

 Alireza Shirmarz

a.shirmarz@aut.ac.ir

Journal of Information Systems and Telecommunication
Vol.10, No.2, April-June 2022, 120-131

http://jist.acecr.org
ISSN 2322-1437 / ESSN:2345-2773

1
.Department of Computer Engineering, University of Mazandaran, Mazandaran, Iran

2
.Department of Computer & Electronic Engineering, Ale-Taha University, Tehran, Iran

Received: 05 Dec 2020/ Revised: 15 Sep 2021/ Accepted: 21 Nov 2021

DOI:

Abstract
The extend of the internet across the world has increased cyber-attacks and threats. One of the most significant threats

includes denial-of-service (DoS) which causes the server or network not to be able to serve. This attack can be done by

distributed nodes in the network as if the nodes collaborated. This attack is called distributed denial-of-service (DDoS).

There is offered a novel architecture for the future networks to make them more agile, programmable and flexible. This

architecture is called software defined network (SDN) that the main idea is data and control network flows separation. This

architecture allows the network administrator to resist DDoS attacks in the centralized controller. The main issue is to

detect DDoS flows in the controller. In this paper, the Self-Organizing Map (SOM) method and Learning Vector

Quantization (LVQ) are used for DDoS attack detection in SDN with distributed architecture in the control layer. To

evaluate the proposed model, we use a labelled data set to prove the proposed model that has improved the DDoS attack

flow detection by 99.56%. This research can be used by the researchers working on SDN-based DDoS attack detection

improvement.

Keywords: Software Defined Network (SDN); Distributed Controller; Distributed Denial-of-Service (DDoS); Self-

Organizing Map (SOM); Learning Vector Quantization (LVQ).

1- Introduction

Internet extend has been raised across the world sharply,

so internet technology usage rate among business and the

social activities went up. The complexity of the traditional

network architecture on the internet exposes the network

specialist to a situation that makes the configuration and

network control impossible, so the scientists proposed a

new architecture called software defined network (SDN) to

be used for future networks [1]. The SDN includes three

layers, application, control, and data. There are various

defined tasks for each layer and this structure makes the

network much more programmable, flexible, and

manageable [2][3]. The SDN, in addition to three layers,

has three APIs (Northbound, Southbound, and East-West)

to connect the layers and scale the controller with

controllers’ communication capability [2][4][5][6][7]

which Fig.1 shows the layers and APIs, briefly. The data

plane is composed of FEs which are simple forwarding

elements. The control plane has the main role of decision-

making in SDN. The controller can be a physical

centralized or conceptual centralized controller. The

conceptual centralized controller is composed of some

controllers which are related together with east-west APIs.

The data plane and control plane are connected by

southbound API. The application layer is based on

network applications and is connected with the control

plane with northbound APIs.

Southbound Interface

Northbound Interface

Southbound API

Northbound API

East-West API

APP1 APP2

APP Plane

Control Plane

Control Plane

Data Plane

APP3 APP4 APPn...

Fig. 1 SDN Architecture

Journal of Information Systems and Telecommunication, Vol.10, No.2, April-June 2022

121

1-1- Problem Statement

One of the significant attacks on the internet is DDoS

which has laid in the central attention of the published

recent papers. The papers have proposed approaches to

mitigate DDoS attacks with the use of machine learning

(ML) or statistical methods. The DDoS attacks have been

categorized in [8]. The DDoS is a malicious effort to

disrupt the normal network flows that are done with fake

traffic generating as if the service cannot be provided by

the server or the network. The denial of service takes place

because the computing resources are busy with fake

traffic. According to Cisco’s annual internet report which

has been published in 2020, the number of DDoS attacks

will double to 15.4 million by 2023 globally [9] as shown

in Fig. 2.

Fig. 2 The prediction of DDoS Attack growth by 2023 [9]

The limitation in memory and processing resources that

exist in smart devices has caused the networks to become

more susceptible to large-scale DDoS attacks. Internet of

things (IoT) expands the use of smart devices which makes

this issue more important [10]. For instance, the DDoS

attacks which happened in well-known companies and

organizations like CNN, Netflix, Twitter caused a denial

of service in 2006 [11]. These reasons show the

importance of DDoS attacks and their effects on IT. The

taxonomy of the DDoS attacks’ types are organized in a

tree which is presented in Fig.3.

 Fig. 3 DDoS Attacks Taxonomy [8]

One of the SDN traits is the (physical or conceptual)

centeralized controller that has a global view of the

network to make the optimized decision; therefore, it can

make the network more secure from different attacks in

comparison with the traditional networks. One of the SDN

architecture drawbacks is a single point of failure of the

controller; hence, the controller has been posed threats by

the attackers that can make the controller denial of service.

Due to this defect, distributed controllers architecture has

been proposed which is addressed in this paper. This

distributed controllers architecture has solved the single

point of failure and mitigate the DDoS attack on the

centeralized controller.

