22P and 

21P  are considered as bits R, 

G, and S, and bits ,20P  
19P  are considered as the two bits 

following S, which are held (W4CE). The maximum error 

and rounding are defined based on occurrences of 

different states of bits R, G, and S, Table 2.  

Table 2. Rounding states occurrence 

R G S Rounding 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

 

 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

Now, if the probabilities of R, G, and S bits being 1 

equal ),(1 RP  )(1 GP , and )(1 SP respectively, and the 

probability of maximum error is )(max eP , Eq. (15) yields: 
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In fact, Eq. (15) is the maximum error occurrence 

probability at WO3C state in Table 2. At W2CE, the 

maximum error occurs when R=1, G=0, S=0, and 20P

1; but since this bit is not available, the rounding would 

be calculated wrongly. In W3CE, maximum error occurs 

when R=1, G=0, S=0, 20P 0, and 
19P =1. A similar 

result is obtained for W4CE state when R=1, G=0, S=0, 

20P 0, 19P 0, and 18P 1. The results obtained by 

these computations will be explained later. In all cases, 

the probability of every bit being 1 or 0 is calculated 

according to the method described in Sec. 4. 

4.2 Maximum Error Probability for Error 

Compensation States 

Computing probability at this state is related to a time 

when the error compensation circuit is applied for carry 

propagation estimation. Applying this circuit predicts the 

carry propagation wrongly in both states, Table 1, 

Therefore, by knowing the existence of error in 

computing carry propagation, and its appearance in the 

product, with reference to Eq. (16) the following is 

yielded: 
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According to the definition of exclusive OR function 

function, this product would be equal 1, only if the 

number of bits that equal 1 is an odd number. Hence, 

       , the probability function of exclusive OR 

function can be represented as 
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The results obtained by replacing the digits in all the 

above-mentioned equations in both cases of error state, 

with and without compensation, are presented in Table 3. 

As observed these results are very close to one another, 

indicating the error compensation circuit accuracy. 

Table 3. Digit values of muximum error probability 

Proposed 

method 

Maximum error 

probability for no 

compensation state 

maximum error 

probability for error 

compensation state 

WO3C 0.4977495060 — 

W2CE 0.06249765004 0.062621245550 

W3CE 0.0314991165 0.03143649401 

W4CE 0.01581255649 0.01587555472 

5. Simulation 

This simulation is made through MATLAB software 

and the implementation area and delay are assessed 

through Synopsys Design Compiler with TSMC18 typical 

library. 

To determine the error compensation circuit effect, in 

addition to simulation of this proposed multiplier for 
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complete multiplication, the following steps are applied: 

elimination of LSP section (WO3C), LSP three columns 

(W3CO), two columns and carry propagation estimation 

from the third column (W2CE), three columns and carry 

propagation estimation from the fourth column LSP 

(W3CE). 

 
 

5.1 Accuracy Assessment 

Here, the absolute and relative error, a product of two 

random digit multiplications at 24 cycle, is calculated and 

its diagram is drawn (Fig. 8 and Fig. 9). The cycles 

presented are 1, 4, 8, 12, 16, 20, and 24 only. 

 
Figure. 8. Selected absolute error diagram in seven cycles 

 Figure. 9. Selected relative error diagram in seven cycles 

The proposed design was simulated for 5,000 random 

digits as well, and the absolute and relative errors in the 

seven cycles defined were calculated and plotted (Fig. 10 

and Fig. 11). The results indicate a reduction in error and 

the positive effect of the error compensation circuit. 

 Figure. 10. Absolute error average of 5,000 random digits in seven 

cycles 

 Figure. 11. Relative error average of 5,000 random digits in seven cycles 

To determine error convergence, the fitting curve of 

the absolute and relative error average of 5,000 random 

digits for all states is drawn in Fig. 12. This curve 

indicates the error converges towards 0.  

 Figure. 12. The error coverges towards zero diagram 

5.2 Area and Delay Assessment 

In area assessment, the results of this proposed 

multiplier and truncated conditions are presented in the 

two combinational and non-combinational (TCA), and 

combinational and non-combinational area of circuits and 

intermediate connections (TA) are reported (Table 4). 

Comparison of different states, specifically, W2CE and 

W3CE, indicates the effective contribution of the 

estimating circuit. 

Table 4. Truncated multipliers area report 

 WO3C W3CO W2CE W3CE W4CE 

T
C

A
 (
 
 

 
) 

  

1
8
4
3
1
.8

9
4
6
1
7

 

2
7
2
1
9
.1

8
5
9
7
6

 

2
6
2
5
5
.3

8
2
9
3
7

 

2
7
0
7
1
.9

0
2
7
5
9

 

2
8
0
7
7
.4

7
5
6
2
6

 

T
A

 (
 
 

 
) 

 

3
1
4
1
1
3
.3

8
7
4
1

 

4
2
8
7
0
1
.2

2
3
2
0

7
 

4
2
5
7
9
0
.7

3
5
1
1

0
 

4
3
7
9
2
7
.3

1
6
2
1

1
 

4
3
7
6
2
6
.2

1
5
6
1

6
 

The timing report of all truncated multiplier states 

and this proposed multiplier are presented in Table 5. 

Comparison of different states, W2CE and W3CO in 

specific, indicates the effective contribution of the error 

compensation circuit. There exists a direct relation 
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between an increase in LSP column for error 

compensation and circuit delay. 

Table 5. Truncated multipliers timing report  

Truncated 

multipliers 
WO3C W3CO W2CE W3CE W4CE 

Delay      473.33 521.33 473.33 593.33 593.33 

In Table 6, previous works has been summarized. 

Comparisons have been done for two parameters area and 

delay, and for both integer and floating-point numbers. In 

all of the papers presented, only two parameters area or 

delay have been discussed and have not been reported 

simultaneously. 

As are observed, the proposed multiplier is in the 

proper position, exception in case [22] where this paper 

has not obtained any report about accuracy and area. 

Likewise, only there is one reported area that relates to a 

16-bits integer multiplier. 

Table 6. Comparison of proposed multiplier and previous work 
where fp represents floating-point numbers 

Mult. method Size (bits) Area (     Delay (ns) 

[18] 16 int 1.22      Not reported 

[19] 8 int Not reported 940.8 

[20] 32 fp Not reported 3055.2 

[21] 16 int Not reported 836.32 

[22] 32 fp Not reported 163.68 

[23] 32 fp Not reported 2099.424 

[23] 32 fp Not reported 2264.136 

Proposed  32 fp 4.38      593.33 

To determine the contribution of the LSP column 

number in error compensation, the diagram of relative 

error average and delay is presented in Fig. 13, where an 

increase in LSP column number for the purpose of 

compensation results in an increase in delay. This is why 

no attempt is made to increase the column number. 

 Figure. 13. Relative error average and delay diagram 

6. Conclusion 

The algorithm for and implementation of a sequential 

truncated multiplier for floating-point digits at single-

precision that is capable of error compensation are 

proposed. This method is implemented by applying four 

MSPS from a semi-LSP matrix of a partial product and 

estimated carry from the fifth column using a small 

circuit. Results indicate that the error compensation 

circuit can significantly reduce the error caused by lake of 

carry digits from the eliminated columns. Among all 

simulation states, W4CE is the best candidate with 

respect to finding a trade-off between speed, accuracy, 

and area, and it can be used in digital signal processing, 

telecommunication signal processing, embedded systems, 

mobile systems that require a small area, and low power 

consumption. 
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