

* Corresponding Author

Concatenating Approach: Improving the Performance of Data

Structure Implementation

Davud Mohammadpur
Faculty of Electrical and Computer Engineering, Malek Ashtar University of Technology

dmp@znu.ac.ir

Ali Mahjur*
Faculty of Electrical and Computer Engineering, Malek Ashtar University of Technology

mahjur@gmail.com

Received: 24/Sep/2017 Revised: 19/Jan/2018 Accepted: 08/Apr/2018

Abstract
Data structures are important parts of the programs. Most programs use a variety of data structures and quality of data

structures excessively affects the quality of the applications. In current programming languages, they are defined by

storing a reference to the data element in the data structure node. Some shortcomings of the current approach are limits in

the performance of a data structure and poor mechanisms to handle key and hash attributes. These issues can be observed

in the Java programming language which that dictates the programmer to use references to data element from the node.

Clearly it is not an implementation mistake. It is a consequence of the Java paradigm which is common in almost all

object-oriented programming languages. This paper introduces a new mechanism called access method, to implement a

data structure efficiently which is based on the concatenating approach to data structure handling. In the concatenating

approach, one memory block stores both the data element and the data structure node. According to the obtained results,

the number of lines in the access method is reduced and reusability is increased. It builds data structure efficiently. Also it

provides suitable mechanisms to handle key and hash attributes. Performance, simplicity, reusability and flexibility are the

major features of the proposed approach.

Keywords: Programming Language; Data Structure Handling; High-Level Abstraction; Concatenating.

1. Introduction

Data structures are important parts of programs. They

are the building blocks of any program, and provide

useful mechanisms to store and retrieve data [1]. Most

programs use a variety of data structures. They often use

simple variations or compositions of basic data structures

such as linked lists, queues, stacks and tree types [2].

To illustrate some pervasive and serious problems in

data structure management, we investigated data

structures in many applications. For example, Hadoop, a

distributed processing framework for large data sets, uses

many Java data structures such as List, LinkedList, Queue,

Set, TreeSet, LinkedHashSet, HashSet and HashMap. It

can be concluded that, quality of data structures

excessively affects the quality of the applications [3], [4].

Unfortunately, the usual approach to apply a data

structure on a set of data elements is to store a reference to the

data element in the data structure node (Fig. 1a) [5]. We call it

referencing approach. In this approach, the data element and

data structure node are allocated separately and the address of

the data element is stored in the node. These references

provide paths from structure nodes to data elements.

The referencing approach has two issues. First, it breaks

an object into multiple parts (data element and data

structure nodes). As stated in [6], breaking an object into

multiple parts causes performance and memory penalties:

„It incurs allocation and garbage collection overhead.

Moreover, the fact that objects are accessed by reference

introduces extra pointer dereferences. Finally, it incurs

memory overhead: at a minimum, a pointer to the object

and some memory for allocation administration is required‟.

Second, there is no path from the data element to the

corresponding data structure node. So, to reach the data

structure node from the data element, the programmer has

to scan the data structure. This increases the operations

time, and limits performance on data structures.

a- Referencing Approach b- Concatenating Approach

Fig. 1. Data structure implementations

The better approach to apply a data structure on a set

of data elements is to concatenate the data structure node

to the data element (Fig. 1b). We call it concatenating

approach. In this approach, one memory block stores both

the data element and the data structure node.

This paper introduces a new mechanism called access

method, to implement a data structure efficiently which is

based on the concatenating approach. In this mechanism,

a data structure is implemented independently. Later,

programmers can apply data structures on data elements

based on the concatenating approach.

Journal of Information Systems and Telecommunication, Vol. 6, No. 1, January-March 2018 19

An important portion of data structures is the keys. In

the access method mechanism, we define a special way to

handle them. It allows a programmer to set a field(s) of

the data element as a key.

2. Referencing Approach

In current programming languages, to apply a data

structure on a set of data elements, data elements are not

stored in the data structure, but only references to the data

elements are stored [7]. We call it referencing approach. As

the Fig. 1a shows, the data element and data structure node

are separated from each other, and the address of the data

element is stored in the node. Therefore, two memory

blocks are allocated per data element; one to store the data

element and another one to store the data structure node [8].

It increases the memory footprint and reduces the

performance of the code. The memory footprint is

increased in two ways. One, as shown in Fig. 1a, some

storage is used to store additional references in the data

structure nodes. Two, dynamic memory management uses

some extra storage to store its information. As this

information is stored per block, increasing the number of

blocks increases this overhead too.

