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Abstract 
By switching the computational load from mobile devices to the cloud, Mobile Cloud Computing (MCC) allows mobile 

devices to offer a wider range of functionalities. There are several issues in using mobile devices as resource providers, 

including unstable wireless connections, limited energy capacity, and frequent location changes. Fault tolerance and reliable 

resource allocation are among the challenges encountered by mobile service providers in MCC. In this paper, a new reliable 

resource allocation and fault tolerance mechanism is proposed in order to apply a fully distributed resource allocation 

algorithm without exploiting any central component. The objective is to improve the reliability of mobile resources. The 

proposed approach involves two steps: (1) Predicting device status by gathering contextual information and applying 

TOPSIS to prevent faults caused by volatility of mobile devices, and (2) Adapting replication and checkpointing methods to 

fault tolerance. A context-aware reliable offloading middleware is developed to collect contextual information and manage 

the offloading process. To evaluate the proposed method, several experiments are run in a real environment. The results 

indicate improvements in success rates, completion time, and energy consumption for tasks with high computational loads. 
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1- Introduction 

As a result of the recent developments in mobile 

technologies, mobile devices (e.g., smartphone and tablet 

PC) have become an integral part of human life as highly 

effective and convenient means of communication. 

However, mobile devices face an array of challenges in 

terms of both resources (e.g., battery life, storage, and 

bandwidth) and communications (e.g., mobility and 

security). To overcome this limitation, offloadding 

computations from mobile devices to cloud is proposed [1, 

2]. A three-tier architecture is defined for Mobile Cloud 

Computing (MCC) including remote cloud servers, local 

servers known as cloudlets, and adjacent mobile devices. 

Offloading to remote servers can be costly and introduces 

latency. Besides, they are not always available and 

cloudlets limit mobility of mobile devices [1, 3-6]. To 

address this issue, in this paper, the third tier of the MCC 

(consist of neighboring mobile devices) are consider where 

both service requester and service providers are mobile 

devices. 

However, there are several issues in mobile devices as 

resource providers such as unstable wireless connection, 

limited energy capacity and frequent changes of location. 

Thus, fault and fault tolerance are among the main 

challenges faced by mobile resource providers, which 

should not be ignored.  Faults in the offloading process are 

primarily caused by energy constraints, mobility, and 

availability associated with mobile devices. Many previous 

works try to select appropriate resource providers among 

available mobile devices to allocate tasks by gathering 

contextual information [6-8]. However, they mostly fail to 

address fault prevention and tolerance. Others consider 

only prevention of fault [3, 13, 18-21] or fault tolerance 

[16, 14]. Moreover, limited energy has not been 

investigated as a factor of fault prevention [11-13] or only 

replication techniques are applied in fault tolerance [14-

17]. It is well noted that replication techniques are very 

costly in high computational load. The objective here is to 

maximize the success rate of the offloading process so that 

some Quality of Service (QoS) constraints are satisfied. In 

this paper, a fully-distributed reliable resource allocation 

algorithm is used wherein, energy, mobility and 

availability of mobile devices are considered as fault 

factors. This approach promotes system robustness by 

predicting the states of mobile devices to avert the faults 

caused by mobile volatility. Then depending on the size of 

the task, checkpointing or replication methods are used as 

the fault tolerance methods. In order to provide dynamic 

and accurate resource allocation and to predict the states of 

mobile devices, contextual information needs to be 
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gathered from devices, applications, and the environment 

to be applied in decision-making. A context-aware 

offloading middleware is developed to collect contextual 

information and manage the offloading process. To 

evaluate this new proposed method, our experiments are 

run in a real environment. 

The rest of the paper is organized as follows: Section 1 

reviews the related works. In Section 2, a reliable system 

is formulated and solved using a two-stage approach. 

Section 3 pertains to ranking and classification of mobile 

devices using TOPSIS. In Section 4, the architecture of the 

context-aware reliable offloading middleware is described. 

Section 5 presents the evaluation results of the proposed 

approach. Finally, the paper is concluded in Section 6. 

2- Related work 

There are many studies that investigate the task allocation 

problem by collecting contextual information in MCC [6-

8]. However, those do not consider fault and fault-tolerant 

methods. Shi et al. [7] propose Serendipity which enables 

offloading through gathered information profile and 

releasing two versions of task allocation algorithm, energy 

aware Serendipity and time optimizing. [6] considers the 

local tier of mobile cloud where both service requester and 

service providers are mobile. The paper proposes a 

resource allocation algorithm with multi-objective 

optimization to minimize completion time and energy 

consumption of all participating mobile devices. Ref. [8] 

considers all three layers of MCC and proposes a context-

aware offloading decision algorithm to derive an optimal 

offloading decision under the context of the mobile device 

and cloud resources. 

 

Several studies consider fault in MCC. However, some of 

them consider only prevention of fault and none of fault 

tolerance method (e.g. replication or checkpointing) is 

adopted after failure occurrence [3, 12, 13, 18-21]. 

In [18, 19], a monitoring approach based on Markov chain 

are proposed for analyzing and predicting states of 

resources. They propose a monitoring time interval rate in 

order to monitor the correct state information of mobile 

resources. In these papers, the manner of applying 

monitoring information in fault is missed. In the context of 

mobile cloud, Ref. [20] considers mobile devices as 

resources and improves mobile resource efficiency 

through energy-aware management by selecting 

appropriate mobile devices. In this scheme, firstly devices 

are divided into four groups in terms of efficiency and 

mobility based on a threshold value. The devices in each 

group are then ranked. To prevent faults, no tasks are 

assigned to unreliable mobile devices. In [13, 21], a 

dynamic grouping scheme is presented to manage mobile 

devices in MCC. In [13] availability and mobility, and in 

[21] mobility and efficiency are considered as fault factors. 

Then, cut-off points are adopted by entropy. Next, 

according to the cut-off points, mobile devices are 

arranged into several groups. In these works, mobile 

devices' energy is not considered as fault factor in 

grouping. In all these papers [13, 18-21], a central 

component is applied to monitor and manage mobile 

devices that cause a single failure and limit the mobility of 

mobile devices. 

