

* Corresponding Author

Improving Accuracy, Area and Speed of Approximate Floating-
Point Multiplication Using Carry Prediction

Marzie Fathi*
Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

fathi.marziye@gmail.com

Hooman Nikmehr
Department of Computer Architecture, University of Isfahan, Isfahan, Iran

nikmehr@eng.ui.ac.ir

Received: 27/Jul/2016 Revised: 31/Aug/2016 Accepted: 26/Sep/2016

Abstract
Arithmetic units are essential in digital circuit construction, and the enhancement of their operation would optimize the

whole digital system. Among them, multipliers are the most important operational units and are used in a wide range of

digital systems such as telecommunication signal processing, embedded systems, and mobile technology. The main

drawback to a multiplication unit is its high computational load, which leads to considerable power consumption and an

increased area of silicon. This also reduces the speed, which negatively affects the digital host functionality. Estimating

arithmetic is a new branch of computer arithmetic implemented by discarding or manipulating a portion of arithmetic

circuits and/or intermediate computations. Applying estimated arithmetic in arithmetic units would improve the speed,

power consumption, and the implementation area by sacrificing a slight amount of result accuracy. This article develops

and analyzes an estimated truncated floating-point multiplier for single precision operands that is capable of compensating

for errors to a desired level by applying the least significant columns of the partial product matrix. These errors are caused

by removing a number of carry digits in the partial product matrix which make a direct contribution to rounding the

floating-point numbers. The evaluation results indicate that the proposed method improves speed, accuracy, and silicon

area, in comparison with common truncated multiplication methods.

Keywords: estimated arithmetic; partial product matrix; rounding; truncated multiplier; error correction.

1. Introduction

Multipliers are one of the major arithmetic units

commonly applied to digital systems like digital signal

processing, telecommunication signal processing,

embedded systems, and mobile systems. The major

deficiency in these systems is their low speed, high power

consumption, and high silicon-covered area, which cause

a shortfall in digital system operation [1]. The Fast

Fourier Transform (FFT) constitutes the basis of most

telecommunication systems, like DVBT, UWB, WIMAX,

WLAN, ADSL, and wireless telecommunication systems

[2]. This function is implemented by multiplication and

represents a complex function of products applied for

converting the signal from frequency to time phase and

vice versa.

1

0

2

1,,2,1,0.
N

n

N

nkj

nk Nkedx

(1)

This function is applicable in telecommunication

signal processing as well as image processing and digital

signal processing. Optimized implementation of this

block influences telecommunication systems with respect

to speed and accuracy [3]-[4]. In addition to its

multiplication or Multi-Accumulate (MAC) on some

sources of Fused Multiply-Add (FMA), this function is a

component other major arithmetical factors like Finite

Impulse Response (FIR) [5], Discrete Cosine Transform

(DCT) [5]-[6], and Multiple Input Multiple Output

(MIMO) [7]. Consequently, any improvement in the

multiplying algorithm would also contribute to both of

these functions and to the telecommunication system in

general.

 In today’s applications, where high-value calculation

is of the essence, applying floating-point unit in FFT

calculations and other telecommunication signal

processing functions could be beneficial and efficient. In

the recent past, the mentality and assumption was that

floating-point has big area and high power; therefore,

designs preferred to convert codes into fixed points or

simulate floating-point functionality. This, of course, was

a time-consuming and erroneous, with 30% of software

design time attributed to it [8]. Nevertheless, this point is

not always accurate , while applying optimized floating-

point unit in telecommunication digital signal can even

reduce energy consumption by 30% [9]-[10]. The focus of

most research is now on approximated or estimated

computations as a new approach in applications where the

circuit would be able to generate inaccurate and faulty

results. This approach is implemented by eliminating a

portion of intermediate calculation. Although this

function causes an increase in speed and a decrease in the

silicon-covered area and power consumption, it slightly

reduces arithmetic circuit accuracy [11]. Implementation

of arithmetic units like multiplication have different

methods. This counter, which replaces the common

method and 3:2 counters, when using a 4:2 counter (four

entry and two exit bits) in an 8 8 tree multiplier, is

illustrated in Fig. 1. When all four bits are 1, an error

mailto:fathi.marziye@gmail.com
mailto:farshidi@scu.com

Journal of Information Systems and Telecommunication, Vol. 5, No. 2, April-June 2017 121

occurs. In part (b) of Fig. 1, a reduction in multiplication,

circuit capacity, and implementation time are observed

[12].

