

* Corresponding Author

BSFS: A Bidirectional Search Algorithm for Flow Scheduling in
Cloud Data Centers

Hasibeh Naseri
Department of Computer Engineering and IT, University of Kurdistan, Sanandaj, Iran

hasibehnaseri@gmail.com

Sadoon Azizi*
Department of Computer Engineering and IT, University of Kurdistan, Sanandaj, Iran

s.azizi@uok.ac.ir

Alireza Abdollahpouri
Department of Computer Engineering and IT, University of Kurdistan, Sanandaj, Iran

abdollahpouri@uok.ac.ir

Received: 04/Jul/2019 Revised: 24/Aug/2019 Accepted: 08/Dec/2019

Abstract
To support high bisection bandwidth for communication intensive applications in the cloud computing environment, data

center networks usually offer a wide variety of paths. However, optimal utilization of this facility has always been a critical

challenge in a data center design. Flow-based mechanisms usually suffer from collision between elephant flows; while,

packet-based mechanisms encounter packet re-ordering phenomenon. Both of these challenges lead to severe performance

degradation in a data center network. To address these problems, in this paper, we propose an efficient mechanism for the

flow scheduling problem in cloud data center networks. The proposed mechanism, on one hand, makes decisions per flow,

thus preventing the necessity for rearrangement of packets. On the other hand, thanks do SDN technology and utilizing

bidirectional search algorithm, our proposed method is able to distribute elephant flows across the entire network smoothly

and with a high speed. Simulation results confirm the outperformance of our proposed method with the comparison of state-

of-the-art algorithms under different traffic patterns. In particular, compared to the second-best result, the proposed

mechanism provides about 20% higher throughput for random traffic pattern. In addition, with regard to flow completion

time, the percentage of improvement is 12% for random traffic pattern.

Keywords: Cloud Computing; Data Center Networks; Flow Scheduling; Routing Algorithm; Load Balancing;

Bidirectional Search.

1- Introduction

Over the past few years, several companies and

organizations have shifted their services such as large scale

computing, web search, online gaming, and social

networking to cloud computing environment [1]. Recently,

with the emergence of IoT-based applications and massive

data processing, the demand for cloud resources has

increased dramatically. In order to meet these needs,

various data center networks are deployed around the

world, including hundreds of servers and large amounts of

traffic are exchanged between them.

Today's data center networks often use multi-rooted tree

topologies such as Fat-tree [2-4] and Clos [5, 6]. These

topologies provide multiple paths at an equal cost between

each pair of end hosts, and thus significantly increase

bisection bandwidth. However, given the burstiness and

unpredictable nature of the traffic matrix and the flow

pattern generated by virtual machines on hosts, achieving

load balancing in a data center network is not a trivial task.

Over the past few years, network researchers and traffic

engineers have proposed various algorithms and

mechanisms to provide load balancing in cloud data center

networks [7–17]. Although these efforts are valuable steps

towards improving the efficiency of data center networks,

there exist still some challenges and issues in this regard.

The mechanisms that use per-packet approach to manage

network traffic, although provide good load balancing

across the network, but they are faced with the

phenomenon of packet re-ordering. Packet re-ordering not

only affects TCP throughput but also imposes significant

computational overhead on hosts [12]. On the other hand,

flow-based mechanisms usually suffer from the

Naseri, Azizi, Abdollahpouri, BSFS: A Bidirectional Search Algorithm for Flow Scheduling in Cloud Data Centers

176

phenomenon of collision between the elephant flows,

which leads to network performance reduction. Therefore,

the issue of load balancing in data center networks is still

challenging and needs further research efforts [1].

In this paper, we aim to design an efficient flow-based

mechanism to achieve load balancing in data center

networks. Given the fact that most flows in data centers

are only a few kilobytes in size (i.e., mice flows) and a

very small percentage of them are large-sized flows (i.e.,

elephant flows), we take advantage of a hybrid mechanism

for flow scheduling in a data center network. For this

purpose, we use the distributed ECMP algorithm for mice

flows, while a central controller is used for elephant flows.

When an elephant flow is detected by a host, it sends the

flow to the controller for routing the first packet. In the

controller, based on the defined cost matrix, an optimal

bidirectional search is performed on the network to find

and select the best route for that flow.