Ref. [12] proposes a reliable resource allocation method 

according to availability and mobility of mobile devices in 

MCC. Initially, subtasks are assigned to mobile devices 

with minimal mobility and then resources with the highest 

availability are selected. Despite being a limitation, energy 

is not considered as a fault factor.  In [6], a context-aware 

offloading scheme for mobile peer-to-peer environments is 

proposed in which both servers and clients are mobile. 

Their scheme chooses adjacent reliable mobile devices to 

assign subtasks in order to prevent fault. This dissertation 

just supports fault occurrence by mobility and ending 

energy of mobile. 

On the other hand, in [14-17] fault tolerance is achieved  

using only replication which is generally not very efficient 

for task with high computational loads, imposes high 

costs, and occupies many resources. In addition, in [16, 

14], to prevent fault occurrence, the system does not select 

adjacent reliable mobile devices to assign subtasks. In 

Hyrax [16], a Hadoop-based platform is proposed that 

supports cloud computing on smartphones. Replication is 

used for fault tolerance; subsequent to failure, failed 

subtasks are re-executed without user intervention. 

Although Hyrax provides high scalability, the system 

exhibits poor performance with CPU-intensive tasks. The 

central server in Hyrax causes a bottleneck in the system 

and limits the mobility of mobile devices. Ref.[14] 

presents the implementation of a platform for providing 

fault tolerance in MCC. Their approach improves 

reliability by the use of a dynamic and adaptive replication 

which uses the minimum number of replicas. In this 

model, a new replica is placed on the most reliable node 

until the required reliability level is reached. 

Ref. [15] considers fault tolerance and quality of service in 

social mobile cloud computing environment by using 

Content Addressable Network. In this paper the cloud 

server selects the best resource from the adjacent mobile 

devices in terms of quality of public and mobile device 

services and, replication is used for fault tolerance. 

Nevertheless, energy and mobility are not considered  as a 

fault factor in the paper. In [17], a framework is proposed 

to support fault tolerance which integrates the k-out-of-n 

reliability mechanism into mobile cloud formed only by 

mobile devices. The framework provides services for 

applications that aim to reliably store and process data in 

the mobile cloud such that the energy consumption for 

retrieving and processing the data is minimized. An 
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unrealistic assumption in this work is that the nodes have 

equal energy consumption for processing. It is possible 

that subtasks are allocated to nodes with high-energy 

consumption, so these nodes will fail in the future.  

[9] applied the fault tolerance technique to handle the 

faulty VMs in the MCC using the human disease 

resistance mechanism which identifies the faulty virtual 

machines and reschedules the tasks to the identified 

suitable virtual machines. In this paper, they do not 

consider fail in mobile devices as resources. 

 

In [11, 10], a dynamic classification scheme for reliable 

management of mobile devices as resources in MCC is 

used. In [11] mobile devices are grouped according to 

availability and mobility by adopting entropy, and in [10] 

mobile devices are classified into groups based on their 

processing capacity, availability, and communication 

condition by adopting tree learning. Then, checkpointing 

and replication are applied to groups with high and low 

reliability, respectively. However, in these works, 

administrative tasks are handled by a proxy which is in 

conflict with nature of mobile networks and mobility of 

mobile devices. Moreover, task assignment has not been 

determined. In addition, in [11] energy is not considered as 

a fault factor, and [10] considers only the remaining 

battery of the devices and study of mobility model and 

trajectory is overlooked. 

3- Proposed Reliable System Model 

Reliability is one of the most important aspects in mobile 

cloud computing due to mobility and resource constraints 

of mobile devices. Faults and failures should be managed 

and controlled in an active manner to minimize the effects 

of failures on the system. There are two complementary 

approaches to establish reliability: (1) Fault Prevention and 

(2) Fault Tolerance [23]. 

In the proposed model, each task has n independent 

subtasks {T= ti |1≤i≤n}. And the mobile cloud 

environment is formed by h mobile device {S=sk| 

1≤k≤h}(where sh is a client mobile device that does task 

offloading). In this model, at any given time, only one 

offloading is executed, applications are segmented before, 

and offloadable subtasks are independent and executed in 

parallel. 

3.1- Fault Prevention 

The goal of fault prevention is to prevent system failure by 

ensuring that all possible causes of unreliability are 

removed [23]. One of the challenges in mobile cloud is 

selecting reliable resources from adjacent mobile devices 

to assign tasks to and prevent system failure. The energy, 

mobility and availability factors of mobile devices result in 

more frequent system faults. Due to dynamic changes 

which disrupt mobile device applications, these features 

increase device load and decrease system performance. To 

the best of our knowledge, these factors have not been 

jointly addressed. In this paper, we seek to prevent system 

failure by selecting reliable devices according to three 

important factors which cause system faults: energy, 

mobility and availability.  

3.1.1- Energy  

Battery energy is among the main constraints in mobile 

devices. As battery life is inherently limited, it may run out 

at any moment, causing premature job termination. Hence, 

mobile devices must preserve battery power during and 

after processing a job. In mobile cloud environments, 

subtasks should be distributed in a manner that network 

lifetime is maximized and fault caused by battery energy 

limitations are avoided. This proposed energy model is 

inspired by [6]. In This model energy consumption and 

remaining energy levels of all nodes involved in 

offloading are considered. Variable notations are shown in 

Table 1. 

Table 1. Definitions of notations. 

n Number of subtasks 

h Number of mobile devices 

Rj jth resource provider 
tj Time needed to execute subtasks on Rj 

ej 
Energy consumption per second running each 

subtask on Rj 

etj 
Energy consumption on Rj to transfer one unit of 

data 

E0j Initial energy level of Rj 
Vin Input size of subtask 

Vout    Output size of subtask 

bj Number of subtasks on Rj 
Ej Energy consumption on Rj 

 

The energy consumptions of both the server and the client 

are indicated through Equ. (1). In the client side (j = h), 

energy consumption includes energy consumption of 

running local subtasks, transferring offloaded subtasks to 

nearby mobile devices, running the resource allocation 

algorithm. The energy consumption in server sides 

consists of resource provider Rj (1≤j<h) consists of energy 

consumed for running the assigned subtasks and 

transmitting the results. 

