

Reliable resource allocation and fault tolerance in mobile cloud
computing

Zahra Najafabadi Samani
Department of Computer Architecture, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran

najafabadizahra@gmail.com
Mohammad Reza Khayyambashi

Department of Computer Architecture, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran
M.R.Khayyambashi@eng.ui.ac.ir

Received: 08/Jul/2019 Revised: 11/Nov/2019 Accepted: 24/Dec/2019

Abstract
By switching the computational load from mobile devices to the cloud, Mobile Cloud Computing (MCC) allows mobile

devices to offer a wider range of functionalities. There are several issues in using mobile devices as resource providers,

including unstable wireless connections, limited energy capacity, and frequent location changes. Fault tolerance and reliable

resource allocation are among the challenges encountered by mobile service providers in MCC. In this paper, a new reliable

resource allocation and fault tolerance mechanism is proposed in order to apply a fully distributed resource allocation

algorithm without exploiting any central component. The objective is to improve the reliability of mobile resources. The

proposed approach involves two steps: (1) Predicting device status by gathering contextual information and applying

TOPSIS to prevent faults caused by volatility of mobile devices, and (2) Adapting replication and checkpointing methods to

fault tolerance. A context-aware reliable offloading middleware is developed to collect contextual information and manage

the offloading process. To evaluate the proposed method, several experiments are run in a real environment. The results

indicate improvements in success rates, completion time, and energy consumption for tasks with high computational loads.

Keywords: Mobile Cloud Computing; Fault tolerance; Reliability; Replication; Checkpointing.

1- Introduction

As a result of the recent developments in mobile

technologies, mobile devices (e.g., smartphone and tablet

PC) have become an integral part of human life as highly

effective and convenient means of communication.

However, mobile devices face an array of challenges in

terms of both resources (e.g., battery life, storage, and

bandwidth) and communications (e.g., mobility and

security). To overcome this limitation, offloadding

computations from mobile devices to cloud is proposed [1,

2]. A three-tier architecture is defined for Mobile Cloud

Computing (MCC) including remote cloud servers, local

servers known as cloudlets, and adjacent mobile devices.

Offloading to remote servers can be costly and introduces

latency. Besides, they are not always available and

cloudlets limit mobility of mobile devices [1, 3-6]. To

address this issue, in this paper, the third tier of the MCC

(consist of neighboring mobile devices) are consider where

both service requester and service providers are mobile

devices.

However, there are several issues in mobile devices as

resource providers such as unstable wireless connection,

limited energy capacity and frequent changes of location.

Thus, fault and fault tolerance are among the main

challenges faced by mobile resource providers, which

should not be ignored. Faults in the offloading process are

primarily caused by energy constraints, mobility, and

availability associated with mobile devices. Many previous

works try to select appropriate resource providers among

available mobile devices to allocate tasks by gathering

contextual information [6-8]. However, they mostly fail to

address fault prevention and tolerance. Others consider

only prevention of fault [3, 13, 18-21] or fault tolerance

[16, 14]. Moreover, limited energy has not been

investigated as a factor of fault prevention [11-13] or only

replication techniques are applied in fault tolerance [14-

17]. It is well noted that replication techniques are very

costly in high computational load. The objective here is to

maximize the success rate of the offloading process so that

some Quality of Service (QoS) constraints are satisfied. In

this paper, a fully-distributed reliable resource allocation

algorithm is used wherein, energy, mobility and

availability of mobile devices are considered as fault

factors. This approach promotes system robustness by

predicting the states of mobile devices to avert the faults

caused by mobile volatility. Then depending on the size of

the task, checkpointing or replication methods are used as

the fault tolerance methods. In order to provide dynamic

and accurate resource allocation and to predict the states of

mobile devices, contextual information needs to be

mailto:najafabadizahra@gmail.com
mailto:M.R.Khayyambashi@eng.ui.ac.ir

Journal of Information Systems and Telecommunication, Vol. 7, No. 2, April-June 2019

97

gathered from devices, applications, and the environment

to be applied in decision-making. A context-aware

offloading middleware is developed to collect contextual

information and manage the offloading process. To

evaluate this new proposed method, our experiments are

run in a real environment.

The rest of the paper is organized as follows: Section 1

reviews the related works. In Section 2, a reliable system

is formulated and solved using a two-stage approach.

Section 3 pertains to ranking and classification of mobile

devices using TOPSIS. In Section 4, the architecture of the

context-aware reliable offloading middleware is described.

Section 5 presents the evaluation results of the proposed

approach. Finally, the paper is concluded in Section 6.

2- Related work

There are many studies that investigate the task allocation

problem by collecting contextual information in MCC [6-

8]. However, those do not consider fault and fault-tolerant

methods. Shi et al. [7] propose Serendipity which enables

offloading through gathered information profile and

releasing two versions of task allocation algorithm, energy

aware Serendipity and time optimizing. [6] considers the

local tier of mobile cloud where both service requester and

service providers are mobile. The paper proposes a

resource allocation algorithm with multi-objective

optimization to minimize completion time and energy

consumption of all participating mobile devices. Ref. [8]

considers all three layers of MCC and proposes a context-

aware offloading decision algorithm to derive an optimal

offloading decision under the context of the mobile device

and cloud resources.

Several studies consider fault in MCC. However, some of

them consider only prevention of fault and none of fault

tolerance method (e.g. replication or checkpointing) is

adopted after failure occurrence [3, 12, 13, 18-21].

In [18, 19], a monitoring approach based on Markov chain

are proposed for analyzing and predicting states of

resources. They propose a monitoring time interval rate in

order to monitor the correct state information of mobile

resources. In these papers, the manner of applying

monitoring information in fault is missed. In the context of

mobile cloud, Ref. [20] considers mobile devices as

resources and improves mobile resource efficiency

through energy-aware management by selecting

appropriate mobile devices. In this scheme, firstly devices

are divided into four groups in terms of efficiency and

mobility based on a threshold value. The devices in each

group are then ranked. To prevent faults, no tasks are

assigned to unreliable mobile devices. In [13, 21], a

dynamic grouping scheme is presented to manage mobile

devices in MCC. In [13] availability and mobility, and in

[21] mobility and efficiency are considered as fault factors.

Then, cut-off points are adopted by entropy. Next,

according to the cut-off points, mobile devices are

arranged into several groups. In these works, mobile

devices' energy is not considered as fault factor in

grouping. In all these papers [13, 18-21], a central

component is applied to monitor and manage mobile

devices that cause a single failure and limit the mobility of

mobile devices.

Ref. [12] proposes a reliable resource allocation method

according to availability and mobility of mobile devices in

MCC. Initially, subtasks are assigned to mobile devices

with minimal mobility and then resources with the highest

availability are selected. Despite being a limitation, energy

is not considered as a fault factor. In [6], a context-aware

offloading scheme for mobile peer-to-peer environments is

proposed in which both servers and clients are mobile.

Their scheme chooses adjacent reliable mobile devices to

assign subtasks in order to prevent fault. This dissertation

just supports fault occurrence by mobility and ending

energy of mobile.

On the other hand, in [14-17] fault tolerance is achieved

using only replication which is generally not very efficient

for task with high computational loads, imposes high

costs, and occupies many resources. In addition, in [16,

14], to prevent fault occurrence, the system does not select

adjacent reliable mobile devices to assign subtasks. In

Hyrax [16], a Hadoop-based platform is proposed that

supports cloud computing on smartphones. Replication is

used for fault tolerance; subsequent to failure, failed

subtasks are re-executed without user intervention.