The first step to encounter DDoS is to detect the attack

with a proper solution. Firewalling, intrusion detection

system (IDS), and intrusion prevention system (IPS) can

be developed and deployed in the application layer. The

solutions in the application layer are facing problems like:

 Application layer workload

 Less smart behaviour

 Expert administrator

 Less Agility

 Interference in the defined rules

 The symmetry of the rules

1-2- Proposed Approach

In this paper, we propose the DDoS attack detection

module in the controller with distributed architecture. The

proposed solution is based on a machine learning method

named self-organizing map (SOM) which is used for smart

DDoS attack detection. There is a wide diversity in the

flow patterns for DDoS attacks; therefore, it is needed to

extract flows pattern automatically. The SOM is powerful

in pattern extraction from real data. This pattern extraction

lets us detect the new patterns for a DDoS attack. This

algorithm can be used for classification and IDS as

anomaly detection. The model is extracted from the dataset

which is CICDDoS2019 and was obtained from the

Canadian Institute for Cybersecurity, University of New

Brunswick, Canada. This comprehensive dataset consists

of 50063112 instances with 76 features along with 13 class

labels to predict DDoS attacks [12]. The proposed

approach will be compared with the related works and

show that our model works with more accuracy. The

proposed clustering algorithm labels the dataset and this

method is compared with the labelled dataset. In this

paper, a distributed architecture is used for the proposed

model. The proposed model is simulated in Mininet and

shows that the proposed model improves the DDoS attacks

detection.

In this paper, the novelties that are proposed are:

 The Self-Organizing Map (SOM) method and

Learning Vector Quantization (LVQ) are used for

DDoS attack detection

Rafiee & Shirmarz, Self-Organization Map (SOM) Algorithm for DDoS Attack Detection in Distributed Software…

122

 The DDoS attack detection model in distributed

SDN controllers

 DDoS attack detection improvement in SDN

In the following section, the background of the concept

will be discussed.

2- Background

2-1- SDN Functionality

In traditional networks, all switching and routing

decisions are done in the switches, routers, firewalls and

other equipment while these decisions are done in the

centralized controller in SDN architecture. In SDN, there

is only equipment instead of switches, routers, firewalls

which is responsible for forwarding called forwarding

element (FE). The other spec of SDN is the flow-based

decision instead of the packet-based one. There is a

definition for flow which is a sequence of packets with a

common source and destination which is determined with

five tuples (source IP, destination IP, source port number,

destination port number and transport protocol). The

packet header is extracted in each FE then the existence of

the rule inside the flow table for the packet is examined. If

the packet is the first packet of a flow and doesn't exist in

the flow table, FE forwards the packet-in message

including the packet header and payload to the controller.

The controller makes a proper decision for each flow and

exports the rule to each FE to fill the flow table. If the

packet exists in the flow table, FE forwards the packet

based on the action defined in the flow table. The

controller decision for each flow has been made based on

the network policy planned by the network administrators.

The flow action is exported with the flow-mode message

[13].

The rule of flow is embedded in the flow table which has

been placed in FEs. The FE accomplish according to the

action which is put in the flow table. The flow table is

flushed in two cases, soft time-out, and hard time-out. The

soft timeout depends on the idle flow entry which exists in

the flow-table, and hard time-out refers to the period of the

time in which the flow-table should be made empty by

force. This mechanism makes memory space more

efficient.

2-2- Self-Organizing Map Algorithm

The SOM algorithm has been proposed in 1982 by

Kohonen [14]. This is an unsupervised learning algorithm

that learns the patterns from complex datasets and clusters

the data with noise. It is a neural network-based

dimensionality reduction algorithm generally used to

represent a high-dimensional dataset as two dimensional

discretized pattern. Dimensionality reduction is performed

while retaining the topology of data present in the original

feature space. The clustering method is a k-means

clustering performed on the mapping generated by SOM.

As the first step, an artificial neural network is trained to

generate a low-dimensional discretized representation of

the data in the original feature space while preserving the

topological properties; this is achieved through

competitive learning. In SOM, the vectors that are close in

the high-dimensional space also end up being mapped to

SOM nodes that are close in low-dimensional space. K-

means can be considered a simplified case of SOM, where

the nodes (centroids) are independent of each other. K-

means is highly sensitive to the initial positions of the

centroids, and it is not suitable for a high-dimensional

dataset. The two-stage procedure for clustering adopted in

this study first uses SOM to produce the low-dimensional

prototypes (abstractions) that are then clustered in the

second stage using k-means. This two-step clustering

method reduces the computational time and improves the

efficiency of K-means clustering. Even with a relatively

small number of samples, many clustering algorithms

especially hierarchical ones become intractably heavy.

Another benefit of the two-step clustering method is noise

reduction. The prototypes constructed by SOM are local

averages of the data; therefore, less sensitive to random

variations than the original data. The weights of SOM

were randomly initialized. During training, the weight

vectors are updated based on the similarity between the

weight vectors and input vectors which results in moving

the SOM neurons/nodes closer to certain dense regions of

the original data. The similarity between data points and

SOM nodes during the weight update is evaluated based

on Euclidean distance [15] as shown in Fig. 4. The main

steps which are required in SOM are:

1) Train step: the neurons’ network weights are

determined with trained sets.

2) Map step: the winner neurons are chosen and

clustered automatically.

Fig. 4 The Self-organizing map [15]

The SOM algorithm defines some variables which are

[16]:

Journal of Information Systems and Telecommunication, Vol.10, No.2, April-June 2022

123

 N: The number of training instances. These

instances are shown in a set [1, 2, …, n]

 S: The number of neurons has been mapped.

These neurons are presented by the vector

with m dimensions.

 The lattice radius is defined as follows:

R = (1)

 λ is fixed and calculated as:

λ = (2)

 σ(t) is the winner neurons radius as shown in Fig.

5. This radius is calculated by the dependent

period like t.

σ(t) = R × exp (-) t = 1, …, n (3)

Fig. 5 The radius degradation in the map [14]

The SOM is computed in three phases:

1) Competition Phase: In this stage, neurons

compete to choose the center of each cluster. For

this purpose, the neurons are first given the initial

value. The dimensions of these values are the

same as the input data.