The performance of the code is reduced due to the

following reasons. One, two memory blocks should be

allocated and freed, which increases the memory

management time [9]. Second, it is not possible to reach a

data structure node from its corresponding data element

(Fig. 1a). The references only provide a path from the

data structure node to the data elements. To find the

corresponding data structure‟s node, the structure should

be traversed which needs extra time [10].

As an example Fig. 2 shows an implementation of the

doubly linked list in the current approach. It has two

pointers: head and tail. head points to the first node of the

list and tail points to the last node of the list. The node of

the doubly linked list has two references: next, prev that

point to other nodes. As is shown in Fig. 3 code snippet,

removing a node from it needs O(1) time.

Even though removing a node from the linked list needs

O(1) time, removing a data element from it needs O(n) time.

To remove an arbitrary data element from the linked list, the

programmer has to iterate over the linked list nodes to find

the corresponding node and remove it [9]. Therefore,

removing a data element from the linked list needs O(n) time.

Fig. 2. A Linked List

This issue can be observed in the Java LinkedList. The

Java programming language dictates the programmer to

use references to data element from the node. The

following code snippet shows the node of the Java

LinkedList. It has a field named item which points to the

data element.

private static class Node<E>{

 E item;

 Node<E> next;

 Node<E> prev;

};

Fig. 3. Removing A Node

To remove a node, it has unlink() method and to

remove a data element it defines remove() method.

unlink() needs O(1) time while remove() needs O(n) time.

remove() is shown in the Fig. 4 code snippet. It traverse to

locate the data element which needs O(n) time. After

determining the corresponding node, the unlink() method

is used to remove it.

Fig. 4. Removing A Data Element

Clearly it is not an implementation mistake. It is a

consequence of the Java paradigm which is common in

almost all object-oriented programming languages.

Of-course C++ and non-object-oriented programming

languages such as C lets programmer store the data element

in the data structure‟s node, and thereby they are capable to

alleviate the above issue. However in those languages to

implement a data structure generally the programmer has to

store a reference to the data element in the data structure‟s

node. So, they have the same problem too.

Most data structures use a key to organize and retrieve

data elements. The current approach to handle key is the

key/value pair method [11]. As an example, Fig.5 is the

Mohammadpur & Mahjur, Concatenating Approach: Improving the Performance of Data Structure Implementation

20

Java TreeMap. In this implementation, a parameter named

K, is used as the data type of the key. In the Entry class, a

new attribute, named key, is defined for internal storage of

the key value. Also, a parameter named V, is used as the

data type of the data element, and in the Entry class a new

attribute, named value, is defined for internal storage of

the data element. It should be considered that the key is a

field(s) of the data element and can be extracted from it.

The mechanism has using additional storage for the key

issue. Since the value of the key can be extracted from the data

element, there is no need to store it. Moreover, the managing

changes of the key value can lead to the redundancy.

Fig. 5. Java TreeMap

3. Access Method

Examining data structures shows that their

constructions follow the same framework. This framework

has two segments. First, it has a segment, called node,

which is responsible for keeping the main data. The node

segment includes reference or references to other nodes

along with the main data. The number and type of the

references depend on the type of the data structure.

Second, for each data structure, a second segment,

called root, is defined in which the general information of

the structure is stored in. It is known as the input point to

the structure. The root segment includes reference or

references to some of the nodes of the structure. The

management of the structure is implemented in the

different operations in the root segment. The node segment

usually does not perform separate operations except for

providing the data [5]. We have presented the main idea

called access method based on this common framework.

The access method is an abstraction for defining data

structures. In this abstraction, the data structure is defined

along with operations. For instance, the access method

definition of a linked list is presented in Fig. 6.

In the implementation of the access method a section

called element is used. The element points to the data

structure of the node in the access method.

The element is the type too and points to the class of

the node as a hypothetical data type. In this case, the

element could be used as a data type for defining

variables or in the definition of parameters. However,

defined variables could not be allocated in any part of the

access method. In fact, no part of the access method could

get an independent memory. It is only allowed to point to

the input memories.

Fig. 6. LinkedList Access Method

As shown in the code, the element section of the

LinkedList has two attributes: next and prev. The defined

access method for LinkedList includes one operator:

remove. This operator acts on a variable of type element.

In the usage step, access method should be applied to a

data element. By applying the access method on the data

element, a new object is created, and the defined

operations in the access method are provided along with

the attributes and methods of the data element. The access

methods could not be instantiated directly unlike

conventional data structures. When an access method is

applied, the created structure will include two segments:

node and root. When an access method is applied to data,

the element section is concatenated to the data, and the

node segment is formed. The root segment consists of other

attributes and operations, defined in the access method.