Although Hyrax provides high scalability, the system

exhibits poor performance with CPU-intensive tasks. The

central server in Hyrax causes a bottleneck in the system

and limits the mobility of mobile devices. Ref.[14]

presents the implementation of a platform for providing

fault tolerance in MCC. Their approach improves

reliability by the use of a dynamic and adaptive replication

which uses the minimum number of replicas. In this

model, a new replica is placed on the most reliable node

until the required reliability level is reached.

Ref. [15] considers fault tolerance and quality of service in

social mobile cloud computing environment by using

Content Addressable Network. In this paper the cloud

server selects the best resource from the adjacent mobile

devices in terms of quality of public and mobile device

services and, replication is used for fault tolerance.

Nevertheless, energy and mobility are not considered as a

fault factor in the paper. In [17], a framework is proposed

to support fault tolerance which integrates the k-out-of-n

reliability mechanism into mobile cloud formed only by

mobile devices. The framework provides services for

applications that aim to reliably store and process data in

the mobile cloud such that the energy consumption for

retrieving and processing the data is minimized. An

Najafabadi,&Khayyambashi, Reliable Resource Allocation and Fault Tolerance in Mobile Cloud Computing

98

unrealistic assumption in this work is that the nodes have

equal energy consumption for processing. It is possible

that subtasks are allocated to nodes with high-energy

consumption, so these nodes will fail in the future.

[9] applied the fault tolerance technique to handle the

faulty VMs in the MCC using the human disease

resistance mechanism which identifies the faulty virtual

machines and reschedules the tasks to the identified

suitable virtual machines. In this paper, they do not

consider fail in mobile devices as resources.

In [11, 10], a dynamic classification scheme for reliable

management of mobile devices as resources in MCC is

used. In [11] mobile devices are grouped according to

availability and mobility by adopting entropy, and in [10]

mobile devices are classified into groups based on their

processing capacity, availability, and communication

condition by adopting tree learning. Then, checkpointing

and replication are applied to groups with high and low

reliability, respectively. However, in these works,

administrative tasks are handled by a proxy which is in

conflict with nature of mobile networks and mobility of

mobile devices. Moreover, task assignment has not been

determined. In addition, in [11] energy is not considered as

a fault factor, and [10] considers only the remaining

battery of the devices and study of mobility model and

trajectory is overlooked.

3- Proposed Reliable System Model

Reliability is one of the most important aspects in mobile

cloud computing due to mobility and resource constraints

of mobile devices. Faults and failures should be managed

and controlled in an active manner to minimize the effects

of failures on the system. There are two complementary

approaches to establish reliability: (1) Fault Prevention and

(2) Fault Tolerance [23].

In the proposed model, each task has n independent

subtasks {T= ti |1≤i≤n}. And the mobile cloud

environment is formed by h mobile device {S=sk|

1≤k≤h}(where sh is a client mobile device that does task

offloading). In this model, at any given time, only one

offloading is executed, applications are segmented before,

and offloadable subtasks are independent and executed in

parallel.

3.1- Fault Prevention

The goal of fault prevention is to prevent system failure by

ensuring that all possible causes of unreliability are

removed [23]. One of the challenges in mobile cloud is

selecting reliable resources from adjacent mobile devices

to assign tasks to and prevent system failure. The energy,

mobility and availability factors of mobile devices result in

more frequent system faults. Due to dynamic changes

which disrupt mobile device applications, these features

increase device load and decrease system performance. To

the best of our knowledge, these factors have not been

jointly addressed. In this paper, we seek to prevent system

failure by selecting reliable devices according to three

important factors which cause system faults: energy,

mobility and availability.

3.1.1- Energy

Battery energy is among the main constraints in mobile

devices. As battery life is inherently limited, it may run out

at any moment, causing premature job termination. Hence,

mobile devices must preserve battery power during and

after processing a job. In mobile cloud environments,

subtasks should be distributed in a manner that network

lifetime is maximized and fault caused by battery energy

limitations are avoided. This proposed energy model is

inspired by [6]. In This model energy consumption and

remaining energy levels of all nodes involved in

offloading are considered. Variable notations are shown in

Table 1.

Table 1. Definitions of notations.

n Number of subtasks

h Number of mobile devices

Rj jth resource provider
tj Time needed to execute subtasks on Rj

ej
Energy consumption per second running each

subtask on Rj

etj
Energy consumption on Rj to transfer one unit of

data

E0j Initial energy level of Rj
Vin Input size of subtask

Vout Output size of subtask

bj Number of subtasks on Rj
Ej Energy consumption on Rj

The energy consumptions of both the server and the client

are indicated through Equ. (1). In the client side (j = h),

energy consumption includes energy consumption of

running local subtasks, transferring offloaded subtasks to

nearby mobile devices, running the resource allocation

algorithm. The energy consumption in server sides

consists of resource provider Rj (1≤j<h) consists of energy

consumed for running the assigned subtasks and

transmitting the results.

{

 () ∑ ()

 [() ()]

(1)

Then, Equ. (2) is applied to avoid allocating subtasks to

nodes with low remaining energy. Here, the network's

lifetime increases and the risk of energy depletion during

processing is prevented.

 – ≥ α for all j= 1,…, h-1 (2)

Journal of Information Systems and Telecommunication, Vol. 7, No. 2, April-June 2019

99

Next, Equ. (3). allows the subtasks to be allocated to the

nodes according to their energy level:

(3)

In this model, in addition to taking care of nodes with low

energy levels, the subtasks are fairly distributed among

other nodes. We aim to maximize the lifetimes of nodes

having the low remaining energy and high energy

consumption rates. Here, network energy is reduced and

no task is assigned to nodes with low remaining energy,

which prevents failures caused by battery drain and

increases minimal remaining energy of nodes. In [17],

only remaining energy and transferred energy among

nodes is considered while energy requirements are

assumed to be equal for all nodes, which is not a realistic

assumption.

3.1.2- Mobility Factor

Mobile devices as resource providers can join and leave

the Mobile Cloud environment in an unpredictable

manner. This interrupts the operation and may cause a

system failure. Given their low reliability, it is difficult to

consider mobile devices as resources. In this study,

prediction colocation between client and server mobile

devices is used to avoid the failure by mobility during

offloading. In fact, a colocation time between two users is

the time that two users visit each other and stay together.

Many studies use a temporal mean for predicting

colocation time [13, 21, and 22]. In this technique, time is

split in slots, and a temporally varying mean of the

encounters with other user is kept. Under this assumption,

the estimated colocation time is accurate since user paths

are well defined. However, it may present issues when

applied to new environments. To overcome this issue, in

this paper, the spatial-temporal mean is adopted to predict

colocation time between server and client that follows the

same principle, but taking into consideration the activity

and place when the encounter between users take place.

The anticipated colocation and movements of users are

based on intermittent user behaviors to see a place and

move among locations. Users periodically see a specific

location and regularly stay there, allowing their routes and

stationary time intervals to be estimated [3, 13, 22, and

24]. Here, a sequence of places p with time stamps ten

and tex is stored for each user. The tuple <pi, teni,texi>

indicates that user u enters place pi (p is the place covered

by one cellular tower or AP) at time teni and exits at time

texi. A trajectory information group Gk is generated which

contains k tuples. Each time the user moves from a

location to another, the trajectory information is updated.