Wi = [i1, i2, …, im] 1 ≤ i ≤ S (4)

The cluster with the smallest distance to the input

vector xk = [k1, k2, …, km] wins the

competition. There are several methods for

determining the distance between neurons and

the input vector. In this article, the Euclidean

distance is used and can be expressed as follows:

Dist = (5)

2) Collaboration Phase: In this stage, the effect of

winning i neurons on the learning of

neighbouring neurons when applying input x is

calculated. The greater the distance between

neighbouring neurons and the winning neuron,

the less effective it is. Experience has shown that

it is best to consider a large neighbourhood first

to include dead neurons. The magnitude of this

effect is calculated from the following equation:

Θ(t) = exp (-) (6)

3) Adaptation Phase: In this stage, according to the

equation under the weight of the neurons, they are

optimized for the next repetitions so that over

time, the whole map converges towards the input

vector:

W (t + 1) = W(t) + L(t) × Θ(t) × (xk(t) – W(t)) (7)

The variable L(t) is the learning rate that

decreases over time. It is calculated as:

L(t) = L0 × exp (-) (8)

 Collaboration and adaptation are repeated to enter the

mapping stage to complete network learning.

2-3- DDoS Attacks

To detect DDoS attacks, it is needed to know the

characteristics of this attack. Generally, DDoS attackers

disable the targeted victim by anomaly fake network

traffic generating. There are different categories that have

been proposed for DDoS attack types. In this paper, Figure

3 shows a classification of DDoS and includes two major

general modes. The first DDoS attack model is based on

the occupied victim system's bandwidth by large packets

as if the system cannot service like the DNS service attack.

The second model that can be done as the DDoS attack is

to disrupt the main resources of the victim system such as

memory and processor by sending unusual and abnormal

packets such as syn-flood.

3- Related Works

In this section, we review SDN security researches

related to DDoS attack detection mechanisms and address

approaches similar to the proposed method. DDoS attack

detection in SDN can be categorized into two methods

which are based on statistical analysis methods and

Machine Learning (ML) methods.

In [17]–[20] researches, statistical analysis is used to

detect DDoS attacks in SDN. The entropy method is one

of the most widely used statistical analysis methods to

Rafiee & Shirmarz, Self-Organization Map (SOM) Algorithm for DDoS Attack Detection in Distributed Software…

124

detect DDoS attacks. Entropy is a parameter to measure

randomness. That is, it determines the probability of an

event occurring according to the total number of events.

The higher the randomness, the higher the entropy. In [21]

a threshold-based entropy method has been proposed to

detect DDoS attacks in SDN. In a network, each host must

receive new packets with a probability that is almost close

to each other, in which case the entropy will be high. If

one or more hosts receive too many packets, the

randomness decreases and as a result, the entropy will

decrease. According to this, a threshold being set for

entropy, and the attack will be detected if the entropy

value falls below this threshold. In [22] the controller

periodically creates a hash table of destination addresses

through the information received from the switches. The

entropy of the destination addresses is then calculated by

the phi-entropy method. A DDoS attack is detected if the

entropy value is below the threshold for more than five

consecutive windows.

The growth of Machine Learning knowledge makes many

researchers use it in DDoS attack detection. One of the

important and key steps in the use of Machine Learning is

to select the appropriate features for learning the

algorithm. In paper [23] It uses the Dynamic MLP method

to select the optimal features. Polat et al It has used

Support Vector Machine (SVM), Naive Bayes (NB),

Artificial Neural Network (ANN), and K-Nearest

Neighbors (KNN) machine learning methods to detect

DDoS attack in SDN and has reached 98.3% in diagnosis

accuracy with KNN method. Phan et al in [24] have

proposed a Distributed SOM DSOM method to detect

DDoS attacks in SDN. In this paper, the control plane

architecture is Centralized with a POX controller. The

proposed method also uses multiple self-organizing maps

integrated with OpenFlow switches instead of a self-

organizing one. Each DSOM in each switch processes the

incoming traffic; hence, the processing load on the

controllers will be divided between the switches. There is

also a DSOM component in the application layer that is

responsible for managing the performance of DSOM on

switches. Due to the fact that in this method, the attack

detection point is located in the switches and in the data

layer, it is necessary to check all the packets passing

through the switch by SOM, which consumes a lot of

processing time and time. Braga et al in [25] introduce the

Lightweight DDoS Flooding Attack method that detects a

DDoS attack based on tracking suspicious input flows

using self-organizing mapping. The control plane

architecture is centralized with a NOX controller. The

SOM features are extracted from the incoming traffic.

Each instance then enters a SOM map to determine

whether the incoming traffic flow is normal or malicious.

This method includes three components Flow Collector,

Feature Extractor and Classifier. The papers which are

[26], [27] include other works that have used machine

learning techniques to detect DDoS attacks in SDN.

T. Nam and et al have used SDN and proposed SOM and

K-NN clustering to detect DDoS attacks in [28]. They

have worked on DDoS attack detection and examined it

with different k. They could find out the best accuracy for

DDoS attacks with k=3. They could reach the accuracy

%99.05 which is noticeable; therefore, we will compare

our result with this paper.

The use of distributed controller architecture in the control

layer and the application of distinctive features in the

attack detection stage are the most important differences

between our method and the above-mentioned works,

which are discussed in this article.