            

 

{
 

    (     )  ∑   (       )              

   

   

   [(     )  (        )]                         

 

 

 

 
 

(1) 
 

Then, Equ. (2) is applied to avoid allocating subtasks to 

nodes with low remaining energy. Here, the network's 

lifetime increases and the risk of energy depletion during 

processing is prevented. 

   –              ≥ α     for all j= 1,…, h-1 (2) 
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Next, Equ. (3). allows the subtasks to be allocated to the 

nodes according to their energy level: 

        
            

                

 
 

(3) 

 

In this model, in addition to taking care of nodes with low 

energy levels, the subtasks are fairly distributed among 

other nodes. We aim to maximize the lifetimes of nodes 

having the low remaining energy and high energy 

consumption rates. Here, network energy is reduced and 

no task is assigned to nodes with low remaining energy, 

which prevents failures caused by battery drain and 

increases minimal remaining energy of nodes. In [17], 

only remaining energy and transferred energy among 

nodes is considered while energy requirements are 

assumed to be equal for all nodes, which is not a realistic 

assumption.  

3.1.2- Mobility Factor 

Mobile devices as resource providers can join and leave 

the Mobile Cloud environment in an unpredictable 

manner. This interrupts the operation and may cause a 

system failure. Given their low reliability, it is difficult to 

consider mobile devices as resources. In this study, 

prediction colocation between client and server mobile 

devices is used to avoid the failure by mobility during 

offloading. In fact, a colocation time between two users is 

the time that two users visit each other and stay together. 

Many studies use a temporal mean for predicting 

colocation time [13, 21, and 22]. In this technique, time is 

split in slots, and a temporally varying mean of the 

encounters with other user is kept. Under this assumption, 

the estimated colocation time is accurate since user paths 

are well defined. However, it may present issues when 

applied to new environments. To overcome this issue, in 

this paper, the spatial-temporal mean is adopted to predict 

colocation time between server and client that follows the 

same principle, but taking into consideration the activity 

and place when the encounter between users take place. 

The anticipated colocation and movements of users are 

based on intermittent user behaviors to see a place and 

move among locations. Users periodically see a specific 

location and regularly stay there, allowing their routes and 

stationary time intervals to be estimated [3, 13, 22, and 

24].  Here, a sequence of places p with time stamps ten 

and tex is stored for each user. The tuple <pi, teni,texi> 

indicates that user u enters place pi ( p is the place covered 

by one cellular tower or AP) at time teni and exits at time 

texi. A trajectory information group Gk is generated which 

contains k tuples. Each time the user moves from a 

location to another, the trajectory information is updated. 

This sequence is expressed by Equ. (4). 

Gk = {<p, ten,tex>|<pi-k, teni-k,texi-k>,…,<pi-1, 

teni-1,texi-1>,<pi, teni,texi>} 
 

 

(4) 

In the proposed scheme, first, client device movements are 

predicted. Markov chain is perhaps the most widely used 

model for human mobility due to its simplicity and 

efficiency. Many recent works adopt the approach for 

location prediction [25-28]. A Markov chain is a sequence 

of random variables Xt, which represent the states of a 

system, provided that the current state (Xt) depends only 

on the previous state (    ) [29]. This could be expressed 

through Equ. (5). 

P(          ,      …,         )=  

P(              ) 
 

(5) 

 

The chain could also be depicted using a directed graph, 

whose edges are labeled with the probability of going from 

one state to another, from time t - 1 to time t, Fig. (1). 

 

Fig 1.Markov chain model 

In this study, the probability of going from location   to 

location   is calculated according to [28]. Here, locations 

are considered as states of the Markov chain. As 

mentioned earlier, in a Markov chain, the states are 

independent; in other words, the location subsequent to i is 

not dependent on the history of visited locations. 

Accordingly, at processing time, the probability of a 

transition from i to j  equals the number transitions from i 

to j at processing time is divided by the total number of 

outgoing transitions from i (i.e. the definition of 

probability). Respective probabilities are calculated on the 

client mobile device (during processing) by applying Equ. 

(6).  

 (        |         

 
                 

∑                 
 
        

 

   

 

(6) 

 

The location with maximum probability is selected as the 

next location of the client during the process. The neighbor 

nodes are then informed of the client's next location. 

Adjacent nodes that are willing to cooperate, calculate 

their own colocation  probabilities with the client node. 

Equ. (7) is applied to calculate the colocation between the 

service provider and the client after it is determined that 

the client node is going to stay in its current location 

during the process. 
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(7) 

 

In this equation, according to the characteristic of Markov 

chain and the definition of probability, the number of 

times the service provider visits the current location at 

processing time for tre is divided by total number of times 

it moves from i to any other location at processing time. 

Here, tre is the time required for processing. The variable 

tc denotes current time. The non-equation             

indicates that service providers need to remain in the 

vicinity of the client as long as the task continues to 

execute. 

Once it is determined that the client node intends to move 

to another location during the process, Equ. (8) Calculates 

the colocation between the service provider and the client. 

To find the colocation probability, the number of times the 

service provider has moved from i to j (along with the 

client during the process) is divided by the number of its 

movements from i to any other location. The non-equation 

                          means that the 

colocation time must exceed the time necessary for 

processing. 

 (        |                        
             

 
  (       |                 (         )     )

∑                 
 
        

 

 

 

 

 (8) 

 

Finally, service providers send their corresponding 

colocation probabilities to the client node. In this manner, 

the best resources from the adjacent mobile devices are 

automatically chosen. The best resources have the most 

chance of staying in colocation. 