This sequence is expressed by Equ. (4).

Gk = {<p, ten,tex>|<pi-k, teni-k,texi-k>,…,<pi-1,

teni-1,texi-1>,<pi, teni,texi>}

(4)

In the proposed scheme, first, client device movements are

predicted. Markov chain is perhaps the most widely used

model for human mobility due to its simplicity and

efficiency. Many recent works adopt the approach for

location prediction [25-28]. A Markov chain is a sequence

of random variables Xt, which represent the states of a

system, provided that the current state (Xt) depends only

on the previous state () [29]. This could be expressed

through Equ. (5).

P(, …,)=

P()

(5)

The chain could also be depicted using a directed graph,

whose edges are labeled with the probability of going from

one state to another, from time t - 1 to time t, Fig. (1).

Fig 1.Markov chain model

In this study, the probability of going from location to

location is calculated according to [28]. Here, locations

are considered as states of the Markov chain. As

mentioned earlier, in a Markov chain, the states are

independent; in other words, the location subsequent to i is

not dependent on the history of visited locations.

Accordingly, at processing time, the probability of a

transition from i to j equals the number transitions from i

to j at processing time is divided by the total number of

outgoing transitions from i (i.e. the definition of

probability). Respective probabilities are calculated on the

client mobile device (during processing) by applying Equ.

(6).

 (|

∑

(6)

The location with maximum probability is selected as the

next location of the client during the process. The neighbor

nodes are then informed of the client's next location.

Adjacent nodes that are willing to cooperate, calculate

their own colocation probabilities with the client node.

Equ. (7) is applied to calculate the colocation between the

service provider and the client after it is determined that

the client node is going to stay in its current location

during the process.

Najafabadi,&Khayyambashi, Reliable Resource Allocation and Fault Tolerance in Mobile Cloud Computing

100

∑

(7)

In this equation, according to the characteristic of Markov

chain and the definition of probability, the number of

times the service provider visits the current location at

processing time for tre is divided by total number of times

it moves from i to any other location at processing time.

Here, tre is the time required for processing. The variable

tc denotes current time. The non-equation

indicates that service providers need to remain in the

vicinity of the client as long as the task continues to

execute.

Once it is determined that the client node intends to move

to another location during the process, Equ. (8) Calculates

the colocation between the service provider and the client.

To find the colocation probability, the number of times the

service provider has moved from i to j (along with the

client during the process) is divided by the number of its

movements from i to any other location. The non-equation

 means that the

colocation time must exceed the time necessary for

processing.

 (|

 (| ())

∑

 (8)

Finally, service providers send their corresponding

colocation probabilities to the client node. In this manner,

the best resources from the adjacent mobile devices are

automatically chosen. The best resources have the most

chance of staying in colocation.

3.1.3- Availability

Availability can have several meaning according to the

system requirements. In the context of mobile devices used

as resources, it refers to the probability that a mobile

device performs and replies correctly while acting as a

resource. High availability systems aim to minimize

downtime and repair costs. In mobile applications,

availability is a crucial requirements and an achievable

objective. In the context of MCC or mobile grid, mobile

devices are often classified according to availability [11-

13]. In [11], the number of faults caused by a mobile

device is used for availability information. Accordingly, in

this paper the success rate is applied to obtain availability.

The higher values in the past predict greater availability

and success in the future. Each service provider calculates

its availability using Equ. (9). and the resulting values are

transmitted to the client mobile device.

 (9)

The client then selects the devices with the highest success

rate (i.e. availability) as the resources. Thus, tasks are

assigned to devices that are more reliable and devices with

high failure rates are avoided.

3.1.4- Estimating context information

There are several techniques to predict runtime, energy

consumption, and output size of a subtask on a mobile

device [32, 33]. We use a dual profiling approach inspired

by [33], which consists of a peer-centric and a task-centric

profile. The former is a history-based profile maintaining

the runtimes and energy consumptions of the last n runs of

a subtask on a specific peer. Here, the average profile data

from the last ten runs is calculated as an estimate. Since

the mobile cloud is a dynamic environment and there may

be new to which the task has never been assigned, a task

centric profile is used for new devices. In this approach, a

device is selected as the base; then, by comparing the

processing power of the base device with that of the new

device, subtask energy consumption and runtime on the

new device are estimated.

3.2- Fault Tolerance

A fault-tolerant system should be able to manage defects

in hardware or software components as well as other

unexpected downtimes. Despite fault prevention

approaches, failure is inevitable; therefore, it is necessary

to take appropriate measures after system fault [23]. There

are numerous methods for achieving fault tolerance in

distributed systems, among which replication and

checkpointing are most popular.

3.2.1- Active Replication

Replication techniques replicate similar tasks, which can

be run in a simultaneous manner on several devices. When

one of the replicas fails another performs its task [30]. In

this paper, active replication is used to promote resources

reliability against faults caused by the volatility of mobile

devices for tasks with low computational load. The reasons

for this choice are: (1) active replication is a non-

centralized technique which suits the fully distributed

design of the proposed system; (2) Failures are fully

hidden from the clients, since requests are still processed

even if one replica fails; (3) short response time even in

case of failures because each replica works independently

which is important for mobile users; and (4) simplicity

which is important for mobile devices with limited

resources.

In the proposed method once a service provider fails for

any reason, another replica is responsible for the client

node requests. When the client node receives the first

Journal of Information Systems and Telecommunication, Vol. 7, No. 2, April-June 2019

101

response from a replica, others halt processing in order to

reduce energy consumption. Although replication

techniques have many advantages with high fault

tolerance, they are costly for tasks with high computational

loads.

3.2.2- Independent Checkpointing

Once a failure occurs, it is vital to restore the process to its

correct state. So, in this paper, independent checkpointing

is applied for tasks with high computational load. This is

better for independent processes and reduces the

computational overhead [31]. Independent checkpointing

mainly involves restoring the system from its present

erroneous state back into a previously correct state. This

requires the state of the system to be occasionally recorded

so that, when faults occur, the state can be restored. The

state of the system is stored on the client mobile devices at

regular intervals. When a subtask fails, that subtask along

with the previously correct state, is assigned to another

reliable service provider without user intervention.

3.3- Reliable task allocation in the Mobile Cloud

In the mobile cloud, when a client mobile device wants to

run a compact application, it first asks for an offloading

service. Next, it applies service discovery to identify

adjacent mobile devices by transmitting a broadcast

message containing its location during the service. As the

service provider receives the offloading request message,

it calculates the energy consumption ratio in relation to

residual energy after performing the subtask through Equ.

(3). Then, it calculates its colocation probability with the

client and availability using Equs. (7-8) and Equ. (9),

respectively. Finally, it sends this information along with

its energy consumption rate and current energy in response

to the client. Algorithm 1 outlines the execution algorithm

of the subtasks on the service provider.