4- The Proposed Scheme for DDoS Attack

Detection in SDN

As mentioned in the proposed method, the components

of DDoS attack detection are managed by controllers. The

attack detection point will be at the level of the control

layer of software-based networks. To achieve this goal, it

is necessary to go through the four main steps shown in

Fig.6 which in the proposed method will focus on the first

and second steps:

1) Data Gathering: At this stage, appropriate

statistical information should be obtained from

network traffic so that normal traffic can be

distinguished from attack traffic.

2) Attack Detection: A method should be

implemented based on which the occurrence of

the attack can be detected by entering the

information collected in the previous step in the

output. In this dissertation, machine learning in

the proposed method is used.

3) Decision making: In this stage, it is determined

what decisions should be made after identifying

the attack. The main point of decision is in the

network controller.

4) Execution: Converts the decisions made to the

input of the flows and then applies them to

switches and routers, such as deleting flow entry

from the flow table.

Journal of Information Systems and Telecommunication, Vol.10, No.2, April-June 2022

125

Fig. 6 Main four phases

In the following, first, the processing performed on the

dataset used and how the self-organizing mapping

algorithm works will be discussed. Then the attack

simulation scenario is introduced along with the tools used

to generate and analyze attack traffic.

4-1- Dataset Introduction

This paper uses the CICDDoS2019 dataset [8] compiled

by the University of New Brunswick. This dataset includes

normal traffic and the most up-to-date distributed denial-

of-service attack traffic, which includes various types of

attack traffic such as DNS, LDAP, SYN, etc.

To extract the feature, the CICFlowMeter two-way traffic

flow generation tool was used. The output of this tool

contains 76 features.

4-2- Data Pre-Processing

The Weka tool has been used to facilitate and expedite

dataset processing. Weka is a Java-based machine learning

tool developed at the University of Waikato in New

Zealand. Weka allows users to extract useful information

from the database. The heterogeneous dataset is used for

classification. That is, the ratio of normal traffic to attack

is very different, so-called unbalanced data. When the data

is unbalanced, the performance of the detection algorithm

cannot be properly evaluated. Because the neurons of the

machine learning algorithm are biased towards the traffic

class that has the largest number. Therefore, in order to

balance the dataset, using the Weka tool, the Random

Under Sampling method, which is one of the data Mining

methods, has been used to eliminate the number of

existing samples to reach balanced.

As mentioned, this dataset contains 76 features. One way

is to use all of these features to detect an attack in a

machine learning algorithm. However, due to a large

number of features, it can prolong the processing time. On

the other hand, the effect of all these features in identifying

traffic related to a DDoS attack will not be the same. Some

features will be more effective and some will be less

effective. Choosing the most effective features is a major

challenge in itself. As a result, the best solution is to be

able to use all of the features in some way, as well as

reduce the processing load by reducing the number of

features. Therefore, in this paper, the feature extraction

method [29] with the principle component analysis (PCA)

has been used to obtain new features from the entire

dataset. The method of calculating the new properties can

be calculated as follows: where Ai is the main property of

i, A
ʹ
i is the new property of i, Vij is the component j of the

vector i Eigenvector, n is the number of new properties

obtained after PCA and m is the maximum number of

main properties involved. In linear transmission are:

Aʹi=V11×A1+V12×A2+…+Vim×Am

=

(9)

To reduce the number of features, the PCA has been used

and decreased the attributes from 76 to 23. Table 1 shows

the obtained value after PCA processing that some are

shown in the following table.

Table 1: PCA extracted features

PCA Extracted Features

1
-0.247Flow IAT Max - 0.246Fwd IAT Max - 0.244Idle Max

- 0.241Idle Mean + …

2
-0.304Pkt Len Mean - 0.291Pkt Size Avg - 0.278Fwd Seg

Size Avg + …

3
-0.235Subflow Bwd Byts - 0.235TotLen Bwd Pkts -

0.211Bwd Pkt Len Mean + …

4
-0.375Fwd Act Data Pkts - 0.353Tot Fwd Pkts -

0.353Subflow Fwd Pkts + …

5
0.476Active Mean + 0.441Active Max + 0.429Active Min +

0.306Flow IAT Min + …

6
-0.387Fwd PSH Flags - 0.387RST Flag Cnt - 0.294Flow

Pkts/s - 0.293Fwd Pkts/s + …

7
-0.374Fwd PSH Flags - 0.374RST Flag Cnt - 0.333URG

Flag Cnt + …

8
0.425CWE Flag Count + 0.405Down/Up Ratio - 0.372ACK

Flag Cnt + …

9
-0.508Fwd IAT Min - 0.506Flow IAT Min - 0.229Flow IAT

Mean + …

10
-0.464Bwd Pkt Len Min + 0.339CWE Flag Count +

0.292Init Fwd Win Byts + …

11
0.326Flow IAT Mean - 0.285Bwd IAT Max - 0.279Bwd

IAT Tot + …

12
-0.715Fwd Header Len - 0.687Fwd Seg Size Min -

0.043Fwd Pkt Len Std + …

Rafiee & Shirmarz, Self-Organization Map (SOM) Algorithm for DDoS Attack Detection in Distributed Software…