Our proposed mechanism has three major advantages.

First, it prevents the packet re-ordering phenomenon;

because it performs per flow. Second, since the controller

is used only for elephant flows, it does not become a

bottleneck. Third, because the central controller provides a

macroscopic view of the network traffic, our algorithm is

able to distribute the elephant flows smoothly across the

network. We have compared our approach with various

mechanisms such as Static [2], ECMP [18] and DiFS [19].

The results of the experiments clearly show the superiority

of our algorithm in terms of delay, throughput and flow

completion time in comparison with other mentioned

approaches.

The rest of the paper is organized as follows. In Section

2, related works are reviewed. Background and problem

definition are described in Section 3. The proposed

mechanism is presented in Section 4. In Section 5, we

describe the simulation and evaluate the performance of

the proposed method. Finally, Section 6 concludes the

paper.

2- Related Works

In general, flow scheduling algorithms are divided into

two main categories [1]: distributed and centralized. On

the other hand, in terms of how the flows are handled, they

can be classified into three categories [1]: packet-based,

flow-based and flowlet-based. Below, we review some of

the most important works performed on flow scheduling in

cloud data center networks.

ECMP [18] is the most common routing algorithm for

flow scheduling in data center networks. It is a distributed

and flow-based algorithm. When a flow enters a switch for

the first time, the ECMP performs the routing operation by

applying the hash function to the header of the packet.

Although the implementation of this algorithm is very

simple, it does not differentiate between mice and elephant

flows; and therefore, collisions between elephant flows is

inevitable.

DARD [4] is another flow-based distributed algorithm.

In this algorithm, end-hosts are responsible for monitoring

the status of network traffic. Based on the network

feedback received from the probe packets, each host

moves the flows from high-traffic routes to low-traffic

routes. However, injecting a large number of probe

packets into the network puts considerable overhead on it.

In addition, since this algorithm is host-based, all hosts

need to be upgraded, which imposes a lot of administrative

costs.

Cui et al. [14, 19] have recently proposed an adaptive

distributed mechanism, called DiFS, for flow scheduling

in data center networks with Fat-tree topology. They use

ECMP to forward mice flows, while for scheduling the

elephant flows each switch greedily distributes them to the

output ports. In order to prevent over-utilized links, DiFS

may change the path of some flows based on the

collaboration between switches. Simulation results show

that DiFS performs far better than ECMP. However, since

this algorithm has no macroscopic view of the network, it

has to transmit a large number of messages between the

switches to provide load balancing. This, on the one hand,

leads to overhead on the network, and on the other hand,

as some flows change their direction, packets may need to

be re-ordered.

DRILL [20] is another distributed mechanism which is

inspired by the idea of "the power of two random choices".

In each switch and for each packet, this approach decides

which output port to send the packet to, based on local

information about the queue length. The port selection

mechanism in DRILL is simple and easy to implement.

However, due to the fact that DRILL operates on a per-

packet basis, packet out-of-ordering is inevitable.

Some other works [2, 21, 22] use Static or deterministic

routing to forward packets over the network. In Static

routing, the path between each host pair is determined in

advance and remains unchanged. Although in practice the

implementation of such mechanism is very simple, it

cannot well take advantage of the multi-path benefit

provided by the topology of data center networks, and

usually provides very low performance.

Hedera [7] is a dynamic flow scheduling system in

which mice flows are separated from elephant flows using

a specified threshold value. By default, Hedera uses

ECMP to transmit flows on the network. However, when a

Journal of Information Systems and Telecommunication, Vol. 7, No. 3, July-September 2019

177

large flow is detected, the system generates a demand

matrix for active flows. Therefore, it proposes two

schedulers “Global First Fit” and “Simulated Annealing”

to send the flows. The results show that Hedera achieves a

significant performance improvement compared to ECMP

for the moderate cost. On the one hand, the demand

estimation matrix in Hedera is only run once per

scheduling period, which takes about 200 milliseconds for

a data center network with 27,648 hosts and 250,000 large

flows. On the other hand, the execution time of the

scheduler is in order of tens of milliseconds. Putting these

two points together, it can be seen that it takes several

hundred milliseconds to find a suitable approximate path

for guiding large flows in a data center network, which is a

considerable time. In addition, given the drastic changes in

traffic patterns in data centers, Hedera has to build demand

matrixes over and over again in a short period of time,

which imposes a significant overhead on the system.