As an example, if class Person is defined as follows:

class Person{

 int id;

 string first_name;

 string last_name;

 string father_name;};

We could apply the LinkedList as shown below on the

class Person. Thus, people will be a LinkedList of class Person.

Person[LinkedList()] people;

In the above example, the node object which is created

for people by the compiler, includes two parts. The first

part includes the defined items for class Person and the

second part includes the defined items in the element

section from the access method.

3.1 Key

An important characteristic of data structures is key

values. To support key values, the access method has a

special mechanism: hypothetical key type. If an access

method has a key, it should define a key type. Inside an

access method, the key type is like a usual data type. It

Journal of Information Systems and Telecommunication, Vol. 6, No. 1, January-March 2018 21

can be used to declare variables and arguments. The only

attribute of a key type is that it defines a linear order on

the elements of the data set. Therefore, it is possible to

compare two key values by their key.

Often it is required to extract the key of a data

element. Assume that e is a data element that the key k is

defined on it, e.k extracts it. As an example of key type,

Fig. 7 code snippet has the definition of the binary search

tree access method (Tree). It shows that the Tree access

method has a key type named k. The lookup operation has

an argument of type k and finds an element having that

key, i.e. e.k == ka. Also, in the body of insert operation k

is used to compare two key values, e1.k < e2.k.

An access method can have more than one key. As

shown in the following code snippet, k1 and k2 are

defined as two key types of X.

access X (key k1, key k2){

 /* rest of the access method */

}

When an access method is instantiated, its abstract key

types should be assigned values. The value of a key is a

sequence of expressions composed of the data element

attributes and literals. The definition of an expression of a

key type is embraced in a <> pair. Some examples of key

definitions are followed (Person is the base type):

<id>

<lname, fname>

The first expression consists of one attribute and the

second one consists of two attributes. For instance,

applying the Tree access method can be done as follows:

Person[Tree(<id>)] people;

Fig. 7. Tree Access Method

4. Translation into Java

The access method was implemented as an extension

to the Java programming language. The compiler gets a

code in the extended language and produces output in the

Java language. The output can be compiled using any

Java compiler to produce byte code. The compiler is

implemented as a multi-pass translation in Java. The

translation process is implemented by means of common

tools such as JFlex and Cup. It includes three phases:

lexical analysis, parsing and code generation (Fig. 8).

Fig. 8. Translation from the access method to Java

As specified in Fig. 8, in the first phase of lexical

analysis and parsing, we perform syntactic checks like

multiple declarations of the same named access methods,

or declaration of element sections and operations. Next, if

access method declaration and usage are matched, then

the next step is the translation into Java. When we

compile the back-end generated Java for execution, Type

checking is handled in Java. The translation into Java is

the most demanding step. During this phase, structural

translation rules are followed to translate each class and

access method into one or multiple classes. The resulting

classes are then composed to build the complete Java

representation of the source.

5. Results

As it was mentioned in the introduction, current

programming languages use the referencing approach to

apply a data structure on a set of data elements. The

referencing approach has some issues. First, it increases

the memory footprint, and second, it reduces the

performance of the code. Now, the access method is

implemented based on the concatenating approach, and it

solves the issues of referencing approach.

To evaluate the access method, in this section it is

compared with the Java and hand-coded implementations.

In the Java implementation LinkedList and TreeMap is

used from Java SE 10. As the time complexity of the Java

approach is not satisfactory, the proposed data structures

is implemented in hand-coded. In hand-coded

implementation, data structures are implemented from

scratch. This make more lines of codes than the access

method implementation.

We perform testing for a variety of list sizes from 1000

items to 100M items. We use the Java Microbenchmark

Harness (JMH) [12] test to conduct the test on a four core

machine. The results are presented below subsections.

5.1 LinkedList

Assume that the LinkedList access method is

implemented as is presented in Fig. 6. Consider the

Mohammadpur & Mahjur, Concatenating Approach: Improving the Performance of Data Structure Implementation

22

following code snippet, LinkedList access method is

applied on class Person.

Person[LinkedList ()] people;
…

people.remove (p);

Fig. 9 shows the produced code for the above code snippet.

Fig. 9. Produced Code for Applied Access Method

As noted before, element part of LinkedList is

concatenated to class Person as data element. So, there is

no need to additional references to operate on data

structures. References to class Person are added to class

LinkedList_people as root of data structure. Also remove

method is customized and added to class

LinkedList_people based on class Person as data element.