126

13
-0.418Init Bwd Win Byts + 0.342Bwd Pkts/s + 0.326Active

Std + …

14
-0.464Active Std - 0.369Bwd IAT Mean + 0.31 Active Min

+ 0.304Idle Min + …

15
0.403Bwd IAT Mean + 0.318Bwd IAT Std - 0.294Fwd Pkt

Len Std + …

16
0.687Bwd Header Len - 0.604SYN Flag Cnt - 0.246Bwd

Pkts/s + …

17
-0.691SYN Flag Cnt - 0.658Bwd Header Len + 0.121CWE

Flag Count + …

18
-0.641Bwd Pkts/s - 0.604Bwd IAT Min - 0.27Bwd Header

Len + …

19
-0.643Bwd IAT Min + 0.558Bwd Pkts/s + 0.235Bwd Pkt

Len Min + …

20
-0.38Init Bwd Win Byts - 0.377Bwd Pkt Len Min +

0.319Fwd Pkt Len Std + …

21
0.564Idle Std + 0.342Fwd Pkt Len Std - 0.282Active Std -

0.208Pkt Len Var + …

22
-0.368Pkt Len Var + 0.346Init Fwd Win Byts - 0.335Init

Bwd Win Byts + …

23
0.66 Fwd Seg Size Min - 0.638Fwd Header Len - 0.157Idle

Std + …

These acquired features have been rated based on the

feature effectiveness. Therefore, these features that have

been extracted based on PCA are sorted so that the feature,

with more impact, has more value. This ranking was

performed by the Filter method [29] Based on their

evaluations. This ranking value is shown in Fig. 7.

Fig. 7 Sorted extracted PCA features

The processed dataset is ready for training and evaluation

in an attack detection system.

4-3- System Setup in SDN

Table 2 shows the specifications of the implementation

environment. The Mininet emulator environment, which is

licensed under the open-source BSD, is used to implement

the Software Defined Network. Mininet provides a virtual

environment in which all programs, switches, and code

running on the actual system kernel, which can be a virtual

machine, a cloud system, or a local system. The data layer

uses the Open vSwitch (OVS). OVS is a multi-layer

virtual switch that is Apache certified. These switches are

programmable and support the OpenFlow protocol

Table 2: Environment Information

Name Type / Name

OS Ubuntu 18.04 64bit

CPU Intel® Core™ i7-7700HQ CPU @ 2.80GHz × 3

RAM 8 GB

Simulator Mininet

Switch openvswitch 2.9.2

Controller Floodlight Master

South API OpenFlow1.3

In the control layer, the Floodlight Master controller is

used in the network control section. Floodlight [30] is a

Java-based open-source controller that supports both

OpenFlow physical and virtual switches. This controller is

Apache certified and has good scalability. The Floodlight

Master version supports the architecture of distributed

controllers efficiently. Fig. 8 shows the topology used in

this scenario. One of these hosts is a Simple HTTP Server

for web service that is considered as a victim of a DDoS

attack. Of the other three hosts, one is considered as an

attacker and the other as a normal user.

Fig. 8 Scenario Topology

Syn Flooding attack is used for the test. Scapy was

used on the attacker host to implement this attack. To

generate normal traffic, a shell script is used, which is sent

to the webserver at the same time as the attack traffic.

Journal of Information Systems and Telecommunication, Vol.10, No.2, April-June 2022

127

In this architecture, the whole network can be divided

into several independent domains in terms of geography

and management. In our topology, the whole network is

divided into two domains and each domain is managed by

one controller. This architecture consists of two main

parts:

1) Intra-domain communication, which includes the

main function of the controller, i.e. sending

policies and rules to the switches and receiving

their status through the southbound interface.

2) Inter-domain communication, which includes the

synchronization between the controllers through

the east-west API as shown in Fig. 9.

Controller1:

[o.s.s.i.SyncManager] [1] Updating sync configuration ClusterConfig

[allNodes={1=Node [hostname=127.0.0.1, port=6643, nodeId=

domainId=1], 2=Node [hostname=127.0.0.1, port=6644, nodeId=2,
domainId=2]}, authScheme=NO_AUTH]

[o.s.s.i.SyncManager] [1->2] Synchronizing local state to remote node

Controller2:

[o.s.s.i.SyncManager] [2] Updating sync configuration ClusterConfig
[allNodes={1=Node [hostname=127.0.0.1, port=6643, nodeId=1,

domainId=1], 2=Node [hostname=127.0.0.1, port=6644, nodeId=2,
domainId=2]}, authScheme=NO_AUTH]

[o.s.s.i.SyncManager] [2->1] Synchronizing local state to remote

node]

Fig. 9 Controller Synchronization

4-4- Flow Collection in Experiment

In the proposed method, the attack detection takes place

in the control layer; That is, from the messages sent

between the switch and the controller, abnormal flows

related to the distributed denial-of-service attack must be

identified. The challenge is that not all traffic packets pass

through the control layer of the SDN network. To achieve

this information, the flow entry in the flow table of each

switch is used.
To solve the above challenge, the statistical information

of network flows must be extracted from the messages

exchanged in the OpenFlow protocol. The Floodlight

controller consists of several components. One of these

components is related to the collection of information from

flow tables of network switches. This component sends a

request to the switches at predetermined intervals, and the

switches respond to the flow table information in response.

Determining the amount of time interval, it takes to send a

request is very important. If this time interval is considered

too long, there will be a long delay in detecting the attack

and if considered too short, the number of requests and

responses between the controller and the switches will

increase, increasing overhead. According to the paper [31],

the time interval of the request is considered 3 seconds.

Now, using this information, each controller will have its

domain flow statistic.