Wang et al. in [23] proposed an adaptive mechanism

called Freeway for flow scheduling in data center

networks. This mechanism partitions the paths between

hosts into low latency and high throughput paths. It then

transmits mice flows through low latency paths and

elephant flows through high throughput paths. Although

Freeway performs better than ECMP and Hedera, in

practice it may leave much of the network’s capacity

unused [1].

Based on the ant colony optimization algorithm, the

authors of [16] proposed a centralized scheduling

mechanism for transmitting the flows in data center

networks. Their algorithm divides the elephant flows into k

segments and sends them through k edge-disjoint paths.

Since the flows are broken in this algorithm, the problem

of re-ordering packets arises.

Authors in [24] have modeled the elephant flow

scheduling problem as a multi-knapsack problem and

proposed a mechanism based on hybrid Genetic and

Simulated Annealing algorithm to solve it. Simulation

results confirm that their algorithm provides higher

bisection bandwidth and lower latency in comparison with

similar methods. However, since their approach is similar

to Hedera, it has same drawbacks.

3- Background

The topologies proposed for data center networks over the

past few years provide multiple paths between each pair of

hosts [2, 5, 21, 25]. Although our proposed mechanism

can be applicable to any topology, in this paper, we focus

on the well-known and common Fat-tree topology [2]. In

this section, we first briefly describe the Fat-tree topology.

Then, we will focus on the characteristics of flows in data

center networks. We then investigate the mechanisms for

detection of mice flows and elephant flows. Finally, we

illustrate the problem of collision of elephant flows in data

center networks with a detailed example.

3-1- Fat-tree topology

Fat-tree is a hierarchical multi-root tree topology that

contains three layers of switches called Top of Rack

(ToR), aggregation, and core. In this topology, the

switches are homogeneous and the degree of each switch

is determined by the parameter n. Fat-tree consists of n

pods, each pod having two layers and each layer has n/2

switches that form a complete bipartite graph. Figure 1

shows an example of a Fat-tree topology with 4-port

switches (n = 4).

Fig. 1 Fat-tree topology with 4-port switches

In this work, we define the Fat-tree topology as a directed

graph where, represents the switches and

represents the links. Also, links that connect lower layer

switches to higher layer switches are called uphill and

links that connect higher layer switches to the lower layer

switches are called downhill links.

3-2- Flow properties in data center networks

Each flow contains several packets that are chained

together. In data center networks, if a flow contains a lot of

packets, or it takes a long period of time, or its traffic is

more than a threshold value, it is known as an elephant

flow. On the other hand, flows with low information

volumes or low number of packets are called mice flows

[26]. In terms of number of flows in a data center network,

typically more than 90% of them are mice, while only less

than 10% of them are elephant flows. Nevertheless, on the

other hand, more than 90% of the data volume belongs to

the elephant flows and only 10% to the mouse flows [5].

This paradox highlights the importance of elephant flows.

ToR

Aggregation

Core

Pod 1 Pod 4Pod 3Pod 2

Naseri, Azizi, Abdollahpouri, BSFS: A Bidirectional Search Algorithm for Flow Scheduling in Cloud Data Centers

178

3-3- Mechanisms to detect Elephant and mice

flows

The mechanisms for detecting elephant flow from mice are

divided into two main categories [27]:

Detection by edge switches: In this case, edge switches are

responsible for detecting elephant flows. Hedera [7] and

DiFS [19] use this method.

Detection by hosts: In this method, the detection of

elephant from the mice flows is the responsibility of the

host itself. Mahout [27] and DARD [4] are some of the

algorithms that use this method.

3-4- The problem of collision between elephant

flows

As previously mentioned in Section 2, DiFS is a greedy

distributed mechanism for scheduling elephant flows in a

data center network. In Fig. 2, suppose that hosts A and B

produce 16 elephant flows in total, where the destination

of 8 of these flows is host C or D (within the pod) while,

other 8 flows are toward outside the pod. In switch SW1,

DiFS distributes the flows quite evenly. But in the worst

case, all of the eight flows that enter SW3 may be intra-pod

flows. This situation leads to improper equilibrium of the

elephant flows in the links between aggregation and core

layers. Having a macroscopic view, one can easily achieve

the proper load balance in the network (see Fig. 3).