Figure.1. a) 4:2 and 3:2 counters, b) partial product generation in

(-bit multiplier, c) the marked accurate multiplier using

3:2 counter, d) the(estimated marked accurate multiplier using
4:2 counter[12]

The parallel truncated multiplier, developed in 1992

[13], was the first sample applied in estimated computing

techniques and accepted in this field. In this method,

eliminating the partial product LSP (Least Significant

Part) matrix and keeping the MSP (Most Significant Part)

section would lead to circuit area reduction. Of course,

this phenomenon would generate error; so far, there exist

no studies regarding removal of these errors [14]-[15].

Figure. 2. The truncated multiplier and different elements of the

partial product matrix for errror correction

Applying the LSP column of partial products to

estimate the carry digit to MSP is another method that has

been used in [16]-[17]. This method depends on

multiplying the circuit entrance by a complicated

estimating circuit but retaining accuracy. Here, we see

implementation of a sequential estimated truncated

floating-point digit at single precision, where the partial

product of the matrix yield from the multiplication of

mantissas of two digit floating-points are involved. By

applying the four columns in LSP of the matrix and

applying one small circuit for the carry digit estimation

from the 5
th

 column, the error is reduced in a significant

manner and the outcome converges to the real value of

multiplication.

 In this article, the rounding of floating-point

technique is introduced in Sec. 2, the combinational

estimated multiplier is described in Sec. 3, the probability

of maximum error is computed in Sec. 4, the proposed

simulation method and its comparison with other states is

addressed in Sec. 5, and the article is concluded in Sec. 6.

2. Rounding Floating –Point Numbers

Since 1990, floating-point numbers have been

exhibited in accordance with IEEE 754-2008 standard.

The two single and double precision widths are

introduced for these numbers in this standard [1]. The

partial product matrix generated from multiplying the

mantissas by two floating-point digits at single precision

is shown in Fig. 3. This product has 48 bits, but due to the

standard limitations, only 24 MSP bits (23 bits of

mantissas and one bit, the product of normalization) are

held. To compensate for the error caused by eliminating

the LSP bits, the rounding is performed by applying the

three sticky (S), Gard (G) and Round (R) bits located in

the LSP, calculated in accordance with Standard S from

Eq. (2) [1].

Figure. 3. Partial product matrix and the two mantissas floating-point

digits at single precision

21PS OR
20

P OR…
0P (2)

3. Sequential Estimated Multiplier Capable

of Error Compensation

3.1 Algorithm

Hardware implementation of this multiplier, including

the 20 bits register A (for storing the 1
st
 to 20

th

multiplicand), the 24 bits register B (for storing the

multiplier), and 28 bits register P (for storing the product)

with initial value of zero, is illustrated in Fig. 4. Since this

multiplier is a sequential truncated to 28 bits and there is

no need for the final response of the 20 LSP bits, the

section of the circuit that computes these 20 LSP bits can

be eliminated. To accomplish this, the 27 bits register, the

Extended Register (Ex) with its initial value, is defined

according to Eq. (3).

)0:19(

)20:23()0:3(

AA

AEx
 (3)

Fathi & Nikmehr, Improving Accuracy, Area and Speed of Approximate Floating-Point Multiplication Using Carry Prediction

122

Figure. 4. Hardware implementation of multiplier, W4CE state

The operation of this multiplier is subject to the

following steps:

1. In the first cycle, provided that the least significant bit

of register B (b0) is 1, the initial value of EX is added to P

and the product is placed in P; otherwise, P holds its

previous value.

0 if

1 if)(
)(

1

1

ii

ii

bP

biExP
iP

(4)

2. In every cycle i, first the P and A registers shift to the

left by one bit and the exiting bit enters the EX register.

Here, B shifts to the right by one bit.

3. In cycle , step one is repeated 24 times until the last

cycle yield is placed in P.

3.2 Error Compensating Circuit

As explained earlier, in the proposed multiplier, 20

columns have been eliminated from the LSP section of the

partial product matrix, which in turn would lead to the

elimination of the carry digit in this section, an error occurs.