3.1.3- Availability  

Availability can have several meaning according to the 

system requirements. In the context of mobile devices used 

as resources, it refers to the probability that a mobile 

device performs and replies correctly while acting as a 

resource. High availability systems aim to minimize 

downtime and repair costs. In mobile applications, 

availability is a crucial requirements and an achievable 

objective. In the context of MCC or mobile grid, mobile 

devices are often classified according to availability [11-

13]. In [11], the number of faults caused by a mobile 

device is used for availability information. Accordingly, in 

this paper the success rate is applied to obtain availability. 

The higher values in the past predict greater availability 

and success in the future. Each service provider calculates 

its availability using Equ. (9). and the resulting values are 

transmitted to the client mobile device.  

             
                          

                       
  

 (9) 
 

The client then selects the devices with the highest success 

rate (i.e. availability) as the resources. Thus, tasks are 

assigned to devices that are more reliable and devices with 

high failure rates are avoided. 

3.1.4- Estimating context information 

There are several techniques to predict runtime, energy 

consumption, and output size of a subtask on a mobile 

device [32, 33]. We use a dual profiling approach inspired 

by [33], which consists of a peer-centric and a task-centric 

profile. The former is a history-based profile maintaining 

the runtimes and energy consumptions of the last n runs of 

a subtask on a specific peer. Here, the average profile data 

from the last ten runs is calculated as an estimate. Since 

the mobile cloud is a dynamic environment and there may 

be new to which the task has never been assigned, a task 

centric profile is used for new devices. In this approach, a 

device is selected as the base; then, by comparing the 

processing power of the base device with that of the new 

device, subtask energy consumption and runtime on the 

new device are estimated. 

3.2- Fault Tolerance 

A fault-tolerant system should be able to manage defects 

in hardware or software components as well as other 

unexpected downtimes. Despite fault prevention 

approaches, failure is inevitable; therefore, it is necessary 

to take appropriate measures after system fault [23]. There 

are numerous methods for achieving fault tolerance in 

distributed systems, among which replication and 

checkpointing are most popular. 

3.2.1- Active Replication 

Replication techniques replicate similar tasks, which can 

be run in a simultaneous manner on several devices. When 

one of the replicas fails another performs its task [30]. In 

this paper, active replication is used to promote resources 

reliability against faults caused by the volatility of mobile 

devices for tasks with low computational load. The reasons 

for this choice are: (1) active replication is a non-

centralized technique which suits the fully distributed 

design of the proposed system; (2) Failures are fully 

hidden from the clients, since requests are still processed 

even if one replica fails; (3) short response time even in 

case of failures because each replica works independently 

which is important for mobile users; and (4) simplicity 

which is important for mobile devices with limited 

resources.  

In the proposed method once a service provider fails for 

any reason, another replica is responsible for the client 

node requests. When the client node receives the first 
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response from a replica, others halt processing in order to 

reduce energy consumption. Although replication 

techniques have many advantages with high fault 

tolerance, they are costly for tasks with high computational 

loads. 

3.2.2- Independent Checkpointing 

Once a failure occurs, it is vital to restore the process to its 

correct state. So, in this paper, independent checkpointing 

is applied for tasks with high computational load. This is 

better for independent processes and reduces the 

computational overhead [31]. Independent checkpointing 

mainly involves restoring the system from its present 

erroneous state back into a previously correct state. This 

requires the state of the system to be occasionally recorded 

so that, when faults occur, the state can be restored. The 

state of the system is stored on the client mobile devices at 

regular intervals. When a subtask fails, that subtask along 

with the previously correct state, is assigned to another 

reliable service provider without user intervention. 

3.3- Reliable task allocation in the Mobile Cloud  

In the mobile cloud, when a client mobile device wants to 

run a compact application, it first asks for an offloading 

service. Next, it applies service discovery to identify 

adjacent mobile devices by transmitting a broadcast 

message containing its location during the service. As the 

service provider receives the offloading request message, 

it calculates the energy consumption ratio in relation to 

residual energy after performing the subtask through Equ. 

(3). Then, it calculates its colocation probability with the 

client and availability using Equs. (7-8) and Equ. (9), 

respectively. Finally, it sends this information along with 

its energy consumption rate and current energy in response 

to the client. Algorithm 1 outlines the execution algorithm 

of the subtasks on the service provider. 

Algorithm 1: Execution Subtasks Algorithm 

 
Numet=0;//number of all execution tasks 

Numset=0;//number of all successfully executed tasks 

Collect location information; 

Receive request from client; 

If mobile device is willing to cooperate then  

    Collect energy information;  
    Calculate context information(); 

    Send context-inf to client; 

    Receive subtasks; 
    If subtask is large then  

       While(Receive request for checkpoint) 

           Send checkpoint; 
       If chechpoint ≠ 0 then 

          Execute subtask from checkpoint; 

          Send result; 

    Else 

      Execute subtask;  

      Send result; 
    Receive ack from client; 

    If ack==1 then 

       Numet++; 

       Numset++; 

    Else  

       Numet++; 

Function Calculate context information() 
   Calculate colocation probability with client(p-location); 

   Calculate consumable battery(cb); 

   Calculate ratio of consumable battery to remaining battery(E); 
   Calculate availability; 

   Context-inf set(p-location, E, current E,cb, availability); 

End 

The client discovers its adjacent mobile devices and 

obtains their context information through messages sent by 

adjacent mobile devices in response to the client. First, the 

service providers’ remaining energy levels are checked. If 

the levels are lower than the threshold from Equ. (1), the 

client does not assign any subtasks to these service 

providers. Next, the client predicts the providers’ 

behaviors by using their context information. They are 

ranked accordingly by applying Equ. (10-18). The service 

providers are then partitioned into two groups of high and 

low reliability. Finally, in order to take advantage of fault 

tolerance techniques, according to the computational load 

of the task, either replication or checkpointing is adopted. 

For tasks with low computational load, active replication is 

employed and the subtasks in several groups with the 

highest reliability are replicated in a simultaneous manner. 