Fig. 2 The problem of load-balance in DiFS

Fig. 3 Achieving a proper load balancing using macroscopic

view

4- Proposed Method

In this section, we present an efficient mechanism for the

flow scheduling problem in data center networks. To this

end, we first give an overview of the proposed mechanism

and then describe it.

4-1- Overview of the proposed method

The proposed algorithm has two main objectives. First, it

aims to evenly distribute the load across the network.

Second, it does not impose too much overhead on the

central controller to achieve the first goal and can schedule

the elephant flows at an acceptable speed. To manage

traffic on a data center network, the proposed mechanism

uses per-flow approach. This approach prevents out-of-

ordering of packets in end-hosts. As a result, we will not

confront a degradation in TCP performance and end-host

memory usage. Our mechanism combines the advantages

of both distributed and centralized systems. Due to their

global view, centralized systems are very suitable for

routing elephant flows, while distributed systems are the

best option for routing mice flows to avoid overloading the

central controller.

For the centralized system, we use a bidirectional search

algorithm for scheduling elephant flows, which we

describe in the following subsection. While for the

distributed system, we use a simple yet efficient ECMP

algorithm for mice flows. It is worth noting that in the

proposed method, such as the mechanism presented in

[27], the elephant flows are detected in the end-hosts.

Similar to many of the existing works [4, 19, 27], we

consider flows with a volume less than 100KB as mice

flows and assume the others as elephant flows. In this

work, we use the number of elephant flows as a load

balancing parameter and the goal is to keep the number of

active elephant flows on the network links as equal as

Core1 Core2 Core3 Core4

SW 1 SW 4

SW 3 SW 2

A B D

8 8 8

C

Core1 Core2 Core3 Core4

SW 1 SW 4

SW 3 SW 2

A B D

8 8

C

Journal of Information Systems and Telecommunication, Vol. 7, No. 3, July-September 2019

179

possible. Although other parameters such as current

bandwidth consumption can be used for this purpose, the

results presented in [19] show that this parameter would

give us similar performance in practice. Fig. 4 shows the

flowchart of the proposed method.

Fig. 4 The flowchart of the proposed method

4-2- BSFS

For elephant flows, we use bidirectional search algorithm

to find an optimal path for each of them. When an elephant

flow is detected by the source host and its destination host

does not have the same edge switch as the source host, the

packets of that flow are labeled with an “E”, indicating

that the flow is elephant. Upon arrival of the first packet

from an elephant flow to the edge switch, that switch sends

the source and destination address of the packet to the

controller to find the appropriate route. The controller

executes the proposed BSFS algorithm and, through the

OpenFlow protocol, installs routing information on the

switches in the path suggested by the algorithm. On the

other hand, when the last packet of a flow is processed by

the source edge switch, a request to update the network

traffic information is sent to the controller. The details of

the proposed algorithm are discussed below.

As mentioned previously in subsection 3.1, we use a

directed graph to represent the Fat-tree topology. Based on

this graph, we create a cost matrix , where is the

number of network switches and is the number of ports

per switch. Each element of this matrix represents the

number of active elephant flows on each network link. The

reason for using numbers for each switch is that we use

a directed graph to model the topology; numbers for

uphill links and numbers for downhill links.

When a packet from an elephant flow is sent to the

controller for routing, depending on the source and

destination address of the packet, the controller can

determine whether the two hosts are in the same pod or

they are located in separate pods. If two hosts are in the

same pod, the BSFS algorithm selects the best aggregation

switch as the intermediate switch using a simple

bidirectional search. But if the two hosts are located in two

separate pods, the proposed BSFS algorithm starts two

searches simultaneously; first one from the source edge

switch to the core switches, searching between uphill

links, and the other one from the destination edge switch to

the core switches, searching between the downhill links.

The aggregated result of these two searches is obtained for

each of the core switches, and finally, using a simple linear

search, the core switch that gives us a smaller value is

chosen for routing. It is worth mentioning that in the Fat-

tree topology, when the core switch is specified, there will

be only one path between each pair of hosts [2]. It is also

important to note that since the two searches are

completely independent of each other, they can be run in

parallel, which significantly reduces the execution time.