To compensate for this error, it should be estimated

somehow; hence, what bits are involved in the creation of

this carry digit should be known.

iiiniiniiniiniin

iiiiii

pppppppppppp

PinPinPinPinPinP

,0,4,3,2,1,

111111)0()3()2()1()()1(

Figure. 5. Adding function in cycle of partial product matrix

In this proposed method, this digit is estimated from

the 19
th

 column in cycle iinc ,4
, three bits are required:

 The partial product created in the thi cycle and at the

 thin 4 space of iinpp ,4

 The intermediate total product in the thi 1 cycle of

)3(1 inPi

 The carry generated in the
thi cycle and thin 5

space of iinc ,5

These three elements are the entries of full adder;

therefore, circuits must be designed that would receive

these three entries and produce the iinc ,4 and
iinP ,4

outputs. Since this proposed multiplier is of a sequential

type and multiplication occurs in any part of the cycle, not

all the above-mentioned entries are accessible. And

among them, only
iinpp ,4
are accessible in every cycle

and iinc ,5 is the carry digit of the column adjacent,

which in turn requires these three similar elements for its

production and makes the circuit issue more complicated;

for that reason, it is not considered. To compute

),3(1 inPi
 it can be said that this value in

approximation is equal to the total of intermediate

multiplication products in previous cycles, where the

computation of function iinc ,5 is not considered. Hence,

to make a distinction between this estimated value and

)3(1 inPi
, it is presented as an accumulated value

(
1,3 iinAV) with a name change; that is, the total partial

product must be protected in any cycle to allow access to

.1,3 iinAV Here, a flip-flop with an initial value of 0 can

be applied, the value of which in the
thi cycle would

equal .iFF

200 if

0 if0

1,31

1,3
ippFF

i
FFAV

iini

iiin

(5)

Equation 5 describes the total of two bits, for

implementation of which a half adder could be applied.

According to the descriptions above and the half-adder

equation, the iinc ,4 value can be obtained from Eq. (6-7).

13,3 iiiin FFFFAV XOR
3,3 iinpp (6)

1,3,4 iiniin AVc AND
iinpp ,4
 (7)

The implementation of this circuit is illustrated in Fig.

6, where ECV is the carry digit that is added to the 20
th

column in every cycle.

Figure. 6. Error compensation circuit

4. Computing Probability of Maximum Error

Maximum error occurs when the R, G, S bits and other

effective bits are not available or, if available, their values

are not appropriate for computing S; thus, no rounding

takes place.

The bits R and G, in fact, represent the bits
23P and

22P

respectively, (refer to Fig. 3), and

21PS OR
20P OR

Journal of Information Systems and Telecommunication, Vol. 5, No. 2, April-June 2017 123

19P . To compute the maximum error probability, it is

necessary to calculate the probability of each one of
19P

to
23P bits being 1 (here

19P is computed in both the

truncated and estimated states).

To accomplish this task, the probabilities of the

elements from partial product matrix involved in

computing these bits being 1 must be computed. For

example, the probability of
23P or R being 1 depends on

the probability of every element being 1 in the 23
rd

column (Fig. 3) in every cycle, and each of these

intermediate elements depends on another element; that is,

every intermediate product like)1(inPi
 in cycle i

depends on
iinpp ,1

(intermediate product in cycle i),

)2(1 inPi
 (intermediate product in thi)1(cycle),

and iinc , (carry bit from adjacent column in cycle i).

If the probability of)1(inPi
being 1 is defined as

))1((1 inPP i
. According to Table 1, its being 1 is

achieved in different states.

Table 1. Possible states in computing

)2(1 inPi

iinpp ,1

iinc ,)1(inPi

iinc ,1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Consequently, the following equation is obtained:

)(

)}]())2(({

)}())2(([{

)(

)}]()2(({

)}())2(([{))1((

,0

,1110

,1011

,1

,1010

,11111

iin

iini

iini

iin

iini

iinii

cP

ppPinPP

ppPinPP

cP

ppPinPP

ppPinPPinPP

(8)

)(,11 iinppP
,))2((11 inPP i

, and)(,1 iincP
 are the

probability of the intermediate product being 1 at
thi

cycle, their being 1 at thi)1(cycle, and their being 1 for

carry digit bits from the adjacent column and
thi cycle,

respectively (probability of being 0 is defined in the same

order).