Subtasks are allocated to groups according to the rank of 

devices through Equ. (13). More subtasks are assigned to 

devices with higher ranking. Every service provider 

executes the assigned subtasks and replies the results to the 

client. Once a subtask execution is finished on one of the 

replicas and the result is transmitted to the client, the 

subtask is no longer executed on other replicas. This 

contributes to saving resources and reducing traffic on the 

network. Replication in several devices for tasks with low 

computational load is not costly and occupies few 

resources; however, in such cases, restarting a subtask and 

taking checkpoints are of high overhead and cost. The 

decision-making algorithm on the client side is presented 

in Algorithm 2. 

Algorithm 2: Dynamic Reliable Context-aware Decision making 

Algorithm 

 
Function main() 

   Collect location information; //call monitoring 
   Request offloading(); 

   Decision offloading(); 

   Receive result; 
   While  not receive result of all subtask do 

   Request offloading; 

   Receive result; 
   Merge all results; 

End 

Function Request offloading() 
   Calculate maximum job execution time ; 

   Calculate next location in maximum job execution time ; 

   Send broadcast with next location; 
   While (true) do 

      Receive reply from vicinal mobile devices; 

      Context       Set context(energy, location,  availability, id); 
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    For i=1 to all vicinal device do 

       Rank         TOPSIS(context); 
       If Rank ≥ 0.5 then 

         Group1         mobile device; 

       Else 

         Group2        mobile device; 

    In Group1 

        Sort in ascending order of Rank; 
    In Group2 

        Sort in ascending order of Rank; 

End 
Function Decision offloading() 

     If subtasks is small then 

        Call Replication; 
     Else if subtasks is large then 

        Call check pointing; 

End 

 

Replication is very costly for tasks with high 

computational load and occupies many resources. 

Consequently, in this paper, checkpointing is applied for 

tasks with high computational load. In checkpointing, first, 

subtasks are assigned to the group with the highest 

reliability according to device rankings. Next, at regular 

intervals, system state is stored on the client mobile 

device. Given the dynamic nature of the mobile cloud 

environment, after a device fails, client mobile device 

discovers its adjacent mobile devices again and receives 

their context information. Then once more, the client ranks 

and classifies adjacent mobile devices where the failed 

subtask with previously correct state is assigned to another 

reliable service provider without user intervention. Due to 

the high computational load of the subtask, the system 

replaces an erroneous state with an error-free state. Thus, 

the new service provider does not need to start from the 

beginning to process the failed subtask. This proposed 

approach saves time and cost of resources if a fault occurs 

in the final moments of processing. 

Once the client receives a result from a service provider, it 

replies with an acknowledgment message to the sender, 

who then increments its number of successful tasks. 

Contrarily, if a subtask fails, it is re-executed on other 

adjacent mobile devices without user intervention. 

Ultimately, the client collects and merges all the results. 

4- Ranking and grouping mobile devices with 

TOPSIS 

In this study, TOPSIS is applied to rank and group mobile 

devices [34]. There are two reasons for this choice: (1) the 

concept of TOPSIS is rational, and (2) its algorithm is 

simple and light which is suitable for mobile devices with 

limited resources. In addition, TOPSIS can take objective 

weights into consideration in the comparison process. The 

technique includes a number of options and attributes for 

decision making. The options must be ranked according to 

these attributes. This solution procedure takes the 

following seven steps: 

 Step1. Preparing the decision-making matrix with p rows 

and three columns where rpq are the elements of this 

matrix, Equ. (10). The rows represent mobile devices in 

the vicinity of the client device while the columns 

represent the decision making attributes. Three attributes, 

namely energy consumption to the remaining energy, 

colocation probability between the service provider and 

the client and availability, are considered for ranking 

mobile devices. 
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 Step2. In this step, the decision-making matrix (D) is 

normalized by using Equ. (11). 
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 Step3. Each attribute is assigned a weight based on the 

concept of Shannon entropy. Entropy is a major concept in 

the information theory and represents the amount of 

unreliability in a discrete probability distribution (random 

variable) [35]. Lower weights are assigned to attributes 

with identical values. This is because such attributes do 

not contribute to distinguishing options. They are, thus, 

less prominent. For each attribute, entropy is defined 

through Equ. (12). 

    
 

   
∑          

 

   

 

 

(12) 

The degree of divergence dj (the contrast intensity of each 

attribute) and the weight for each attribute is indicated 

through Equ. (14) and (13), respectively. 

        (13) 
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(14) 

 Step4. This step involves the calculation of the weighted 

normalized decision matrix using Equ. (15). 

                         

          

 

 

(15) 

 

 Step5. In this step to rank alternatives, the solutions are 

compared with the positive ideal solution (A
+
) and the 
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negative ideal solution (A
-
), Equ. (16) (  and    are the 

index sets of the benefit and cost attributes, respectively) 

 

 

 

 

 

(16) 
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 Step6. The distances of each solution from the ideal 

solution (  
 ) and negative ideal solution (  

 ) is calculated 

through Equ. (17). 
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 Step7. This step involves calculating ranks i.e. relative 

closeness of a solution to the ideal solution. The devices 

are ranked according to Equ. (18). 

    
  

 

  
    

                  
 

(18) 

 
Once mobile devices are ranked according to the 

aforementioned criteria, each device is placed in a group 

of high or low reliability based on its rank. Given the 

dynamic nature of mobile devices, their context 

information is continuously updated. Thus, devices are 

dynamically ranked and grouped. The number of subtasks 

assigned to each mobile device is determined according to 

its rank and reliability, Equ. (19). 

    
   

   

∑    
 
   

                  
 

(19) 

5- Context-aware reliable offloading 

middleware 

In this section, a middleware is designed and implemented 

to employ reliable offloading and apply fault tolerance 

methods in the mobile cloud. This middleware collects 

contextual information, manages offloading steps, and 

adopts fault tolerance methods. 