As the data element and the node of data structure is

concatenated together, so there is no need to scan data

structure, and its remove operation be in O(1) time.

As mentioned, to evaluate the access method, we perform

testing for the linked list. This test measures the performance

of creating the linked list and populating the linked list for a

specified number of items in the access method, Java, and

hand-coded implementations. The test code is shown below.

A specified number of integers is created using the Random

class and collecting them into the linked list.

@State(Scope.Thread)

static public class MyState {

 @Param("1000")

 public int NSIZE;

}

@Benchmark

public void test_createLinkedList(MyState state) {

 Random random = new Random();

 LinkedList< Integer > list = random

 .ints(state.NSIZE)

 .collect(LinkedList::new, List::add, List::addAll);

}

The performance of the insert operation of the linked list

is shown in Fig. 10 in the access method, the Java and hand-

coded implementations. We tested from 1000 through 100M

items as shown on the X-axis. The Y-axis is nanoseconds of

an operation, and is shown in log scale since there is a slope

up as the size increases in the java implementation.

In the next, the performance of the remove operation

of the linked list is shown in Fig. 11 too.

Fig. 10. Performance of the linked list insert operation in the access

method, the Java and hand-coded implementations

Fig. 11. Performance of the linked list remove operation in the access

method, the Java and hand-coded implementations

5.2 Tree

The second test measures the performance of creating

the tree and populating the tree for a specified number of

items in the access method, the Java and hand-coded

implementations. The test code is shown below. A

specified number of integers is created using the Random

class and collecting them into a particular type of tree in the

access method, the Java and hand-coded implementations.

@State(Scope.Thread)

static public class MyState {

 @Param("1000")

 public int NSIZE;

}

@Benchmark

public void test_createTree(MyState state) {

 Random random = new Random();

 TreeMap < Integer, Integer > tree = random

 .ints(state.NSIZE)

 .collect(TreeMap::new, tree::add, tree::addAll);

}

The performance of the insert operation in the tree is

shown in Fig. 12. As mentioned before, we tested from

1000 through 100M items as shown on the X-axis. The

Y-axis is nanoseconds of an operation and is shown in

Journal of Information Systems and Telecommunication, Vol. 6, No. 1, January-March 2018 23

log scale since there is a slope up as the size increases in

the Java implementation.

Fig. 12. Performance of the tree insert operation in the access method,

the Java and hand-coded implementations

In the next, the performance of the remove operation

in the tree is shown in Fig. 13.

According to the obtained results, the number of lines

in the hand-coded implementation is high. Large volume

of codes in the hand-coded approach makes it difficult to

change and maintenance, and increase the complexity and

cost of production. It's important to remember that hand-

coded implementations are not reusable.

Fig. 13. Performance of the tree remove operation in the access method,

the Java and hand-coded implementations

5.3 Discussion

The access method is similar to the hand-coded in

time complexity. There's no perceptible difference

between the access method and the hand-coded operations

time. But, the number of lines in the access method

implementations are low, and easy to reuse as the Java

implementations. Since, the Java general data structures

have high time complexity, and results show that as the

number of items increases, they becomes slower which

leads to lower efficiency compared to others.

6. Related Works

Several programming models attempted to provide high-

level programming abstraction or interface in data

structures. High-level programming models are in high-

demand as they reduce the burdens of programmers [13].

However, the issue of the right high-level programming

interface, especially in data structures, is not settled yet [14].

Rosenschein et al. [15] describe a language for

specifying the requirements of a data structure. Then, the

programming language selects the suitable data structure

based on the specified requirements. Katz et al. [16]

describe an expert system on data structures. The system

is consulted by programmers during the design stage of

their programs.

Schonberg et al. [17],[18] describe a technique for

automatic selection of appropriate data representations

during compile-time, and present a data structure

selection algorithm in the SETL language.

Low [19] suggests that the data structures are

represented as the abstract data types. For each abstract

data type, some representations are provided, and the

compiler chooses the best implementation.

7. Conclusions and Future Works

This paper introduced a new approach to implement

data structures. The approach is based on four features:

performance, simplicity, flexibility and not making any

decision on behalf of the programmer. The approach

consists of a new abstraction, the access method to define

a data structure, and a new type for defining key. The

provided samples show that the approach effectively

reduces the cost of data structures operations and the

approach creates a program-independent way to data

structures define and manipulation.