On the other hand, when the last packet of an elephant

flow is reported to the controller, the cost matrix is

immediately updated; That is, one unit is reduced from the

cost of all links that were along that flow. Algorithm 1

shows the pseudo-code of the proposed BSFS.

The algorithm takes the cost matrix, packet (the first or

last packet of a flow), the source address, and the

destination address of the host as input. If is the first

packet of a flow, using the bidirectional search method in

the cost matrix, the path with the lowest cost is found for

that flow (lines 1 to 6). Otherwise, if is the last packet of

a flow, the cost matrix is updated (lines 7 to 9); that means

the cost of all the links along that flow is decreased by one.

Algorithm 1. BSFS: Bidirectional Search Algorithm for

Flow Scheduling

Input: Cost Matrix, packet p, p.src, p.des

Output: Optimal Path

1. if p is the first packet of a flow then

2. if p.src and p.des belong to the same pod then

3. Find an aggregation switch with minimum cost
using BS // BS stands for Bidirectional Search

4. else

5. Find a core switch with minimum cost using BS

6. end if

7. else if p is the last packet of a flow then

8. Update the Cost Matrix and the flow table of related
switches

Naseri, Azizi, Abdollahpouri, BSFS: A Bidirectional Search Algorithm for Flow Scheduling in Cloud Data Centers

180

9. end if

4-3- Time Complexity Analysis

Here, we analyze the time complexity of our proposed

BSFS method. For the first packet of each elephant flow,

the time complexity of the proposed algorithm is as

follows. If the source and destination host of a packet have

the same pod, our algorithm searches among the

aggregation switches inside that pod to find a switch with

minimum cost (lines 2 and 3). Since the number of

aggregation switches is equal to , this step needs .

However, when the source and destination host of a packet

are within different pods, our algorithm must find a core

switch with minimum cost (lines 4 and 5). Regarding to

the fact that the number of core switches in a Fat-tree

topology is [2], so the time complexity is . As

a result, the time complexity of the proposed algorithm is

 for a Fat-tree topology with -port switches. We

should mention that in updating the cost matrix (lines 7

and 8), only three (in intra-pod case) or six switches (in

inter-pod case) are involved for each flow, which is

constant numbers.

It is worth to note that our BSFS method runs only for the

first packet of elephant flows. Since the number of

elephant flows in a data center usually is very low, the

time complexity of our algorithm is reasonable.

5- Performance Evaluation

In this section, we evaluate the performance of our

proposed BSFS algorithm. We compare it with Static [2],

ECMP [18] and DiFS [19] in various respects. It should be

noted that in this work we neglect DiFS performance

degradation due to packet re-ordering.

5-1- Simulation settings

In this work, evaluation of the proposed algorithm on Fat-

tree topology with 8-port switches is performed. C++

programming language has been used for simulation of the

proposed method. In the literature, there are many works

that use custom simulators [7, 9, 28, 29]. Experiments

have been performed on a computer having Intel® Core™

i5 CPU 2.3 GHz and 16 GB of memory.

The event-driven simulation is developed on a packet

level. The length of each packet is assumed to be 1KB. For

each port, a buffer of size 64KB is assumed. The capacity

of all network links is equal and set to 1Gbps. For the

transmission delay, we consider 8μs while the propagation

delay is ignored. In this work, the queuing delay has been

considered.

In our experiments, each server generates 20 flows

continuously. We consider each flow with the probability

of 90% as a mice flow and with the probability of 10% as

an elephant flow. The size of mice flows is chosen

randomly from the values 2KB, 10KB or 100KB. For the

elephant flows, we assume the fixed size of 10MB.

5-2- Traffic patterns

We have used the following synthetic traffic patterns to

perform the experiments [7, 13, 19]:

Stride(): This pattern sends a flow from host to another

host with the number ; where, represents

the number of hosts in the network.

Random: In this traffic pattern, a host with index sends a

flow randomly with uniform probability to another host

anywhere in the network, such that, .

Staggered(): In this pattern, a host sends its

flows with the probability of to another host

connected to the same edge switch, and with the

probability of to another host in the same pod. It also

sends the flows to other hosts with different pods with the

probability of .

5-3- Evaluation criteria

We use the following criteria to evaluate and compare our

proposed method with other mechanisms:

Flow Completion Time (FCT): This criterion specifies the

end time of a flow. In fact, it indicates the time when all

packets of a flow are received by the destination.