To compute the probability of
iinpp ,1

being 1,

represented by)(1 ppP , it can be assumed that every

intermediate bit is a random variable; thus:

4

3

4

1
1)(

4

1

2

1

2

1
)(

0

1

ppP

ppP

(9)

(10)

Likewise, it can be said that the probability

)2(1 inPi
is in fact the probability)1(inPi

, in the
thi)1(cycle; therefore, it depends on the same

parameters but at
thi cycle, in a sense that it has a recessive

state, the end condition of which is computation of

))1((11 nPP (an addition that occurs in the first cycle).

This value in the first cycle is subject to values
1,1npp ,

2,1npp and 2,3nc . By applying a table similar to Table 1,

this can be presented as:

)(
16

10
)(

16

10

)(}]
4

1

4

3
{}

4

3

4

1
[{

)](}
4

3

4

3
{}

4

1

4

1
[{

)(

)}]()({

)}()([{

)(

)}]()({

)}()([{))1((

2,302,31

2,30

2,31

2,30

1,112,20

1,102,21

2,31

1,102,20

1,112,2111

nn

n

n

n

nn

nn

n

nn

nn

cPcP

cP

cP

cP

ppPppP

ppPppP

cP

ppPppP

ppPppPnPP

(11)

All values in Eq. (11) are random variables, the

probability of which is computable through Eq. (9-10). To

compute)(,1 iincP
 in Eq. (8), Eq. (12) must be applied,

which is obtained from Table 1.

)](

)()1(({

)}()1(([{

)]())1(([)(

,11

,110

,011

,111,1

iin

iini

iini

iiniiin

cP

ppPinPP

ppPinPP

ppPinPPcP

(12)

Eq. (12) is a returnable one, the ending condition of it

is determining the second cycle carry digit (2,2nc).

According to Fig. 7, computing
2,2nc is subject to two

2na and
2nb values (intermediate product) and its value

is1 when the volume of either
2na or

2nb is 0 and the

other is 1 and the carry digit of the adjacent column

(3nc) is 1. This equation is a returnable one as well.

Eventually, the need to compute the probability of
1

c

would rise, which would be subject to the probability of

0a and 0b being 1; hence:

16

1

4

1

4

1
)()()(010111 bPaPcP

(13)

Consequently, the probability of
2nc being 1 can be

computed through Eq. (14).

Fathi & Nikmehr, Improving Accuracy, Area and Speed of Approximate Floating-Point Multiplication Using Carry Prediction

124

2

0

21

8

3

16

1

)
4

1

4

1
(

8

3
)

4

1

4

1
(

8

3
)

4

1

4

1
()(

n

k

k

ncP

(14)

Figure. 7. Adding function of the two-bit digits

The)(2,31 ncP and)(2,30 ncP in Eq. (11) are computed

with respect to the above-mentioned description. In the

same sequence, all parameters in Eq. (8) can be

computed.

4.1 Maximum Error Probability for No Error

Compensation State

To determine the effectiveness of this proposed

method of compensating for errors caused by truncation

in a partial product matrix, different state of truncation is

of concern.

In the first state, the product contains only 24 bits and

no extra bit is held for rounding (WO3C). In the second

state, in addition to the 24 bits, bits
23P ,

22P and
21P are

considered as R, G, and S bits held (W2CE). In the next

state, bits ,23P
22P , and

21P are considered as R, G, and S,

and
20P is considered as a bit following S (W3CE). In the

last state, bits ,23P
22P and

21P are considered as bits R,

G, and S, and bits ,20P
19P are considered as the two bits

following S, which are held (W4CE). The maximum error

and rounding are defined based on occurrences of

different states of bits R, G, and S, Table 2.

Table 2. Rounding states occurrence

R G S Rounding

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Now, if the probabilities of R, G, and S bits being 1

equal),(1 RP)(1 GP , and)(1 SP respectively, and the

probability of maximum error is)(max eP , Eq. (15) yields:

)]()()([

)]()()([

)]()()([)(

111

011

101max

SPGPRP

SPGPRP

SPGPRPeP

(15)

In fact, Eq. (15) is the maximum error occurrence

probability at WO3C state in Table 2. At W2CE, the

maximum error occurs when R=1, G=0, S=0, and 20P

1; but since this bit is not available, the rounding would

be calculated wrongly. In W3CE, maximum error occurs

when R=1, G=0, S=0, 20P 0, and
19P =1. A similar

result is obtained for W4CE state when R=1, G=0, S=0,

20P 0, 19P 0, and 18P 1. The results obtained by

these computations will be explained later. In all cases,

the probability of every bit being 1 or 0 is calculated

according to the method described in Sec. 4.