5.1- Architecture  

This middleware consists of a client-side, which requests 

the offloading service, and a server-side, which provides 

services. A mobile device runs both parts, Fig. (2).  

 

 
 

 

 

Fig 2. Context -aware reliable offloading middleware

 

5.1.1- Client-Side Middleware 

The client-side middleware includes a discovery service, a 

contextual information manager, fault manager, Allocation 

and Merging, and a communications manager.  

 Discovery Service: Adjacent mobile devices can be 

discovered using either pull or push techniques [18]. The 

former has a relatively small monitoring overhead, 

because the server’s resource information is only requested 

when it is needed. Consequently, given resource 

constraints in mobile devices, and to reduce monitoring 

overhead, we propose a monitoring scheme which relies 

on the pull model. In this technique, when a client mobile 

device decides to offload a task to adjacent mobile 

devices, it sends a broadcast message, to which willing 
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devices respond by transmitting their contextual 

information. This allows the client to discover its adjacent 

mobile devices and obtain their contextual information. 

 Contextual information manager: This component 

gathers contextual information pertaining to tasks, 

resource providers, and the network through their 

aggregators i.e. task profiler, device profiler and network 

profiler, respectively. 

a) The device profile contains energy consumption as well 

as remaining battery energy, trajectory information, total 

number of tasks assigned to the device, and the number of 

successfully performed by the device. 

b) Task profile contains information about runtime and 

input/output size of each subtask. In this paper, it is 

assumed that application developers present offloadable 

parts of the task in the task profile. 

 Fault manager: Initially, this component detects adjacent 

unreliable mobile devices; next, adjacent mobile devices 

are ranked according to their reliability and partitioned 

into groups of high or low reliability. Finally, in order to 

take advantage of fault tolerance techniques due to 

computational load of the task, either replication or 

checkpointing approach is applied. 

 Allocation and Merging: this component assigns 

subtasks to adjacent mobile devices according to the fault 

manager component. In addition, this component merges 

the results. If a subtask fails or this component does not 

receive any result, the failure is reported to the fault 

manager component. 

 Communications Manager: The Communications 

manager on the client provides network communication 

among client and service provider devices while 

monitoring this communication. In case the connection is 

disconnected, this component notifies the client to take 

appropriate fault tolerance measures depending on the 

condition. 

5.1.2- Server-Side Middleware 

This part of middleware includes a device profiler, a task 

manager, a context information calculator, a service 

provider manager, and a communications manager. 

 Device profiler: Contextual information from the 

devices is collected and stored in a database on the device. 

 Context information calculator: The three relevant 

criteria (i.e. colocation probability, energy ratio, and 

availability) are calculated based on the information 

received from the client and sent to the service provider 

manager component.  

 Task manager: The component handles the request, 

executes the offloaded code, and relays the results to the 

service provider manager component. 

 Service provider manager: It is responsible for 

coordinating the components on the service provider and 

following up processing on the server. Finally, this 

component collects the results. 

 Communications Manager: The component handles 

communication between client and server on the server 

side, receives data and control data from the client, and 

sends context information and result to client. 

6- Evaluation 

In this section, the performance of the proposed system is 

evaluated by conducting real experiments on multiple 

mobile devices. A middleware is implemented into a 

library on Android operating system, which can be added 

in Android application for development. A face detection 

application is applied as the case study; it analyzes an 

assortment of photos as subtasks to identify the comprising 

faces. The application is implemented for the Android 

platform by applying android. media [36]. The middleware 

consists of approximately 6500 lines of Java code, which 

is used in following extensive experiments. In addition to 

the networking components, collecting and receiving 

checkpoints, collecting contextual information and tasks 

execution on this versions are run in separate threads. To 

evaluate the performance of the proposed method, a 

testbed of mobile devices is set up as show in Table 2.  

The mobile devices, which is creating a mobile cloud, are 

connected to an ad-hoc network using Wi-Fi with a mean 

bandwidth of 1.86 MBps.  For each device, energy levels 

required for executing various tasks, the location of the 

device at any time, and availability are stored on its 

database. To measure the energy consumption of 

smartphones, we take advantage of PowerTour [37]. 

Furthermore, real-time device coordinates are obtained via 

GPS. 

To demonstrate the performance of our proposed method, 

the proposed algorithm is compared with four other 

algorithms with different numbers of subtasks: random 

allocation, reliable allocation, replication, checkpointing 

algorithms, and dynamic grouping in [11]. In random 

allocation, mobile devices are randomly selected as 

resources without any measure of fault tolerance. Reliable 

allocation just aims to choose reliable mobile devices as 

resources and to assign tasks with no fault tolerance. The 

difference in the checkpointing algorithm lies in the 

application of checkpointing for fault tolerance. Another 

option is to use replication for fault tolerance, like [16, 14]. 

In these experiments, four criteria are applied to evaluate 

the performance of the proposed method: 

Completion time: the amount of time to complete 

offloading plus the time of task allocation algorithm. 

Success rate: indicative of successful offloading. 

Consumed Energy: the total energy consumption of all 

devices involved in offloading. It is the sum of the values 

calculated for each node through Equ. (1). 

Percentage of task failure: the percentage of subtasks that 

fail after being offloaded to adjacent mobile devices.  
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The impact of computational load (required processing 

time) of subtasks in this set of experiments is explored, 

where two sets of subtasks with different computational 

loads are of concern: 

Case 1: Set of subtasks with low computational load. 

Case 2: Set of subtasks with high computational load. 

To evaluate the proposed algorithm, the two cases are 

examined in two scenarios, where two failure models are 

of concern [17]: 

Fail-fast: a node fails at the first time-slot and cannot 

complete any task. 

Fail-slow: a node may fail at any time; thus being able to 

complete some of its assigned tasks before the failure

Table 2. Features of mobile devices in testbed. 