Delay: Indicates average network latency. This criterion

tells us that how long it takes in average for a packet to

reach its destination.

Aggregate Throughput: This criterion measures the

utilization of network links. In fact, it indicates the average

rate at which the network delivers the packets.

5-4- Simulation results

Here, we evaluate the results of simulations. Fig. 5(a) and

Fig. 5(b) show the average delay and network aggregate

throughput under different traffic patterns, respectively. As

can be seen, for Stride(2) and Staggered(0.5,0.3) almost all

methods have low delay and high throughput. However, in

Stride(i), by increasing the value of and in

Staggered() by decreasing the values of

and then , BSFS performs much better. For the

Random traffic pattern, since it is more likely for elephant

flows to collide and most of the flows will be out of the

pods, our proposed algorithm performs best by

establishing a proper balance between the elephant flows.

Journal of Information Systems and Telecommunication, Vol. 7, No. 3, July-September 2019

181

In particular, for the Random traffic pattern, BSFS

provides about 20% higher throughput than DiFS.

Therefore, we claim that our proposed mechanism

performs better for non-local traffic than other

mechanisms.

Table 1 and Table 2 illustrate the cumulative distribution

function of number of completed flows for different

algorithms under two traffic patterns Stride(4) (Table 1)

and Random (Table 2). It can be clearly seen that BSFS

terminates the flows earlier. For the Random traffic

pattern, this superiority is much more impressive. This is

due to the balanced distribution of elephant flows by the

proposed method. While, in other algorithms, there is a

longer flow completion time due to the frequent collisions

between the elephant flows. For the Random traffic

pattern, our BSFS delivers all the flows to their destination

hosts below one second, while DiFS delivers about 88%,

ECMP 81% and Static only deliver 72% of flows at this

time.

(a) delay

0

100

200

300

400

500

600

700

800
D

el
ay

 (
m

s)

Traffic patterns

Static ECMP DiFS BSFS

0

20

40

60

80

100

120

A
g
g
re

g
at

e
th

ro
u
g
h
p

u
t

(G
b

p
s)

Traffic patterns

Static ECMP DiFS BSFS

Table 1. The Flow Completion Time of different algorithms under Stride (4)

0 50 100 150 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Static 0 976 980 984 1129 1310 1582 1671 1860 2088 2329 2434 2490 2519 2540 2560

ECMP 0 983 988 989 1207 1441 1740 1949 2081 2219 2416 2480 2529 2539 2560 -

DiFS 0 971 973 974 1439 1741 1961 2134 2262 2386 2481 2537 2549 2560 - -

BSFS 0 905 916 918 1393 1968 2389 2555 2560 - - - - - - -

Algorithm
Time (in millisecond)

0 50 100 150 200 400 600 800 1000 1200 1400

Static 0 969 969 969 1087 1899 2088 2413 2528 2541 2560

ECMP 0 1011 1011 1011 1421 1913 2120 2454 2549 2551 2560

DiFS 0 1031 1031 1031 1561 2005 2299 2479 2551 2560 -

BSFS 0 1030 1030 1030 1695 2120 2356 2560 - - -

Time (in millisecond)
Algorithm

Table 2. The Flow Completion Time of different algorithms under Random

Naseri, Azizi, Abdollahpouri, BSFS: A Bidirectional Search Algorithm for Flow Scheduling in Cloud Data Centers

182

(b) Aggregate throughput

Fig. 5 Performance comparison of algorithms under different

traffic patterns

6- Conclusion and Future Work

In this paper, we proposed an efficient mechanism to

achieve load balancing in data center networks. The

proposed mechanism uses the ECMP algorithm to send

mice flows, while it takes advantage of the bidirectional

search algorithm in the central controller to schedule the

elephant flows. Simulation results under various traffic

patterns show that the proposed mechanism can balance

the network load more efficiently and provide better

performance in comparison with the Static, ECMP and

DiFS mechanisms. The less locality in network traffic, the

higher the advantage of our approach is. Specifically, for

the Random traffic model, our mechanism provides 20%

higher throughput than DiFS. As a possible future research

direction, one can take into account the priority of flows

when scheduling them. Furthermore, the proposed

mechanism can be extended by considering failures in data

center.