Algorithm 1: Execution Subtasks Algorithm

Numet=0;//number of all execution tasks

Numset=0;//number of all successfully executed tasks

Collect location information;

Receive request from client;

If mobile device is willing to cooperate then

 Collect energy information;
 Calculate context information();

 Send context-inf to client;

 Receive subtasks;
 If subtask is large then

 While(Receive request for checkpoint)

 Send checkpoint;
 If chechpoint ≠ 0 then

 Execute subtask from checkpoint;

 Send result;

 Else

 Execute subtask;

 Send result;
 Receive ack from client;

 If ack==1 then

 Numet++;

 Numset++;

 Else

 Numet++;

Function Calculate context information()
 Calculate colocation probability with client(p-location);

 Calculate consumable battery(cb);

 Calculate ratio of consumable battery to remaining battery(E);
 Calculate availability;

 Context-inf set(p-location, E, current E,cb, availability);

End

The client discovers its adjacent mobile devices and

obtains their context information through messages sent by

adjacent mobile devices in response to the client. First, the

service providers’ remaining energy levels are checked. If

the levels are lower than the threshold from Equ. (1), the

client does not assign any subtasks to these service

providers. Next, the client predicts the providers’

behaviors by using their context information. They are

ranked accordingly by applying Equ. (10-18). The service

providers are then partitioned into two groups of high and

low reliability. Finally, in order to take advantage of fault

tolerance techniques, according to the computational load

of the task, either replication or checkpointing is adopted.

For tasks with low computational load, active replication is

employed and the subtasks in several groups with the

highest reliability are replicated in a simultaneous manner.

Subtasks are allocated to groups according to the rank of

devices through Equ. (13). More subtasks are assigned to

devices with higher ranking. Every service provider

executes the assigned subtasks and replies the results to the

client. Once a subtask execution is finished on one of the

replicas and the result is transmitted to the client, the

subtask is no longer executed on other replicas. This

contributes to saving resources and reducing traffic on the

network. Replication in several devices for tasks with low

computational load is not costly and occupies few

resources; however, in such cases, restarting a subtask and

taking checkpoints are of high overhead and cost. The

decision-making algorithm on the client side is presented

in Algorithm 2.

Algorithm 2: Dynamic Reliable Context-aware Decision making

Algorithm

Function main()

 Collect location information; //call monitoring
 Request offloading();

 Decision offloading();

 Receive result;
 While not receive result of all subtask do

 Request offloading;

 Receive result;
 Merge all results;

End

Function Request offloading()
 Calculate maximum job execution time ;

 Calculate next location in maximum job execution time ;

 Send broadcast with next location;
 While (true) do

 Receive reply from vicinal mobile devices;

 Context Set context(energy, location, availability, id);

Najafabadi,&Khayyambashi, Reliable Resource Allocation and Fault Tolerance in Mobile Cloud Computing

102

 For i=1 to all vicinal device do

 Rank TOPSIS(context);
 If Rank ≥ 0.5 then

 Group1 mobile device;

 Else

 Group2 mobile device;

 In Group1

 Sort in ascending order of Rank;
 In Group2

 Sort in ascending order of Rank;

End
Function Decision offloading()

 If subtasks is small then

 Call Replication;
 Else if subtasks is large then

 Call check pointing;

End

Replication is very costly for tasks with high

computational load and occupies many resources.

Consequently, in this paper, checkpointing is applied for

tasks with high computational load. In checkpointing, first,

subtasks are assigned to the group with the highest

reliability according to device rankings. Next, at regular

intervals, system state is stored on the client mobile

device. Given the dynamic nature of the mobile cloud

environment, after a device fails, client mobile device

discovers its adjacent mobile devices again and receives

their context information. Then once more, the client ranks

and classifies adjacent mobile devices where the failed

subtask with previously correct state is assigned to another

reliable service provider without user intervention. Due to

the high computational load of the subtask, the system

replaces an erroneous state with an error-free state. Thus,

the new service provider does not need to start from the

beginning to process the failed subtask. This proposed

approach saves time and cost of resources if a fault occurs

in the final moments of processing.

Once the client receives a result from a service provider, it

replies with an acknowledgment message to the sender,

who then increments its number of successful tasks.

Contrarily, if a subtask fails, it is re-executed on other

adjacent mobile devices without user intervention.

Ultimately, the client collects and merges all the results.

4- Ranking and grouping mobile devices with

TOPSIS

In this study, TOPSIS is applied to rank and group mobile

devices [34]. There are two reasons for this choice: (1) the

concept of TOPSIS is rational, and (2) its algorithm is

simple and light which is suitable for mobile devices with

limited resources. In addition, TOPSIS can take objective

weights into consideration in the comparison process. The

technique includes a number of options and attributes for

decision making. The options must be ranked according to

these attributes. This solution procedure takes the

following seven steps:

 Step1. Preparing the decision-making matrix with p rows

and three columns where rpq are the elements of this

matrix, Equ. (10). The rows represent mobile devices in

the vicinity of the client device while the columns

represent the decision making attributes. Three attributes,

namely energy consumption to the remaining energy,

colocation probability between the service provider and

the client and availability, are considered for ranking

mobile devices.

 [

]

(10)

 Step2. In this step, the decision-making matrix (D) is

normalized by using Equ. (11).

√∑

(11)

 Step3. Each attribute is assigned a weight based on the

concept of Shannon entropy. Entropy is a major concept in

the information theory and represents the amount of

unreliability in a discrete probability distribution (random

variable) [35]. Lower weights are assigned to attributes

with identical values. This is because such attributes do

not contribute to distinguishing options. They are, thus,

less prominent. For each attribute, entropy is defined

through Equ. (12).

∑

(12)

The degree of divergence dj (the contrast intensity of each

attribute) and the weight for each attribute is indicated

through Equ. (14) and (13), respectively.

 (13)

∑

(14)

 Step4. This step involves the calculation of the weighted

normalized decision matrix using Equ. (15).

(15)

 Step5. In this step to rank alternatives, the solutions are

compared with the positive ideal solution (A
+
) and the

Journal of Information Systems and Telecommunication, Vol. 7, No. 2, April-June 2019

103

negative ideal solution (A
-
), Equ. (16) (and are the

index sets of the benefit and cost attributes, respectively)

(16)

 {

 }

 {

 }

 Step6. The distances of each solution from the ideal

solution (
) and negative ideal solution (

) is calculated

through Equ. (17).

(17)

 ∑(

)

 ∑

 Step7. This step involves calculating ranks i.e. relative

closeness of a solution to the ideal solution. The devices

are ranked according to Equ. (18).

(18)

Once mobile devices are ranked according to the

aforementioned criteria, each device is placed in a group

of high or low reliability based on its rank. Given the

dynamic nature of mobile devices, their context

information is continuously updated. Thus, devices are

dynamically ranked and grouped. The number of subtasks

assigned to each mobile device is determined according to

its rank and reliability, Equ. (19).

∑

(19)

5- Context-aware reliable offloading

middleware

In this section, a middleware is designed and implemented

to employ reliable offloading and apply fault tolerance

methods in the mobile cloud. This middleware collects

contextual information, manages offloading steps, and

adopts fault tolerance methods.

5.1- Architecture

This middleware consists of a client-side, which requests

the offloading service, and a server-side, which provides

services. A mobile device runs both parts, Fig. (2).

Fig 2. Context -aware reliable offloading middleware

5.1.1- Client-Side Middleware

The client-side middleware includes a discovery service, a

contextual information manager, fault manager, Allocation

and Merging, and a communications manager.