4-5- Analysis of Detection Method

The self-organizing map consists of two layers, the input

layer and the neural network layer. The number of neurons

in the neural network layer indicates the number of output

clusters that cluster the training data due to the

unsupervised nature of this algorithm. This mode is useful

when the training data is unlabeled and it is not clear to

which category each input belongs. The data used in this

article are labelled and fall into two general classes:

Benign and DDoS. Therefore, the output of the detection

system must be such that it can eventually map network

neurons into these two classes. For this purpose, in

addition to a self-organizing map, a supervised learning

method called Learning Vector Quantization (LVQ) has

been used. LVQ networks are a special type of competitive

neural network that uses the idea of supervised learning

and their main application is in classifying and recognizing

patterns. This network is the development of a self-

organizing map in a supervised state, and its learning

method is quite similar to a self-organizing map, except

that in LVQ only the winning neurons are moved and

tuned each time, while in the self-organizing map, in

addition to the winning neurons, the neighbouring neurons

also move slightly. When this method is used in

conjunction with a self-organizing map, it does the training

twice, first clustering it unsupervised by the self-

organizing map and then classifying it by learning vector

Quantization. Fig. 10 shows the LVQ-SOM process. In

this figure, from left to right, the first two layers are related

to SOM mapping and the last two layers are related to

LVQ.

Fig. 10 LVQ-SOM [14]

 The characteristics used in LVQ-SOM Learning are

listed in Table 3.

Table 3: LVQ-SOM Parameters

Parameters Value

Learning Rate 0.1

Epoch Limit 1440

Distance Type Euclidean

Rafiee & Shirmarz, Self-Organization Map (SOM) Algorithm for DDoS Attack Detection in Distributed Software…

128

5- Results and Analysis

To train the proposed artificial neural network is done

with a dataset including different types of DDoS attacks as

if it can discriminate varying DDoS types. The DDoS

attacks which have been considered in this paper are SYN,

DNS, LDAP, NTP and UDP attacks. Table 4 shows DDoS

attack types distribution in this dataset. The number of

attacked traffic and normal traffics are balanced in the

training set. In this research, the DDoS attacks are not

discriminated; hence, all DDoS attacks are combined as

DDoS. To improve the training phase, the training set has

been shuffled.

Table 4: DDoS Attacks for Training and Testing

Attack Type # of Flows

SYN 30321

DNS 1985

LDAP 4007

NTP 13479

UDP 1119

 In machine learning methods, evaluation metrics are

divided into two stages; the Training phase and the test

phase. In the training phase, evaluation metrics are used to

optimize the algorithm. In other words, evaluation metrics

are used to select the best solution to increase the

estimation accuracy of the algorithm. While in the test

phase, the evaluation metrics measure the efficiency of the

model created in the classification of new data.

5-1- Evaluation Metrics

 One of the most important evaluation metrics in two-tier

classes is the Confusion Matrix. This matrix is 2 × 2, the

rows of which represent the estimated categories and the

columns of which represent the actual classes. In this

matrix, four variables are defined, which are summarized

in Table 5 as shown below.

Table 5: Evaluation variables

Evaluation

variables
Definition

True Positive (TP) Attack traffic identified as an attack

False Positive (FP) Attack traffic detected as normal

True Negative (TN)
Normal traffic that is identified as
normal

False Negative (FN) Normal traffic identified as an attack

 These variables can be used to derive other evaluation

metrics:

 Accuracy shows the ratio of correct estimates to

the total.

Acc = (10)

 Error Rate that shows the ratio of incorrect

estimates to the total.

Err = (11)

 Precision indicates the ratio of positively estimated

in positive class to total positive class. This

criterion is used when the false positive rate is

significant.

P = (12)

 Recall is the ratio of positively estimated in

positive class to the total number of samples

estimated as positive. This criterion is used when

the false negative is significant.

R = (13)

 F-Measure is the harmonic mean of precision and

recall.

FM = (13)

 Mean Square Error (MSE) is the metric for

evaluating the error of the training step

MSE = (14)

The evaluation metrics are summarized in Table. 6. These

metrics are used to compare our proposed model with the

other similar approach.

Table 6: Evaluation metrics

Evaluation

Metrics
Definition

Accuracy The ratio of correct estimates to the total

Error rate (ER)
The ratio of incorrect estimates to the

total

Precision
The ratio of positively estimated in

positive class to the total positive class

Recall

The ratio of positively estimated in
positive class to the total number of

samples estimated as positive

F-Measure Harmonic Mean of precision and recall

5-2- Performance Evaluation

One of the most important characteristics of neural

networks is the number of neurons. Increasing the number

of neurons does not necessarily increase the accuracy of

the diagnosis. If the number of neurons is more than a

certain limit, they will not improve the accuracy and even

reduce the accuracy. Therefore, the number of neurons

Journal of Information Systems and Telecommunication, Vol.10, No.2, April-June 2022

129

must be selected in such a way as to maximize the

accuracy of the neural network. There is no specific

method or formula for determining the number of neurons

and it can only be obtained experimentally.

The efficiency of the neural network used in the

proposed method has been evaluated with several different

neurons. It started with 100 neurons and continued until

2000 neurons. If the accuracy and error rate metrics are

important, according to the diagrams in Fig. 11 and Fig. 12

of the case where the number of neurons is 1500, the

accuracy of the neural network is 98.86%, which is the

highest compared to other cases. Also, with this number of

neurons, the error rate becomes 1.01%, which is the lowest

error rate. We hope that our research can address some of

the security challenges in SDN.

Fig. 11 Accuracy Rate for Different Number of Neurons

Fig. 12. Error Rate for Different Number of Neurons

If the metrics for precision and recall are important,

according to the diagram in Fig. 13, which is drawn

based on the F-measure, which is the equivalent of the two

metrics for precision and recall, while the number of

neurons is considered to be 1200 will have the most value.