4.2 Maximum Error Probability for Error

Compensation States

Computing probability at this state is related to a time

when the error compensation circuit is applied for carry

propagation estimation. Applying this circuit predicts the

carry propagation wrongly in both states, Table 1,

Therefore, by knowing the existence of error in

computing carry propagation, and its appearance in the

product, with reference to Eq. (16) the following is

yielded:

2 if

242if

1,

,11.2

,1
iAV

ippAV
AV

in

iiniin

iin

(16)

According to the definition of exclusive OR function

function, this product would be equal 1, only if the

number of bits that equal 1 is an odd number. Hence,

 , the probability function of exclusive OR

function can be represented as

)12(122

1

1
4

3

4

1

12
)(

kik

i

k

i
k

i
AVP

(17)

The results obtained by replacing the digits in all the

above-mentioned equations in both cases of error state,

with and without compensation, are presented in Table 3.

As observed these results are very close to one another,

indicating the error compensation circuit accuracy.

Table 3. Digit values of muximum error probability

Proposed

method

Maximum error

probability for no

compensation state

maximum error

probability for error

compensation state

WO3C 0.4977495060 —

W2CE 0.06249765004 0.062621245550

W3CE 0.0314991165 0.03143649401

W4CE 0.01581255649 0.01587555472

5. Simulation

This simulation is made through MATLAB software

and the implementation area and delay are assessed

through Synopsys Design Compiler with TSMC18 typical

library.

To determine the error compensation circuit effect, in

addition to simulation of this proposed multiplier for

Journal of Information Systems and Telecommunication, Vol. 5, No. 2, April-June 2017 125

complete multiplication, the following steps are applied:

elimination of LSP section (WO3C), LSP three columns

(W3CO), two columns and carry propagation estimation

from the third column (W2CE), three columns and carry

propagation estimation from the fourth column LSP

(W3CE).

5.1 Accuracy Assessment

Here, the absolute and relative error, a product of two

random digit multiplications at 24 cycle, is calculated and

its diagram is drawn (Fig. 8 and Fig. 9). The cycles

presented are 1, 4, 8, 12, 16, 20, and 24 only.

Figure. 8. Selected absolute error diagram in seven cycles

 Figure. 9. Selected relative error diagram in seven cycles

The proposed design was simulated for 5,000 random

digits as well, and the absolute and relative errors in the

seven cycles defined were calculated and plotted (Fig. 10

and Fig. 11). The results indicate a reduction in error and

the positive effect of the error compensation circuit.

 Figure. 10. Absolute error average of 5,000 random digits in seven

cycles

 Figure. 11. Relative error average of 5,000 random digits in seven cycles

To determine error convergence, the fitting curve of

the absolute and relative error average of 5,000 random

digits for all states is drawn in Fig. 12. This curve

indicates the error converges towards 0.

 Figure. 12. The error coverges towards zero diagram

5.2 Area and Delay Assessment

In area assessment, the results of this proposed

multiplier and truncated conditions are presented in the

two combinational and non-combinational (TCA), and

combinational and non-combinational area of circuits and

intermediate connections (TA) are reported (Table 4).

Comparison of different states, specifically, W2CE and

W3CE, indicates the effective contribution of the

estimating circuit.

Table 4. Truncated multipliers area report

 WO3C W3CO W2CE W3CE W4CE

T
C

A
 (

)

1
8
4
3
1
.8

9
4
6
1
7

2
7
2
1
9
.1

8
5
9
7
6

2
6
2
5
5
.3

8
2
9
3
7

2
7
0
7
1
.9

0
2
7
5
9

2
8
0
7
7
.4

7
5
6
2
6

T
A

 (

)

3
1
4
1
1
3
.3

8
7
4
1

4
2
8
7
0
1
.2

2
3
2
0

7

4
2
5
7
9
0
.7

3
5
1
1

0

4
3
7
9
2
7
.3

1
6
2
1

1

4
3
7
6
2
6
.2

1
5
6
1

6

The timing report of all truncated multiplier states

and this proposed multiplier are presented in Table 5.