 Discovery Service: Adjacent mobile devices can be

discovered using either pull or push techniques [18]. The

former has a relatively small monitoring overhead,

because the server’s resource information is only requested

when it is needed. Consequently, given resource

constraints in mobile devices, and to reduce monitoring

overhead, we propose a monitoring scheme which relies

on the pull model. In this technique, when a client mobile

device decides to offload a task to adjacent mobile

devices, it sends a broadcast message, to which willing

Najafabadi,&Khayyambashi, Reliable Resource Allocation and Fault Tolerance in Mobile Cloud Computing

104

devices respond by transmitting their contextual

information. This allows the client to discover its adjacent

mobile devices and obtain their contextual information.

 Contextual information manager: This component

gathers contextual information pertaining to tasks,

resource providers, and the network through their

aggregators i.e. task profiler, device profiler and network

profiler, respectively.

a) The device profile contains energy consumption as well

as remaining battery energy, trajectory information, total

number of tasks assigned to the device, and the number of

successfully performed by the device.

b) Task profile contains information about runtime and

input/output size of each subtask. In this paper, it is

assumed that application developers present offloadable

parts of the task in the task profile.

 Fault manager: Initially, this component detects adjacent

unreliable mobile devices; next, adjacent mobile devices

are ranked according to their reliability and partitioned

into groups of high or low reliability. Finally, in order to

take advantage of fault tolerance techniques due to

computational load of the task, either replication or

checkpointing approach is applied.

 Allocation and Merging: this component assigns

subtasks to adjacent mobile devices according to the fault

manager component. In addition, this component merges

the results. If a subtask fails or this component does not

receive any result, the failure is reported to the fault

manager component.

 Communications Manager: The Communications

manager on the client provides network communication

among client and service provider devices while

monitoring this communication. In case the connection is

disconnected, this component notifies the client to take

appropriate fault tolerance measures depending on the

condition.

5.1.2- Server-Side Middleware

This part of middleware includes a device profiler, a task

manager, a context information calculator, a service

provider manager, and a communications manager.

 Device profiler: Contextual information from the

devices is collected and stored in a database on the device.

 Context information calculator: The three relevant

criteria (i.e. colocation probability, energy ratio, and

availability) are calculated based on the information

received from the client and sent to the service provider

manager component.

 Task manager: The component handles the request,

executes the offloaded code, and relays the results to the

service provider manager component.

 Service provider manager: It is responsible for

coordinating the components on the service provider and

following up processing on the server. Finally, this

component collects the results.

 Communications Manager: The component handles

communication between client and server on the server

side, receives data and control data from the client, and

sends context information and result to client.

6- Evaluation

In this section, the performance of the proposed system is

evaluated by conducting real experiments on multiple

mobile devices. A middleware is implemented into a

library on Android operating system, which can be added

in Android application for development. A face detection

application is applied as the case study; it analyzes an

assortment of photos as subtasks to identify the comprising

faces. The application is implemented for the Android

platform by applying android. media [36]. The middleware

consists of approximately 6500 lines of Java code, which

is used in following extensive experiments. In addition to

the networking components, collecting and receiving

checkpoints, collecting contextual information and tasks

execution on this versions are run in separate threads. To

evaluate the performance of the proposed method, a

testbed of mobile devices is set up as show in Table 2.

The mobile devices, which is creating a mobile cloud, are

connected to an ad-hoc network using Wi-Fi with a mean

bandwidth of 1.86 MBps. For each device, energy levels

required for executing various tasks, the location of the

device at any time, and availability are stored on its

database. To measure the energy consumption of

smartphones, we take advantage of PowerTour [37].

Furthermore, real-time device coordinates are obtained via

GPS.

To demonstrate the performance of our proposed method,

the proposed algorithm is compared with four other

algorithms with different numbers of subtasks: random

allocation, reliable allocation, replication, checkpointing

algorithms, and dynamic grouping in [11]. In random

allocation, mobile devices are randomly selected as

resources without any measure of fault tolerance. Reliable

allocation just aims to choose reliable mobile devices as

resources and to assign tasks with no fault tolerance. The

difference in the checkpointing algorithm lies in the

application of checkpointing for fault tolerance. Another

option is to use replication for fault tolerance, like [16, 14].

In these experiments, four criteria are applied to evaluate

the performance of the proposed method:

Completion time: the amount of time to complete

offloading plus the time of task allocation algorithm.

Success rate: indicative of successful offloading.

Consumed Energy: the total energy consumption of all

devices involved in offloading. It is the sum of the values

calculated for each node through Equ. (1).

Percentage of task failure: the percentage of subtasks that

fail after being offloaded to adjacent mobile devices.

Journal of Information Systems and Telecommunication, Vol. 7, No. 2, April-June 2019

105

The impact of computational load (required processing

time) of subtasks in this set of experiments is explored,

where two sets of subtasks with different computational

loads are of concern:

Case 1: Set of subtasks with low computational load.

Case 2: Set of subtasks with high computational load.

To evaluate the proposed algorithm, the two cases are

examined in two scenarios, where two failure models are

of concern [17]:

Fail-fast: a node fails at the first time-slot and cannot

complete any task.

Fail-slow: a node may fail at any time; thus being able to

complete some of its assigned tasks before the failure

Table 2. Features of mobile devices in testbed.

ID Mobile Device CPU Memory OS
Battery capacity

(Joule)

A
Samsung Galaxy

core 18260

Dual-Core 1.2GHZ

Cortex-A5
1GB Android OS, V4.1.2 24624 Joule

B
Samsung Galaxy

Grand2
Quand-Core 1.2GHZ

cortex-A7
1.5GB Android OS, V4.4.2 35568 Joule

C
Samsung Galaxy

Note 800

Quand-Core 1.4GHZ

cortex-A7
2GB Android OS, V4.1.2 100000 Joule

D LG L Fino
Quand-Core 1.2GHZ

cortex-A7
1GB Android OS, V4.4.2 25992 Joule

E
Huawei Ascend

G730
Quand-Core 1.3GHZ

cortex-A7
1GB Android OS, V4.4.2 31464 Joule

6.1- First Scenario

Here, the proposed method is evaluated and compared by

considering fail-fast in both cases.

First Sample: The foregoing algorithms are reviewed and

compared by considering fail-fast in case 1. In this

situation, replication is applied in the proposed algorithm

because the subtasks have low computational load.

Fig. (3.a) depicts the corresponding success rates. As

evident, in all of the algorithms, the rate begins to suffer as

the number of subtasks grows. This is because greater

network traffic leads to higher failure rates. Likewise, an

increase in the number of subtasks reduces the colocation

probability between service provider and client node, thus

increasing failure due to mobility. The random allocation

algorithm has the lowest success rate while the proposed

algorithm has the highest success rate with an average of

95.5%, which is 70%, 27%, 21%, and 14% higher than

random, reliable offloading, checkpointing, and dynamic

grouping, respectively. The reason is that the proposed

algorithm selects reliable mobile devices with the highest

rank as resources followed by replicating subtasks to

several devices. However, the reliable allocation and

checkpoint algorithms merely select reliable mobile

devices without replicating subtasks in several mobile

devices.

Completion times of the algorithms for the first sample can

be seen in Fig. (3.b). The completion time in random

allocation algorithm is higher than that of the other

algorithms because it has a high failure rate forcing the

failed subtasks to be reassigned. Contrarily, the proposed

algorithm exhibits the lowest completion time, which is

19%, 6.5%, and 0.6% lower than random, checkpointing,

and dynamic grouping, respectively. This is attributed to

two reasons: (1) maximum success rate minimize the need

to re-assign failed subtasks and (2) the response from the

fastest replica is regarded as the ultimate result. The client

may receive their results earlier than when the subtasks are

not replicated. If the size of the task grows, checkpointing

experiences a boost in performance because the overhead

tends to dwindle. Applying checkpointing for big task

reduces completion time. While for small task, overhead

for getting checkpoint is large compared to the task size.