ID Mobile Device CPU Memory OS 
Battery capacity 

(Joule) 

A 
Samsung Galaxy 

core 18260 

Dual-Core 1.2GHZ 

Cortex-A5 
1GB Android OS, V4.1.2 24624 Joule 

B 
Samsung Galaxy 

Grand2 
Quand-Core 1.2GHZ 

cortex-A7 
1.5GB Android OS, V4.4.2 35568 Joule 

C 
Samsung Galaxy 

Note 800 

Quand-Core 1.4GHZ 

cortex-A7 
2GB Android OS, V4.1.2 100000 Joule 

D LG L Fino 
Quand-Core 1.2GHZ 

cortex-A7 
1GB Android OS, V4.4.2 25992 Joule 

E 
Huawei Ascend 

G730 
Quand-Core 1.3GHZ 

cortex-A7 
1GB Android OS, V4.4.2 31464 Joule 

6.1- First Scenario 

Here, the proposed method is evaluated and compared by 

considering fail-fast in both cases.  

First Sample: The foregoing algorithms are reviewed and 

compared by considering fail-fast in case 1. In this 

situation, replication is applied in the proposed algorithm 

because the subtasks have low computational load.  

Fig. (3.a) depicts the corresponding success rates. As 

evident, in all of the algorithms, the rate begins to suffer as 

the number of subtasks grows. This is because greater 

network traffic leads to higher failure rates. Likewise, an 

increase in the number of subtasks reduces the colocation 

probability between service provider and client node, thus 

increasing failure due to mobility. The random allocation 

algorithm has the lowest success rate while the proposed 

algorithm has the highest success rate with an average of 

95.5%, which is 70%, 27%, 21%, and 14% higher than 

random, reliable offloading, checkpointing, and dynamic 

grouping, respectively. The reason is that the proposed 

algorithm selects reliable mobile devices with the highest 

rank as resources followed by replicating subtasks to 

several devices. However, the reliable allocation and 

checkpoint algorithms merely select reliable mobile 

devices without replicating subtasks in several mobile 

devices.  

Completion times of the algorithms for the first sample can 

be seen in Fig. (3.b). The completion time in random 

allocation algorithm is higher than that of the other 

algorithms because it has a high failure rate forcing the 

failed subtasks to be reassigned. Contrarily, the proposed 

algorithm exhibits the lowest completion time, which is 

19%, 6.5%, and 0.6% lower than random, checkpointing, 

and dynamic grouping, respectively. This is attributed to 

two reasons: (1) maximum success rate minimize the need 

to re-assign failed subtasks and (2) the response from the 

fastest replica is regarded as the ultimate result. The client 

may receive their results earlier than when the subtasks are 

not replicated. If the size of the task grows, checkpointing 

experiences a boost in performance because the overhead 

tends to dwindle. Applying checkpointing for big task 

reduces completion time. While for small task, overhead 

for getting checkpoint is large compared to the task size. 

Total energy consumptions in the first sample are shown in 

Fig. (3.c). The proposed algorithm has the highest energy 

consumption, since it replicates tasks in several mobile 

devices. This increasing energy consumption is not 

significant because subtasks are small. Contrarily, reliable 

allocation and checkpointing have the lowest total energy 

consumption as they select mobile devices with low 

energy consumption rates and do not perform replication. 

Compared with the proposed algorithm, dynamic grouping 

uses less energy (about 32%) since it takes advantage of 

checkpointing for reliable groups.  

The percentages of task failures in first sample are 

illustrated in Fig. (3.d), where the percentage of failure 

task in this proposed algorithm is lower than others. on 

average, percentage of failure task in this proposed 

algorithm is 11% lower than reliable offloading and 6% 

lower dynamic grouping, because tasks are replicated in 

several mobile devices.  

Second Sample: Here, the aforementioned algorithms are 

reviewed and compared by taking fail-fast in case2. In this 

situation, the proposed algorithm applies checkpointing for 

fault tolerance because subtasks have high computational 

loads.  

The success rate in the second sample is shown in Fig. 

(4.a), where replication achieves first ranks (12% higher 
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than the proposed method) given that it replicates tasks in 

several mobile devices. However, it is not efficient in this 

sample because subtasks have high computational loads. 

The completion time in second sample is expressed in Fig. 

(4.b), where the proposed algorithm and has the lowest 

completion time because failed subtasks resume execution 

on new service provider devices from the latest recorded 

checkpoint. As it is illustrated, on average, the completion 

time in the proposed algorithm by 11%, 16%, 13%, and 

27% is lower than reliable offloading, replication, and 

dynamic grouping, respectively. Thus, proposed algorithm 

saves completion time. This improvement is not very 

impressive, however, because of fail-fast. 

      

a. Success rate                       b. Completion time 

       

c. Consumed Energy                  d. Percentage of task failure  

Fig 3. Impact of different numbers of subtasks on the proposed algorithm 

and previous methods according to fail-fast and subtasks of case1 

The success rate in the second sample is shown in Fig. 

(4.a), where replication achieves first ranks (12% higher 

than the proposed method) given that it replicates tasks in 

several mobile devices. However, it is not efficient in this 

sample because subtasks have high computational loads. 

The completion time in second sample is expressed in Fig. 

(4.b), where the proposed algorithm and has the lowest 

completion time because failed subtasks resume execution 

on new service provider devices from the latest recorded 

checkpoint. As it is illustrated, on average, the completion 

time in the proposed algorithm by 11%, 16%, 13%, and 

27% is lower than reliable offloading, replication, and 

dynamic grouping, respectively. Thus, proposed algorithm 

saves completion time. This improvement is not very 

impressive, however, because of fail-fast.  
Fig. (4.c) displays the overall energy consumption of all 

devices for each algorithm with the second sample. 

Replication has the highest consumption of energy since 

tasks are replicated on several mobile devices. This 

increased energy consumption is impressive because 

subtasks are large. The proposed algorithm, on the other 

hand, exhibits the lowest energy consumption, which is 

25%, 4.5%, 50%, 37% greater than random, reliable 

offloading, replication, and dynamic grouping, 

respectively. The reason is that the new service provider 

does not need to execute subtask from the beginning, 

which leads to a reduction of energy requirements. 