Comparison of different states, W2CE and W3CO in

specific, indicates the effective contribution of the error

compensation circuit. There exists a direct relation

Fathi & Nikmehr, Improving Accuracy, Area and Speed of Approximate Floating-Point Multiplication Using Carry Prediction

126

between an increase in LSP column for error

compensation and circuit delay.

Table 5. Truncated multipliers timing report

Truncated

multipliers
WO3C W3CO W2CE W3CE W4CE

Delay 473.33 521.33 473.33 593.33 593.33

In Table 6, previous works has been summarized.

Comparisons have been done for two parameters area and

delay, and for both integer and floating-point numbers. In

all of the papers presented, only two parameters area or

delay have been discussed and have not been reported

simultaneously.

As are observed, the proposed multiplier is in the

proper position, exception in case [22] where this paper

has not obtained any report about accuracy and area.

Likewise, only there is one reported area that relates to a

16-bits integer multiplier.

Table 6. Comparison of proposed multiplier and previous work
where fp represents floating-point numbers

Mult. method Size (bits) Area (Delay (ns)

[18] 16 int 1.22 Not reported

[19] 8 int Not reported 940.8

[20] 32 fp Not reported 3055.2

[21] 16 int Not reported 836.32

[22] 32 fp Not reported 163.68

[23] 32 fp Not reported 2099.424

[23] 32 fp Not reported 2264.136

Proposed 32 fp 4.38 593.33

To determine the contribution of the LSP column

number in error compensation, the diagram of relative

error average and delay is presented in Fig. 13, where an

increase in LSP column number for the purpose of

compensation results in an increase in delay. This is why

no attempt is made to increase the column number.

 Figure. 13. Relative error average and delay diagram

6. Conclusion

The algorithm for and implementation of a sequential

truncated multiplier for floating-point digits at single-

precision that is capable of error compensation are

proposed. This method is implemented by applying four

MSPS from a semi-LSP matrix of a partial product and

estimated carry from the fifth column using a small

circuit. Results indicate that the error compensation

circuit can significantly reduce the error caused by lake of

carry digits from the eliminated columns. Among all

simulation states, W4CE is the best candidate with

respect to finding a trade-off between speed, accuracy,

and area, and it can be used in digital signal processing,

telecommunication signal processing, embedded systems,

mobile systems that require a small area, and low power

consumption.

References
] B. Parhami, Computer Arithmetic, New York: Oxford

University Press, 2000.

[2] X. Guan, Y. Fei and H. Lin, "Hierarchical design of an

application-specific instruction set processor for high-

throughput and scalable FFT processing." IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 20, no.3, (2012), pp. 551-563.

[3] A. V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete-

Time Signal Processing, USA: Prentice-Hall, 1998.

[4] J. R. Choi, H. G. Kim, S. S. Han and S. C. Hwang,

“Variable 2K/4K/8K-point FFT/IFFT with compact

memory for OFDM-based DVB-T system,” International

Conference on Systems and Informatics (ICSAI), May

2012, pp. 977-980.

[5] H. M. Hassan, K. Mohammad and A. F. Shalash,

“Implementation of a reconfigurable ASIP for high

throughput low power DFT/DCT/FIR engine,” EURASIP

Journal on Embedded Systems, No.1, 2012, pp. 1-18.

[6] J. Sohn and E. E. Swartzlander Jr, “Improved architectures

for a fused floating-point add-subtract unit,” Circuits and

Systems I: Regular Papers, IEEE Transactions on, vol. 59,

no. 10, 2012, pp. 2285-2291.

[7] X. Chen, A. Minwegen, Y. Hassan, D. Kammler, S. Li, T.

Kempf and G. Ascheid, “Efficient multi-mode MIMO

detection using reconfigurable ASIP,” 20th Annual

International Symposium on Field-Programmable Custom

Computing Machines (FCCM), April 2012, pp. 69-76.

[8] D. Menard, D. Chillet, F. Charot and O. Sentieys,

“Automatic floating-point to fixed-point conversion for

DSP code generation,” ACM. In Proceedings of the 2002

international conference on Compilers, architecture, and

synthesis for embedded systems, October 2002, pp. 270-

276.

[9] S. Z. Gilani, N. S. Kim and M. Schulte, “Virtual floating-

point units for low-power embedded processors,” 23rd

International Conference on Application-Specific Systems,

Architectures and Processors (ASAP), July 2012, pp. 61-68.