Total energy consumptions in the first sample are shown in

Fig. (3.c). The proposed algorithm has the highest energy

consumption, since it replicates tasks in several mobile

devices. This increasing energy consumption is not

significant because subtasks are small. Contrarily, reliable

allocation and checkpointing have the lowest total energy

consumption as they select mobile devices with low

energy consumption rates and do not perform replication.

Compared with the proposed algorithm, dynamic grouping

uses less energy (about 32%) since it takes advantage of

checkpointing for reliable groups.

The percentages of task failures in first sample are

illustrated in Fig. (3.d), where the percentage of failure

task in this proposed algorithm is lower than others. on

average, percentage of failure task in this proposed

algorithm is 11% lower than reliable offloading and 6%

lower dynamic grouping, because tasks are replicated in

several mobile devices.

Second Sample: Here, the aforementioned algorithms are

reviewed and compared by taking fail-fast in case2. In this

situation, the proposed algorithm applies checkpointing for

fault tolerance because subtasks have high computational

loads.

The success rate in the second sample is shown in Fig.

(4.a), where replication achieves first ranks (12% higher

Najafabadi,&Khayyambashi, Reliable Resource Allocation and Fault Tolerance in Mobile Cloud Computing

106

than the proposed method) given that it replicates tasks in

several mobile devices. However, it is not efficient in this

sample because subtasks have high computational loads.

The completion time in second sample is expressed in Fig.

(4.b), where the proposed algorithm and has the lowest

completion time because failed subtasks resume execution

on new service provider devices from the latest recorded

checkpoint. As it is illustrated, on average, the completion

time in the proposed algorithm by 11%, 16%, 13%, and

27% is lower than reliable offloading, replication, and

dynamic grouping, respectively. Thus, proposed algorithm

saves completion time. This improvement is not very

impressive, however, because of fail-fast.

a. Success rate b. Completion time

c. Consumed Energy d. Percentage of task failure

Fig 3. Impact of different numbers of subtasks on the proposed algorithm

and previous methods according to fail-fast and subtasks of case1

The success rate in the second sample is shown in Fig.

(4.a), where replication achieves first ranks (12% higher

than the proposed method) given that it replicates tasks in

several mobile devices. However, it is not efficient in this

sample because subtasks have high computational loads.

The completion time in second sample is expressed in Fig.

(4.b), where the proposed algorithm and has the lowest

completion time because failed subtasks resume execution

on new service provider devices from the latest recorded

checkpoint. As it is illustrated, on average, the completion

time in the proposed algorithm by 11%, 16%, 13%, and

27% is lower than reliable offloading, replication, and

dynamic grouping, respectively. Thus, proposed algorithm

saves completion time. This improvement is not very

impressive, however, because of fail-fast.
Fig. (4.c) displays the overall energy consumption of all

devices for each algorithm with the second sample.

Replication has the highest consumption of energy since

tasks are replicated on several mobile devices. This

increased energy consumption is impressive because

subtasks are large. The proposed algorithm, on the other

hand, exhibits the lowest energy consumption, which is

25%, 4.5%, 50%, 37% greater than random, reliable

offloading, replication, and dynamic grouping,

respectively. The reason is that the new service provider

does not need to execute subtask from the beginning,

which leads to a reduction of energy requirements.

Finally, Fig. (4.d) shows task failure percentages with the

second sample. Failure percentage of the proposed

algorithm is lower compared to dynamic grouping and

random allocation. This can be attributed to the selection

of reliable mobile devices.

a. Success rate b. Completion time

c. Consumed Energ d. Percentage of task failure

Fig 4. Impact of different numbers of subtasks on the proposed algorithm
and previous methods according to fail-fast and subtasks of case 2

6.2- Second Scenario

In this scenario, the proposed algorithm is evaluated and

compared by considering fail-slow in both cases.

First Sample: The mentioned algorithms are reviewed and

compared by considering fail-slow in case1. In this

situation, after the proposed algorithm selects reliable

mobile devices it applies replication for fault tolerance

because subtasks have low computational load.

The success rate with the first sample is shown in Fig.

(5.a). The success rate of the proposed algorithm is higher

than that of the other algorithms because reliable mobile

devices with the highest rank are selected as a resources

and subtasks are replicated to several devices. Hence, as it

is illustrated, the proposed algorithm with average of 89%,

32%, 36%, and 21% surpasses random, reliable offloading,

checkpointing, and dynamic grouping, respectively.

0%

20%

40%

60%

80%

100%

5 10 15 20

su
cc

es
s

ra
te

number of task

random
reliable offloading
proposed scheme
checkpointing
dynamic groupig[11]

0

20000

40000

60000

80000

100000

120000

5 10 15 20

co
m

p
le

ti
o

n
 t

im
e(

m
s)

number of task

random
reliability offloading
proposed scheme
checkpointing
dynamicgrouping[11]

0

20

40

60

80

5 10 15 20

co
n
su

m
ed

 E
n
er

g
y
(j

)

number of task

random
reliable offloading
proposed scheme
checkpointig
dynamic grouping[11]

0%

5%

10%

15%

20%

25%

30%

35%

5 10 15 20

p
er

ce
n
ta

g
e

o
f

fa
il
u
re

 t
as

k

number of task

random
reliable offloading
proposed scheme
checkpointing
dynamic grouping[11]

0%

20%

40%

60%

80%

100%

5 10 15 20
su

cc
es

s
ra

te

number of task

random
reliable offloading
replication
proposed scheme
dynamic grouping[11]

0

100000

200000

300000

400000

500000

600000

700000

5 10 15 20

co
m

p
le

ti
o

n
 t

im
e(

m
s)

mobile device

random

reliable offloading

replication

proposed schem

dynamic grouping[11]

0

200

400

600

800

1000

1200

5 10 15 20

co
n
su

m
ed

 e
n
er

g
y
(j

)

number of task

random

reliable offloading
replication

proposed scheme

dynamic grouping[11]

0%

5%

10%

15%

20%

5 10 15 20
p
er

ce
n
ta

g
e

o
f

fa
il
u
re

 t
as

k

number of task

random
no replication
replication
proposed scheme
dynamic grouping[11]

Journal of Information Systems and Telecommunication, Vol. 7, No. 2, April-June 2019

107

Completion times with the first sample are shown in Fig.

(5.b). As evident, the proposed algorithm has the lowest

completion. It is expected that checkpointing have the

lowest completion time because new service providers do

not need to execute failed subtask from the beginning.

However, this is not true in this case as, for small tasks, the

overhead of getting checkpoints is larger than that of

restarting.

The total energy consumption of all devices for each

algorithm with the first sample is shown in Fig. (5.c). Once

again, the proposed algorithm has the highest consumption

since tasks are replicated to several devices, while

dynamic grouping consumes lower energy, which exceeds

the proposed method by 25%.

By comparing the algorithms using the first sample of the

two scenarios, it can be deduced that success rate of the

proposed algorithm is higher than other algorithms.