The key direction for future work is extending the

access method abstraction to support data structures

compositions to provide the ability that an access method

can make using other access methods.

References
[1] J. H. Drew, D. L. Evans, A. G. Glen, and L. M. Leemis,

“Data Structures and Simple Algorithms,” in

Computational Probability, Springer, 2017, pp. 89–109.

[2] I. Haller, A. Slowinska, and H. Bos, “Scalable data

structure detection and classification for C/C++ binaries,”

Empir. Softw. Eng., vol. 21, no. 3, pp. 778–810, 2016.

[3] M. Basios, L. Li, F. Wu, L. Kanthan, and E. T. Barr,

“Optimising Darwinian Data Structures on Google Guava,”

in International Symposium on Search Based Software

Engineering, 2017, pp. 161–167.

[4] M. Basios, L. Li, F. Wu, L. Kanthan, D. Lawrence, and E.

Barr, “Darwinian Data Structure Selection,” arXiv Prepr.

arXiv1706.03232, 2017.

[5] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, and

C. STEIN, Introduction to Algorithms 3rd Edition. MIT

press, 2009.

[6] C. Van Reeuwijk and H. J. Sips, “Adding tuples to Java: A

study in lightweight data structures,” in Proceedings of the

Concurrency Computation Practice and Experience, 2005,

vol. 17, no. 5–6 SPEC. ISS., pp. 423–438.

Mohammadpur & Mahjur, Concatenating Approach: Improving the Performance of Data Structure Implementation

24

[7] M. Sakkinen, “Disciplined Inheritance,” in ECOOP 1989:

European Conference on Object-Oriented Programming,

1989, pp. 39–57.

[8] Y. Zhang, M. C. Loring, G. Salvaneschi, B. Liskov, and A. C.

Myers, “Lightweight, flexible object-oriented generics,” in

ACM SIGPLAN Notices, 2015, vol. 50, no. 6, pp. 436–445.

[9] S. Lindell, “A normal form for first-order logic over

doubly-linked data structures,” Int. J. Found. Comput. Sci.,

vol. 19, no. 1, pp. 205–217, 2008.

[10] C. Loncaric, E. Torlak, and M. D. Ernst, “Fast synthesis of

fast collections,” ACM SIGPLAN Not., vol. 51, no. 6, pp.

355–368, 2016.

[11] Y. Smaragdakis and D. S. Batory, “DiSTiL: A

transformation library for data structures,” in Proceedings

of USENIX Conference on Domain-Specific Languages,

1997, no. October, p. 257270.

[12] Java.net, “JMH Test,” 2017. [Online]. Available:

http://openjdk.java.net/projects/code-tools/jmh/.

[13] N. Khammassi and J.-C. Le Lann, “A high-level

programming model to ease pipeline parallelism

expression on shared memory multicore architectures,”

Simul. Ser., vol. 46, no. 5, pp. 63–70, 2014.

[14] Y. Smaragdakis, “Technical Perspective High-Level Data

Structures,” Commun. ACM, vol. 55, no. 12, p. 2380656, 2012.

[15] S. J. Rosenschein and S. M. Katz, “Selection of

representations for data structures,” in Proceedings of the

1977 symposium on Artificial intelligence and

programming languages., 1977, pp. 147–154.

[16] S. Katz and R. Zimmerman, “An advisory system for

developing data representations,” in Proceedings of the 7th

international joint conference on Artificial intelligence,

1981, pp. 1030–1036.

[17] E. Schonberg, J. T. Schwartz, and M. Sharir., “An

automatic technique for selection of data representations in

setl programs,” ACM Trans. Program. Lang. Syst., vol. 3,

no. 2, pp. 126–143, 1981.

[18] E. Schonberg, J. T. Schwartz, and M. Sharir., “Automatic

data structure selection in setl.,” in Proceedings of the 6th

ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, 1979, pp. 197–210.

[19] J. R. Low, “Automatic data structure selection: an example

and overview,” Commun. ACM, vol. 21, no. 5, pp. 376–

385, 1978.

Davud Mohammadpur received his M.Sc. degree in Software
Engineering from Iran University of Science and Technology.
Currently he is a faculty member of University of Zanjan and a Ph.D.
candidate at Malek-Ashtar University of Technology. His research
interests are programming languages and information systems.

Ali Mahjur received his B.Sc., M.Sc. and Ph.D. from Sharif
University of Technology. Currently he is a faculty member of
Malek Ashtar University of Technology. His research interests are
programming languages, operating systems and processor
microarchitecture.