If the value of the precision metric is high, it means that

the flows which are low likely to be attacked are

recognized as normal flows. On the other hand, if the

value of the recall metric is high, it means that a huge

number of the normal flows are recognized as attack

flows.

Fig. 13 F-Measure for Different Number of Neurons

Table 7 shows the evaluation metrics calculated in the

proposed method for the number of different neurons.

Table 7: CICDDoS2019 Datasets Features

Acc Err Precision Recall F-Measure MSE

100 96.27% 3.73% 0.958 0.968 0.963 0.1683

200 97.82% 2.15% 0.973 0.984 0.979 0.1315

300 98.33% 1.64% 0.978 0.99 0.984 0.1134

400 98.43% 1.53% 0.98 0.989 0.985 0.1077

500 98.44% 1.5% 0.98 0.99 0.985 0.107

600 98.55% 1.39% 0.981 0.992 0.986 0.1025

700 98.65% 1.29% 0.984 0.99 0.987 0.099

800 98.71% 1.22% 0.985 0.991 0.988 0.0955

900 98.67% 1.25% 0.982 0.993 0.988 0.097

1000 98.37% 1.19% 0.985 0.997 0.988 0.0952

1100 98.73% 1.18% 0.986 0.991 0.988 0.0938

1200 98.74% 1.15% 0.984 0.993 0.993 0.0935

1300 98.7% 1.18% 0.985 0.991 0.988 0.0944

1400 95.58% 1.29% 0.983 0.991 0.987 0.0972

1500 98.86% 1.01% 0.988 0.991 0.99 0.0884

1600 98.64% 1.22% 0.984 0.992 0.988 0.0944

1700 98.77% 1.09% 0.985 0.993 0.989 0.0912

1800 98.76% 1.11% 0.986 0.992 0.989 0.0909

1900 98.7% 1.14% 0.984 0.993 0.989 0.0922

2000 98.66% 1.19% 0.983 0.993 0.988 0.0933

In order to better display the output of the work, we have

made a comparison with one of the similar works. Nam et

al. in [28] proposed two classification mechanisms to

detect DDoS attacks in SDN with centralized controller

architecture. These mechanisms are SOM + KNN and

SOM with center-distributed classification and the features

are Entropy of source IP, Entropy of source port, Entropy

of destination port, Entropy of packet, protocol and the

Rafiee & Shirmarz, Self-Organization Map (SOM) Algorithm for DDoS Attack Detection in Distributed Software…

130

Total number of packets. In this work, the monitor module

collects the traffic information from the switches and after

processing forward to the Algorithm module. The

algorithm module classifies the network state as normal or

under attack. If the network is under attack, then it

generates an alert to the mitigation module. Then, the

mitigation module generates the new policies and forwards

these decisions to the switches as well as the server.

 Our comparison was evaluated through the Detection

Rate measurement (DR) and the False Alarm rate (FA),

computed using Equations 15 and 16, respectively.

DR = (15)

FA = (16)

 Table. 8 shows the results of our proposed model and

SOM + KNN and SOM with center-distributed

classification.

Table 8: Comparison results

Method DR(%) FA(%)

Proposed model 99.56 0.86

SOM + KNN 98.24 2.14

SOM with center-distributed 97.28 22.36

6- Conclusion

The main idea in this paper is a novel model to detect the

DDoS attack, so a Self-Organizing Map (SOM) has been

used to cluster the traffic datasets according to their

similarity. The model has been designed and evaluated

with the CICDDoS2019 dataset that had been labelled

before. The simulation has been implemented in WEKA

and the results show that the SOM works well with 1500

neurons. According to the labelled CICDDoS2019, the

similarity is about 98.3% which is acceptable. To define

DDoS traffic detection, a novel model has been proposed.

The feature extraction has been done with the PCA method

and trained with the CICDDoS2019 and LVQ. The

proposed DDoS attack detection model has been

developed in the controller that is the main layer of SDN

architecture. The other momentous contribution is that the

proposed model could protect the network from DDoS

attacks with the distributed controllers’ structure. The

DDoS attack detection model has been implemented in the

Floodlight controller in java language using the WEKA

library. The simulation has been done with Mininet as an

SDN emulation. The simulation results indicate that the

proposed model could reach 99.56% accuracy to detect

DDoS attacks while this model has been implemented in

SDN architecture with distributed controllers. The

proposed model has reached an acceptable accuracy, but

the drawback of this model is the time consumption for

clustering the traffics and limited dataset which can be the

future work. The computation time can be considered as

another future work.

References
[1] A. Shirmarz and A. Ghaffari, “An Autonomic Software

Defined Network (SDN) Architecture With Performance

Improvement Considering,” J. Inf. Syst. Telecommun., vol. 8,

no. 2, pp. 1–9, 2020.

[2] A. Shirmarz and A. Ghaffari, “Performance issues and

solutions in SDN-based data center: a survey,” J.

Supercomput., 2020.

[3] A. Shirmarz and A. Ghaffari, “An adaptive greedy flow

routing algorithm for performance improvement in a

software‐ defined network,” Int. Numer. Model. Electron.

networks, Devices, Fields-Wiley online Libr., no. March, pp.

1–21, 2019.

[4] R. Masoudi and A. Ghaffari, “Software defined networks: A

survey,” J. Netw. Comput. Appl., vol. 67, pp. 1–25, 2016.

[5] Z. Zhao et al., “Autonomic communications in software-

driven networks,” IEEE J. Sel. Areas Commun., vol. 35, no.