Moreover, the proposed algorithm has the highest energy

consumption. This increasing energy consumption is not

significant because subtasks are small.

a. Success rate b. Completion time

c. Consumed Energy d. Percentage of task failure

Fig 5. Impact of different numbers of subtasks on the proposed algorithm

and previous methods according to fail-slow and subtasks of case1

Second Sample: Here, the mentioned algorithms are

reviewed and compared by considering fail-slow in case2.

Under these circumstances, after the proposed algorithm

selects reliable mobile devices as resources to assign tasks,

it applies checkpointing for fault tolerance because

subtasks have high computational loads.

Success rates with the second sample are shown in Fig.

(6.a). The success rate of replication is higher than that of

the other algorithms (28% higher than the proposed

method).

The completion time in the second sample is shown in Fig.

(6.b). The completion time of the proposed algorithm is

lower than that of the other algorithms (16%, 4%, 30%,

and 17% lower than random, reliable offloading,

replication, and dynamic grouping, respectively). The

improvement in completion time is significant because of

fail-slow and tasks with high computational loads.

However, when the number of subtasks decreases,

checkpointing overhead increases in relation to task size.

Therefore, completion time increases.

The total energy consumption of the algorithms can be

seen in Fig. (6.c). Replication uses the largest amount of

energy (59% more than the proposed algorithm). The

increase in energy consumption is significant because

subtasks are large. The total energy consumption in the

proposed algorithm is lower than that of the other

algorithms (28%, 19%, and 34% lower than random,

reliable offloading, and dynamic grouping, respectively).

a. Success rate b. Completion time

c. Consumed Energy d. Percentage of failure task

Fig 6. Impact of different numbers of subtasks on the proposed algorithm

and previous methods according to fail-slow and subtasks of case2

After comparing the algorithms in the second sample of

the first and second scenarios, it can be deduced that in the

second sample, the total energy consumption and

completion time of the proposed algorithm are lower than

other algorithms because, in the proposed algorithm, new

service providers do not need to execute failed subtask

from the beginning. This improvement in second scenario

is better than the first because of fail-slow.

These results indicate that replication is very costly for

tasks with high computational load because, in replication,

energy consumption is high. Although, success rate in

checkpointing is lower than that of replication algorithm,

checkpointing is more appropriate for tasks with high

computational loads. Consequently, in this paper we tried

to make a trade of between energy and success rate. As it

is illustrated, our algorithm saves impressive amount of

0%

20%

40%

60%

80%

100%

5 10 15 20

su
cc

es
s

ra
te

number of task

random
reliable offloading
proposed scheme
checkpointing
dynamic grouping[11]

0

20000

40000

60000

80000

100000

5 10 15 20

co
m

p
le

ti
o

n
 t

im
e(

m
s)

number of task

random
reliability offloading
proposed scheme
checkpointing
dynamic groping[11]

0

10

20

30

40

50

60

70

5 10 15 20

co
n
su

m
ed

 E
n
er

g
y
(j

)

number of task

random
reliable offloading
proposed scheme
checkpointig
dynamic grouping[11]

0%

5%

10%

15%

20%

25%

5 10 15 20

p
er

ce
n
ta

g
e

o
f

fa
il
u
re

 t
as

k

number of task

random
reliable offloading
proposed scheme
checkpointing
dynamic grouping[11]

0%

20%

40%

60%

80%

100%

5 10 15 20

su
cc

es
s

ra
te

number of task

random
no replication
replication
proposed scheme
dynamic groping[11]

0
100000
200000
300000
400000
500000
600000
700000
800000

5 10 15 20

co
m

p
le

ti
o

n
 t

im
e(

m
s)

number of task

random
reliable offloading
replication
proposed scheme
dynamic grouping[11]

0

200

400

600

800

1000

1200

5 10 15 20

co
n
su

m
ed

 E
n
er

g
y
(j

)

number of task

random
reliable offloading
replication
proposed scheme
dynamic grouping[11]

0%

5%

10%

15%

20%

25%

5 10 15 20

p
er

ce
n
ta

g
e

o
f

fa
il
u
re

 t
as

k

number of task

random
no replication
replication
proposed scheme
dynamic grouping[11]

Najafabadi,&Khayyambashi, Reliable Resource Allocation and Fault Tolerance in Mobile Cloud Computing

108

energy in tasks with high computational load, while

success rate of proposed algorithm is lower than

Replication. In contrast, for tasks with low computational

load, the success rate of the proposed algorithm is higher

than other algorithms, while it has the highest energy

consumption. However, this increasing energy

consumption is not significant because subtasks are small.

7- Conclusion

In this paper, a new approach was proposed for fault

tolerance where a fully distributed resource allocation

algorithm was applied without using any central

component with the objective to improve the reliability of

mobile resources. Mobile devices in this algorithm are

adopted as resources to which tasks are assigned. In the

context of mobile devices, energy constraints, mobility,

and availability are considered as fault factors used to

predict device states and prevent faults caused by volatility

of mobile devices. The algorithm applied replication or

checkpointing for fault tolerance according to the task size.

Here, a context-aware reliable offloading middleware was

developed to collect contextual information, manage

reliable offloading processes, and fault tolerance. To

evaluate the proposed method, several experiments were

run in a real environment. The results showed higher

success rate as well as significant improvements in

completion time and energy consumption for tasks with

high computational loads.

In future studies, secure offloading by assigning tasks to

trusty devices would be of concern to overcome malicious

users. Moreover, extending the proposed method for

scenarios in which multiple offloading requests are

submitted simultaneously is regarded as another future

work.

References
[1] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:

A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp.

84-106, 2013.

[2] M.Othman, S. A. Madani, and S. U. Khan, “A survey of mobile

cloud computing application models,” IEEE Communications

Surveys & Tutorials, vol. 16, no. 11, pp. 393-413, 2014.

[3] G. F. Huerta Cánepa, “A context-aware application offloading
scheme for a mobile peer to peer environment,” Ph.D. dissertation,

Department of Information and Communication Engineering,

KAIST, South Korea, 2012.
[4] M. Conti, et al. “Looking ahead in pervasive computing: Challenges

and opportunities in the era of cyber–physical convergence,”

Pervasive and Mobile Computing, vol. 8, no. 1, pp. 2-21, 2012.
[5] V. Cardellini, V. De NitoPersoné, V. Di Valerio, F. Facchinei, V.

Grassi, F. Lo Presti and V. Piccialli, “A game-theoretic approach to

computation offloading in mobile cloud computing,” Technical
Report, 2013..

[6] S. G. Falavarjani, M. Nematbakhsh, and B. S. Ghahfarokhi,

"Context-aware multi-objective resource allocation in mobile cloud,"
Computers & Electrical Engineering,vol. 44, pp. 218-240, 2015.

[7] C.Shi, et al. “Serendipity: enabling remote computing among

intermittently connected mobile devices,” In Proceedings of the

thirteenth ACM international symposium on Mobile Ad Hoc

Networking and Computing. ACM, 2012, pp. 145-154.
[8] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R.

Buyya, “A context sensitive offloading scheme for mobile cloud

computing service,” In Proceedings of IEEE of 8th International
Conference on In Cloud Computing (CLOUD), 2015, pp.869-876.

[9] D. N. Raju, and V. Saritha. "Architecture for fault tolerance in

mobile cloud computing using disease resistance approach."
International Journal of Communication Networks and Information

Security, vol. 8, no. 2, 2016.