Finally, Fig. (4.d) shows task failure percentages with the 

second sample. Failure percentage of the proposed 

algorithm is lower compared to dynamic grouping and 

random allocation. This can be attributed to the selection 

of reliable mobile devices.  

     

a. Success rate                          b. Completion time 

     

c. Consumed Energ                 d. Percentage of task failure  

Fig 4. Impact of different numbers of subtasks on the proposed algorithm 
and previous methods according to fail-fast and subtasks of case 2 

6.2-  Second Scenario 

In this scenario, the proposed algorithm is evaluated and 

compared by considering fail-slow in both cases. 

First Sample: The mentioned algorithms are reviewed and 

compared by considering fail-slow in case1. In this 

situation, after the proposed algorithm selects reliable 

mobile devices it applies replication for fault tolerance 

because subtasks have low computational load.  

The success rate with the first sample is shown in Fig. 

(5.a). The success rate of the proposed algorithm is higher 

than that of the other algorithms because reliable mobile 

devices with the highest rank are selected as a resources 

and subtasks are replicated to several devices. Hence, as it 

is illustrated, the proposed algorithm with average of 89%, 

32%, 36%, and 21% surpasses random, reliable offloading, 

checkpointing, and dynamic grouping, respectively. 
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Completion times with the first sample are shown in Fig. 

(5.b). As evident, the proposed algorithm has the lowest 

completion. It is expected that checkpointing have the 

lowest completion time because new service providers do 

not need to execute failed subtask from the beginning. 

However, this is not true in this case as, for small tasks, the 

overhead of getting checkpoints is larger than that of 

restarting. 

The total energy consumption of all devices for each 

algorithm with the first sample is shown in Fig. (5.c). Once 

again, the proposed algorithm has the highest consumption 

since tasks are replicated to several devices, while 

dynamic grouping consumes lower energy, which exceeds 

the proposed method by 25%.  

By comparing the algorithms using the first sample of the 

two scenarios, it can be deduced that success rate of the 

proposed algorithm is higher than other algorithms. 

Moreover, the proposed algorithm has the highest energy 

consumption. This increasing energy consumption is not 

significant because subtasks are small. 

     

a. Success rate                           b. Completion time 

     

c. Consumed Energy                d. Percentage of task failure 

Fig 5. Impact of different numbers of subtasks on the proposed algorithm 

and previous methods according to fail-slow and subtasks of case1 

Second Sample: Here, the mentioned algorithms are 

reviewed and compared by considering fail-slow in case2. 

Under these circumstances, after the proposed algorithm 

selects reliable mobile devices as resources to assign tasks, 

it applies checkpointing for fault tolerance because 

subtasks have high computational loads. 

Success rates with the second sample are shown in Fig. 

(6.a). The success rate of replication is higher than that of 

the other algorithms (28% higher than the proposed 

method). 

The completion time in the second sample is shown in Fig. 

(6.b). The completion time of the proposed algorithm is 

lower than that of the other algorithms (16%, 4%, 30%, 

and 17% lower than random, reliable offloading, 

replication, and dynamic grouping, respectively). The 

improvement in completion time is significant because of 

fail-slow and tasks with high computational loads. 

However, when the number of subtasks decreases, 

checkpointing overhead increases in relation to task size. 

Therefore, completion time increases.   

The total energy consumption of the algorithms can be 

seen in Fig. (6.c). Replication uses the largest amount of 

energy (59% more than the proposed algorithm). The 

increase in energy consumption is significant because 

subtasks are large. The total energy consumption in the 

proposed algorithm is lower than that of the other 

algorithms (28%, 19%, and 34% lower than random, 

reliable offloading, and dynamic grouping, respectively).  

    

a. Success rate                              b. Completion time 

     

c. Consumed Energy         d. Percentage of failure task 

Fig 6. Impact of different numbers of subtasks on the proposed algorithm 

and previous methods according to fail-slow and subtasks of case2 

After comparing the algorithms in the second sample of 

the first and second scenarios, it can be deduced that in the 

second sample, the total energy consumption and 

completion time of the proposed algorithm are lower than 

other algorithms because, in the proposed algorithm, new 

service providers do not need to execute failed subtask 

from the beginning. This improvement in second scenario 

is better than the first because of fail-slow.  

These results indicate that replication is very costly for 

tasks with high computational load because, in replication, 

energy consumption is high. Although, success rate in 

checkpointing is lower than that of replication algorithm, 

checkpointing is more appropriate for tasks with high 

computational loads. Consequently, in this paper we tried 

to make a trade of between energy and success rate. As it 

is illustrated, our algorithm saves impressive amount of 
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energy in tasks with high computational load, while 

success rate of proposed algorithm is lower than 

Replication. In contrast, for tasks with low computational 

load, the success rate of the proposed algorithm is higher 

than other algorithms, while it has the highest energy 

consumption. However, this increasing energy 

consumption is not significant because subtasks are small. 

7- Conclusion 

In this paper, a new approach was proposed for fault 

tolerance where a fully distributed resource allocation 

algorithm was applied without using any central 

component with the objective to improve the reliability of 

mobile resources. Mobile devices in this algorithm are 

adopted as resources to which tasks are assigned. In the 

context of mobile devices, energy constraints, mobility, 

and availability are considered as fault factors used to 

predict device states and prevent faults caused by volatility 

of mobile devices. The algorithm applied replication or 

checkpointing for fault tolerance according to the task size. 

Here, a context-aware reliable offloading middleware was 

developed to collect contextual information, manage 

reliable offloading processes, and fault tolerance. To 

evaluate the proposed method, several experiments were 

run in a real environment. The results showed higher 

success rate as well as significant improvements in 

completion time and energy consumption for tasks with 

high computational loads.  

In future studies, secure offloading by assigning tasks to 

trusty devices would be of concern to overcome malicious 

users. Moreover, extending the proposed method for 

scenarios in which multiple offloading requests are 

submitted simultaneously is regarded as another future 

work. 
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