References
[1] Zhang, J., Yu, F. R., Wang, S., Huang, T., Liu, Z.,

Liu, Y.: Load Balancing in Data Center Networks: A

Survey, IEEE Communications Surveys & Tutorials,

vol. 20, no. 3, pp. 2324-52, 2018.

[2] Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable,

commodity data center network architecture, In ACM

SIGCOMM Computer Communication Review, vol.

38, no. 4, pp. 63-74, 2008.

[3] Niranjan Mysore, R., Pamboris, A., Farrington, N.,

Huang, N., Miri, P., Radhakrishnan, S., Subramanya,

V. and Vahdat, A.: Portland: a scalable fault-tolerant

layer 2 data center network fabric, In ACM

SIGCOMM Computer Communication Review, vol.

39, no. 4, pp. 39-50, 2009.

[4] Wu, .X, Yang, X.: Dard: Distributed adaptive routing

for datacenter networks, In 32nd International

Conference on Distributed Computing Systems

(ICDCS), pp. 32-41, 2012, IEEE.

[5] Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S.,

Kim, C., Lahiri, P., Maltz, D.A., Patel, P. and

Sengupta, S.: VL2: a scalable and flexible data

center network, In ACM SIGCOMM computer

communication review, vol. 39, no. 4, pp. 51-62,

2009.

[6] Zahavi, E., Keslassy, I., Kolodny, A.: Distributed

adaptive routing for big-data applications running on

data center networks, In Proceedings of the eighth

ACM/IEEE Symposium on Architectures for

networking and communications systems, pp. 99-

110, 2012.

[7] Al-Fares, M., Radhakrishnan, S., Raghavan, B.,

Huang, N., Vahdat, A.: Hedera: Dynamic Flow

Scheduling for Data Center Networks, In NSDI, vol.

10, pp. 19-19, 2010.

[8] Zats, D., Das, T., Mohan, P., Borthakur, D., Katz, R.:

DeTail: reducing the flow completion time tail in

datacenter networks, In Proceedings of the ACM

SIGCOMM conference on Applications,

technologies, architectures, and protocols for

computer communication, pp. 139-150, 2012.

[9] Sen, S., Shue, D., Ihm, S., Freedman, M.J.: Scalable,

optimal flow routing in datacenters via local link

balancing, In Proceedings of the ninth ACM

conference on Emerging networking experiments and

technologies, pp. 151-162, 2013.

[10] Modi, T., Swain, P., FlowDCN: Flow Scheduling in

Software Defined Data Center Networks. In IEEE

International Conference on Electrical, Computer

and Communication Technologies (ICECCT), pp. 1-

5, 2019.

[11] Alizadeh, M., Edsall, T., Dharmapurikar, S.,

Vaidyanathan, R., Chu, K., Fingerhut, A., Matus, F.,

Pan, R., Yadav, N. and Varghese, G.: CONGA:

Distributed congestion-aware load balancing for

datacenters, In ACM SIGCOMM Computer

Communication Review, vol. 44, no. 4, pp. 503-514,

2014.

[12] He, K., Rozner, E., Agarwal, K., Felter, W., Carter,

J. and Akella, A.: Presto: Edge-based load balancing

for fast datacenter networks, In ACM SIGCOMM

Computer Communication Review, vol. 45, no. 4, pp.

465-478, 2015.

[13] Zhang, J., Ren, F., Huang, T., Tang, L., Liu, Y.:

Congestion-aware adaptive forwarding in datacenter

networks, Computer Communications, vol. 62, pp.

34-46, 2015.

[14] Cui, W., Qian, C.: Difs: Distributed flow scheduling

for adaptive routing in hierarchical data center

networks, In Proceedings of the tenth ACM/IEEE

Symposium on Architectures for networking and

communications systems, pp. 53-64, 2014.

[15] Ghorbani, S., Yang, Z., Godfrey, P., Ganjali, Y. and

Firoozshahian, A.: DRILL: Micro load balancing for

low-latency data center networks, In Proceedings of

Journal of Information Systems and Telecommunication, Vol. 7, No. 3, July-September 2019

183

the Conference of the ACM Special Interest Group

on Data Communication, pp. 225-238, 2017.