11, pp. 2431–2445, 2017.

[6] A. Shirmarz and A. Ghaffari, “Taxonomy of controller

placement problem (CPP) optimization in Software Defined

Network (SDN): a survey,” J. Ambient Intell. Humaniz.

Comput., no. 0123456789, 2021.

[7] A. G. Alireza Shirmarz, “Automatic Software Defined

Network (SDN) Performance Management Using TOPSIS

Decision-Making Algorithm,” J. Grid Comput., 2021.

[8] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani,

“Developing realistic distributed denial of service (DDoS)

attack dataset and taxonomy,” Proc. - Int. Carnahan Conf.

Secur. Technol., vol. 2019-Octob, 2019.

[9] T. Cisco and A. Internet, “Cisco Annual Internet Report,”

2020.

[10] “Legal Implications of DDoS Attacks and the Internet of

Things (IoT),” 2016. [Online]. Available:

https://www.dataprotectionreport.com/2016/12/legal-

implications-of-ddos-attacks-and-the-internet-of-things-iot/.

[11] “Defending against Distributed Denial of Service (DDoS)

attacks,” 2020. [Online]. Available:

https://www2.deloitte.com/ca/en/pages/risk/articles/DDoSatt

acks.html.

[12] “UNB Dataset.” [Online]. Available: www . unb . ca / cic /

datasets / ddos - 2019 . html.

[13] Q. Niyaz, W. Sun, and M. Alam, “Impact on SDN Powered

Network Services Under Adversarial Attacks,” Procedia -

Procedia Comput. Sci., vol. 62, no. Scse, pp. 228–235, 2015.

[14] Teuvo Kohonen, The Basic SOM. 2001.

[15] T. V Phan, N. K. Bao, and M. Park, “Author ’ s Accepted

Manuscript Performance Bottleneck Handler for Large-sized

Software- Defined Networks under Flooding Attacks

Reference : Distributed-SOM : A Novel Performance

Bottleneck Handler for Large-sized,” J. Netw. Comput.

Appl., 2017.

[16] Teuvo Kohonen, “The self-organizing map,” in Proceedings

of the IEEE, 1990, pp. 1464–1480.

[17] B. Yuan, D. Zou, S. Yu, H. Jin, W. Qiang, and J. Shen,

“Defending against flow table overloading attack in software-

defined networks,” IEEE Trans. Serv. Comput., vol. 12, no.

2, pp. 231–246, 2019.

Journal of Information Systems and Telecommunication, Vol.10, No.2, April-June 2022

131

[18] M. Clayton, C. Batt, M. Clayton, and C. Batt,

Communications and networking. 2019.

[19] M. Xuanyuan, V. Ramsurrun, and A. Seeam, “Detection and

mitigation of DDoS attacks using conditional entropy in

software-defined networking,” Proc. 11th Int. Conf. Adv.

Comput. ICoAC 2019, pp. 66–71, 2019.

[20] A. Ahalawat, S. S. Dash, A. Panda, and K. S. Babu,

“Entropy Based DDoS Detection and Mitigation in

OpenFlow Enabled SDN,” Proc. - Int. Conf. Vis. Towar.

Emerg. Trends Commun. Networking, ViTECoN 2019, pp.

1–5, 2019.

[21] S. M. Mousavi and M. St-hilaire, “Early Detection of DDoS

Attacks against SDN Controllers,” in International

Conference on Computing, Networking and

Communications, Communications and Information Security

Symposiu, 2015, pp. 77–81.

[22] S. M. S. Mousavi and M. St-Hilaire, “Early Detection of

DDoS Attacks in Software Defined Networks Controller ,”

Thesis , pp. 77–81, 2014.

[23] M. Wang, Y. Lu, and J. Qin, “A dynamic MLP-based

DDoS attack detection method using feature selection and

feedback,” Comput. Secur., vol. 88, p. 101645, 2020.

[24] T. V. Phan, N. K. Bao, and M. Park, “Distributed-SOM: A

novel performance bottleneck handler for large-sized

software-defined networks under flooding attacks,” J. Netw.

Comput. Appl., vol. 91, pp. 14–25, 2017.

[25] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS

flooding attack detection using NOX/OpenFlow,” in

Proceedings - Conference on Local Computer Networks,

LCN, 2010, pp. 408–415.

[26] A. Detection, S. Networking, and S. K. Dey, “Effects of

Machine Learning Approach in Flow-Based,” 2019.

[27] R. Santos, D. Souza, W. Santo, A. Ribeiro, and E. Moreno,

“Machine learning algorithms to detect DDoS attacks in

SDN,” Concurr. Comput. , vol. 32, no. 16, pp. 1–14, 2020.

[28] T. M. Nam et al., “Self-organizing map-based approaches in

DDoS flooding detection using SDN,” Int. Conf. Inf. Netw.,

vol. 2018-Janua, pp. 249–254, 2018.

[29] T. Khalil, “A Survey of Feature Selection and Feature

Extraction Techniques in Machine Learning,” pp. 372–378,

2014.

[30] S. Rowshanrad, V. Abdi, and M. Keshtgari, “Performance

evaluation of SDN controllers: Floodlight and

Opendaylight,” Int. Islam. Univ. Malaysia Eng. J., vol. 17, no.

2, pp. 47–57, 2016.

[31] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS

Flooding Attack Detection Using NOX/ OpenFlow,” in 35th

Annual IEEE Conference on Local Computer Networks,

2010, no. January 2015