Journal of Information Systems and Telecommunication, Vol. 5, No. 2, April-June 2017 127

[10] S. Z. Gilani, N. S. Kim and M. Schulte, “Energy-efficient

floating-point arithmetic for software-defined radio

architectures,” 2011 IEEE International Conference on

Application-Specific Systems, Architectures and

Processors (ASAP), September 2011, pp. 122-129.

[11] P. Korkmaz, B. E. Akgul and K. V. Palem, “Energy,

performance, and probability tradeoffs for energy-efficient

probabilistic CMOS circuits,” Circuits and Systems I:

Regular Papers, IEEE Transactions on, vol. 55, no. 8, 2008,

pp. 2249-2262.

[12] D. Kelly, B. Phillips and S. Al-Sarawi, “Approximate

signed binary integer multipliers for arithmetic data value

speculation,” In Conference on Design & Architectures for

Signal and Image Processing, 2009.

[13] Y. C. Lim, “Single-precision multiplier with reduced

circuit complexity for signal processing applications,”

Computers, IEEE Transactions on, vol. 41, no. 10, 1992,

pp. 1333-1336.

[14] N. Petra, D. D. Caro, V. Garofalo, E. Napoli and A. G.

Strollo, “Truncated binary multipliers with variable

correction and minimum mean square error,” Circuits and

Systems I: Regular Papers, IEEE Transactions on, vol. 57,

no. 6, 2010, pp. 1312-1325.

[15] V. Garofalo, N. Petra and E. Napoli, “Analytical

calculation of the maximum error for a family of truncated

multipliers providing minimum mean square error,”

Computers, IEEE Transactions on, vol. 60, no. 9, 2011, pp.

1366-1371.

[16] E. J. King and E. E. Swartzlander, “Data-dependent

truncation scheme for parallel multipliers,” Conference

Record of the Thirty-First Asilomar Conference on Signals,

Systems & Computers, vol. 2, November 1997, pp.

1178-1182.

[17] E. E. Swartzlander, “Truncated multiplication with

approximate rounding,” Conference Record of the Thirty-

Third Asilomar Conference on Signals, Systems, and

Computers, vol. 2, October 1999, pp. 1480-1483.

[18] F. Farshchi, M. Abrishami, and S.M. Fakhraie, "New

approximate multiplier for low power digital signal

processing." The 17th CSI International Symposium on

Computer Architecture & Digital Systems, October 2013,

pp. 25-30.

[19] Z. Vasicek and L. Sekanina, "Evolutionary design of

approximate multipliers under different error metrics."

Design and Diagnostics of Electronic Circuits & Systems,

17th International Symposium on. 2014 Apr 23, pp.135-

140.

[20] C. M. Guardia and E. Boemo, "FPGA implementation of a

binary32 floating point cube root." Programmable Logic

(SPL), Nov 2014, pp. 1-6.

[21] A. Sunny, B. K. Mathew and P. B. Dhanusha, "Area

Efficient High Speed Approximate Multiplier with Carry

Predictor." Procedia Technology 24, 2016, pp. 1170-1177.

[22] S. Sivanantham, "Design of low power floating point

multiplier with reduced switching activity in deep

submicron technology." International Journal of Applied

Engineering Research, vol. 8, no. 7, 2013, pp. 851-59.

[23] P. Koneru, T. Sreenivasu and A. P. Ramesh,

"Asynchronous Single Precision Floating Point Multiplier

using Verilog HDL." IJ of Advanced Research in

Electronics and Communication Engineering, 2013 Nov.

Marziye Fathi received her B.SC degree in Computer Hardware
Engineering and M.SC degree in Computer Architecture
Engineering both from Islamic Azad University of Najafabad
(IAUN), Najafabad, Iran, in 2010 and 2015, respectively. Her area
research interests include digital arithmetic, VLSI and image
processing.

Hooman Nikmehr received his BSc in Electronic Engineering
and MSc in Computer Architecture Engineering both from
University of Tehran, Tehran, Iran, in 1992 and 1997,
respectively, and PhD degree in Computer Engineering from the
University of Adelaide, Adelaide, Australia, in 2005. He is an
Assistant Professor with the Department of Computer
Architecture, University of Isfahan, Isfahan, Iran. His current
research interests include VLSI, digital arithmetic, computer
architecture, reconfigurable hardware design and low-power
design.