[10] B. Zhou and R. Buyya, "A Group based Fault Tolerant Mechanism
for Heterogeneous Mobile Clouds," In Proceedings of the 14th EAI

International Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services, Nov 2017.
[11] J. Park, H. Yu, H. Kim, and E. Lee, “Dynamic group‐ based fault

tolerance technique for reliable resource management in mobile

cloud computing,” Concurrency and Computation: Practice and

Experience, John Wiley & Sons, vol. 26, no. 17, Jan. 2014.

[12] J. Park, H. Yu, E. Lee, “Resource allocation techniques based on

availability and movement reliability for mobile cloud computing,”
Distributed Computing and Internet Technology, Springer Berlin

Heidelberg, 2012,pp. 263–264.

[13] J. S. Park and E. Y. Lee, “Entropy-based grouping techniques for
resource management in mobile cloud computing,” Ubiquitous

Information Technologies and Applications, Springer Netherlands,

2013, pp. 773-780.
[14] P. Stahl, et al, "Dynamic Fault-Tolerance and Mobility Provisioning

for Services on Mobile Cloud Platforms." In Proceedings of the 2017
5th International Conference on Mobile Cloud Computing, Services,

and Engineering (MobileCloud), IEEE, 2017, pp. 131-138.

[15] S. Choi, K. Chung, and H. Yu, “Fault tolerance and QoS scheduling
using CAN in mobile social cloud computing”, Cluster Computing,

vol.17, no.3, pp. 911-926, 2014.

[16] E. E. Marinelli, Hyrax: cloud computing on mobile devices using

MapReduce. No. CMU-CS-09-164. Carnegie-mellon univ Pittsburgh

PA school of computer science, 2009.

[17] C-A. Chen, et al., “Energy-efficient fault-tolerant data storage and
processing in mobile cloud,” IEEE Transactions on cloud computing,

vol. 3, no. 1, pp. 28-41, 2015.

[18] J. Park, H. Yu, K. Chung, and E. Lee, “Markov Chain based
Monitoring Service for Fault Tolerance in Mobile Cloud

Computing,” In Proceedings of IEEE Workshops of International

Conference on Advanced Information Networking and Applications,
2011, pp.520-525.

[19] P. Patel and V. Prakash, “FTAB: Fault Tolerance Approach by Using

HMM with BAUM-WELCH Algorithm in MCC,” In Proceedings of
Tenth international conference on Wireless and Optical

Communication Network (WOCN), 2013, pp.1-4.

[20] L. Ling, W. Zhulin and Y. Xiuhua, “Mobile Resource Reliability-
Based Task Allocation for Mobile Cloud”, In Proceedings of the

2015 Fifth International Conference on Instrumentation and

Measurement, Computer, Communication and Control (IMCCC),

IEEE, 2015, pp.1746-1750.

[21] J.Park, et al, “Two‐ phase grouping‐ based resource management for

big data processing in mobile cloud computing,” International
Journal of Communication Systems, vol. 27, no. 6, pp. 839-851,

2014.

[22] L. McNamara, C. Mascolo, L. Capra, “Media sharing based on
colocation prediction in urban transport,” In Proceedings of the 14th

ACM international conference on mobile computing and networking,

ACM, 2008. pp. 58–69.
[23] P. A, Lee, and T. Anderson, “Dependable computing and fault

tolerant systems,” Fault Tolerance: Principles and Practice, Springer

Verlag, NewYork, vol. 3, 1990.
[24] Ch. Song, et al. “Limits of predictability in human mobility,”

Science 327.5968 , 2010, pp.1018-1021.

[25] J. Nicholson and B. D. Noble. “Breadcrumbs: forecasting mobile
connectivity,” In Proceedings of the 14th ACM international

Journal of Information Systems and Telecommunication, Vol. 7, No. 2, April-June 2019

109

conference on Mobile computing and networking. ACM, 2008, pp.

46-57.
[26] Huang, Wei, et al. “Predicting human mobility with activity

changes,” International Journal of Geographical Information Science,

vol. 29, no. 9, pp. 1569-1587, 2015.
[27] S. Ch. Shah, “Energy efficient and robust allocation of

interdependent tasks on mobile ad hoc computational grid,”

Concurrency and Computation: Practice and Experience, vol. 27, no.
5, pp. 1226-1254, 2015.

[28] M.Sepahkar and M. R. Khayyambashi, “A novel collaborative

approach for location prediction in mobile networks,” Wireless
Networks, pp. 1-12, DOI 10.1007/s11276-016-1304-1, 2016.

[29] J. A. Gubner, Probability and random processes for electrical and

computer engineers, Cambridge University Press, 2006.
[30] M. Wiesmann, et al. “Understanding replication in databases and

distributed systems”, In Proceedings of the 20th International

Conference on IEEE, Distributed Computing Systems, 2000, pp.

464-474.

[31] R. Tuli and P. Kumar, “Analysis of recent checkpointing techniques

for mobile computing systems,” International Journal of Computer
Science & Engineering Survey, vol. 2, no. 3, 2011.

[32] E. Cuervo, et al. “MAUI: making smartphones last longer with code

offload,” In: Proceedings of the 8th international conference on
mobile systems, applications, and services, MobiSys’10, 2010, pp.

49–62.

[33] M.D. Kristensen, “Scavenger: transparent development of efficient
cyber foraging applications,” In: Proceedings of the IEEE

international conference on pervasive computing and
communications (PerCom); 2010. p. 217–26.

[34] C. L. Hwang, and K. Yoon. Multiple attribute decision making:

methods and applications a state-of-the-art survey, Springer Science
& Business Media, Vol. 186, 2012.

[35] C. E. Shannon, “A mathematical theory of communication,” ACM

SIGMOBILE Mobile Computing and Communications Review, vol.

5, no. 1, pp. 3-55, 2001.

[36] FaceDetector,

http://developer.android.com/reference/android/m

edia/FaceDetector.html Avalaible Online @ September

2016.
[37] L. Zhang, et al. “Accurate online power estimation and automatic

battery behavior based power model generation for smartphones,” In

Proceedings of the eighth IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis. ACM, 2010,

pp. 105-

Zahra Najafabadi Samani received her B.Sc. degree in Computer
Hardware Engineering from Azad University, Najafabad Branch,
Iran in 2010, and M.Sc. degree in Computer Architecture from
University of Isfahan, Iran, in 2016. Her research interests include
Distributed Systems and High Performance Computing, Cloud and
Mobile Cloud Computing, Optimization and multi-criteria decision
analysis method, Future Internet Network Architectures.

Mohammad Reza Khayyambashi received his B.Sc. degree in
Computer Hardware Engineering from Tehran University, Tehran,
Iran in 1987. He received his M.Sc. in Computer Architecture from
Sharif University of Technology (SUT), Tehran, Iran in 1990. He
got his Ph.D. in Computer Engineering, Distributed Systems from
University of Newcastle upon Tyne, Newcastle upon Tyne,
England in 2006, he was research assistant during his Ph.D.
course at University of Newcastle upon Tyne, Newcastle upon
Tyne, England. He is now working as an Associate Professor at
the Department of Computer Architecture, Faculty of Computing
Engineering, University of Isfahan, Isfahan, Iran. His research
interests include Distributed Systems, Computer Networking,
Mobile Cloud, Cloud Computing, Software Define Network (SDN),
Mobile and Social Networks.

http://developer.android.com/reference/android/media/FaceDetector.html
http://developer.android.com/reference/android/media/FaceDetector.html