[16] Wang, C., Zhang, G., Chen, H. and Xu, H.: An

ACO-based elephant and mice flow scheduling

system in SDN, In 2nd International Conference on

Big Data Analysis (ICBDA), pp. 859-863, 2017,

IEEE.

[17] Perry, Perry, Balakrishnan, H., Shah, D.: Flowtune:

Flowlet Control for Datacenter Networks, In NSDI,

pp. 421-435, 2017.

[18] Hopps, C.E.: Analysis of an equal-cost multi-path

algorithm, 2000.

[19] Cui, W., Yu, Y., Qian, C.: DiFS: Distributed Flow

Scheduling for adaptive switching in FatTree data

center networks, Computer Networks, vol. 105, pp.

166-179, 2016.

[20] Ghorbani, S., Godfrey, B., Ganjali, Y. and

Firoozshahian, A.: Micro load balancing in data

centers with DRILL, In Proceedings of the 14th

ACM Workshop on Hot Topics in Networks, p. 17,

2015.

[21] Azizi, S., Hashemi, N., Khonsari, A.: A flexible and

high-performance data center network topology, The

Journal of Supercomputing, vol. 73, no. 4, pp. 1484-

1503, 2017.

[22] Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y. and Lu,

S.: Dcell: a scalable and fault-tolerant network

structure for data centers, In ACM SIGCOMM

Computer Communication Review, vol. 38, no. 4, pp.

75-86, 2008.

[23] Wang, W., Sun, Y., Salamatian, K., Li, Z.: Adaptive

Path Isolation for Elephant and Mice Flows by

Exploiting Path Diversity in Datacenters, IEEE

Transactions on Network and Service Management,

vol. 13, no. 1, pp. 5-18, 2016.

[24] Li, P., Xu, H., Wang, R., Luo, B.: Data center

network flow scheduling mechanism based on

HGSAFS algorithm, In Proceedings of the High

Performance Computing Symposium, 2019.

[25] Li, D., Wu, J.: On data center network architectures

for interconnecting dual-port servers, IEEE

Transactions on Computers, vol. 64, no. 11, pp.

3210-3222, 2015.

[26] Marron, J., Hernandez-Campos, F., Smith, F.: Mice

and elephants visualization of internet traffic, In

Proceedings of Computational Statistics, pp. 47-54,

2002.

[27] Curtis, A.R., Kim, W., Yalagandula, P.: Mahout:

Low-overhead datacenter traffic management using

end-host-based elephant detection, In Proceedings

IEEE INFOCOM, pp. 1629-1637, 2011.

[28] Wischik, D., Raiciu, C., Greenhalgh, A., Handley,

M.: Design, Implementation and Evaluation of

Congestion Control for Multipath TCP, In NSDI, vol.

11, pp. 8, 2011.

[29] Singla, A., Hong, C.-Y., Popa, L., Godfrey, P.B.:

Jellyfish: Networking Data Centers, Randomly, In

NSDI, vol. 12, pp. 1-6, 2012.

Hasibeh Naseri is a master graduated in artificial intelligence

from University of Kurdistan, Sanandaj, Iran. Currently, she is
a member of the Internet of Things research laboratory at the
University of Kurdistan. Her research interests include Cloud
computing, Data center networks, Flow scheduling, Heuristic
and meta-heuristic algorithms.

Sadoon Azizi is an assistant professor in the department of

computer engineering and IT, University of Kurdistan,
Sanandaj, Iran. He received his Ph.D degree in computer
science, with focus on Cloud Data Centers, from Amirkabir
University of Technology, Tehran, Iran, in 2016. He also
received his M.Sc. degree in computer science, with focus on
High Performance Computing (HPC), from Amirkabir
University of Technology, Tehran, Iran, in 2012. His main
research interests include Cloud computing, Fog computing,
Internet of Things, Data center networks, and Design and
analysis of algorithms. He is the director of the Internet of
Things research laboratory and manager at the High
Performance Computing (HPC) center at the University of
Kurdistan.

Alireza Abdollahpouri received his Ph.D. from University of

Hamburg, Germany in 2012, and now he is an associate
professor of computer networks at the Department of
Computer Engineering, University of Kurdistan, Sanandaj,
Iran. His main research interests are in the field of social
network analysis, IPTV modeling, and quality of service in
wireless networks.

