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Abstract  
Hyperspectral image (HSI) classification is an essential means of the analysis of remotely sensed images. Remote sensing 

of natural resources, astronomy, medicine, agriculture, food health, and many other applications are examples of possible 

applications of this technique. Since hyperspectral images contain redundant measurements, it is crucial to identify a subset 

of efficient features for modeling the classes. Kernel-based methods are widely used in this field. In this paper, we 

introduce a new kernel-based method that defines Hyperplane more optimally than previous methods. The presence of 

noise data in many kernel-based HSI classification methods causes changes in boundary samples and, as a result, incorrect 

class hyperplane training. We propose the optimized kernel non-parametric weighted feature extraction for hyperspectral 

image classification. KNWFE is a kernel-based feature extraction method, which has promising results in classifying 

remotely-sensed image data.  However, it does not take the closeness or distance of the data to the target classes. Solving 

the problem, we propose optimized KNWFE, which results in better classification performance. Our extensive experiments 

show that the proposed method improves the accuracy of HSI classification and is superior to the state-of-the-art HIS 

classifiers. 
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1- Introduction 

Hyperspectral image (HSI) classification is widely used 

in many fields such as agriculture, mineralogy [1], 

environmental monitoring, and material analysis [2]. An 

HSI image contains spatial-spectral information, which is 

the visible and near-infrared, and short-wavelength 

infrared spectrum, for different locations in an image plane. 

This image plane is usually obtained by airborne and 

spaceborne spectrometers [3]. These images have many 

spectral bands and complex spatial structures containing 

lots of information. These images typically cover a wide 

spectral range of frequencies. As a result, each pixel vector 

is a highly-detailed spectral representative of each 

captured land cover material. Therefore, since the types of 

materials on the ground are better identified using HSI 

images, they can be used in many applications performed 

via surface analysis. The analysis of HSI involves 

classification. The goal of classification is to assign a 

unique class label to each pixel vector.  

As an example of HSI classification methods, SVM can be 

cited [4]. SVM searches an optimal hyperplane to separate 

the data in a multi-dimensional feature space. Other widely 

used spectral classification methods include k-nearest-

neighbors, maximum likelihood, logistic regression, neural 

networks [5]. To avoid the computational burden and 

increase the classification accuracy, it is recommended to 

use dimensionality reduction techniques [6]. In the past 

several years, many feature extraction and classification 

methods have been presented for hyperspectral data [1], 

[7]. An example of supervised dimensionality reduction is 

linear discriminant analysis[8]. Besides, non-parametric 

weighted feature extraction (NWFE) [9], local joint 

subspace (LJS) detection [4], independent component 

analysis [10], principal component analysis [11], 

superpixelwise PCA [12], and semi-supervised 

discriminant analysis (SDA) [12] are dimensionality 

reduction methods which are considered by the community. 

However, due to the unbalance between the limited 

number of training samples and the high dimensionality of 

data, HSI classification is still a highly challenging task 

[13]. 

In hyperspectral image classification, each pixel is 

labeled with one of the classes based on its features. SVM 

is known as a powerful method in HSI classification [14]. 

Another classifier that is widely used is multinomial 
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logistic regression [15]. This classifier uses the logistic 

function to provide the posterior probability. In [15], an 

ensemble multinomial logistic regression-based method is 

used for HSI classification. An anomalous component 

extraction framework for the detection of hyperspectral 

anomalies based on Independent Component Analysis 

(ICA) and orthogonal subspace imaging (OSP) is proposed 

in [16]. Kernel-based SVM approaches can offer satisfying 

performance in HSI classification. Mountrakis et al. 

showed that using a nonlinear kernel with a local k-nearest 

neighbor adaptation improves the performance of localized 

types of SVM approaches [17]. A regularization method is 

proposed in [18] to address the issue of kernel 

predetermination. The technique identifies kernel structure 

through the analysis of unlabeled samples. H. C. Lee et al. 

proposed an HSI classifier that projects Gabor features of 

the hyperspectral image into the kernel induced space 

through composite kernel technique [1]. Representation-

based methods such as sparse representation are proven to 

be promising in pattern recognition. HSI sparse 

representation classification is based on the assumption 

that pixels belonging to the same class lie in the same 

subspace. It is also applied to HSI classification [19], 

where the representation is performed in a feature space 

induced by a kernel function. Sparse representation 

classification is now a popular method in hyperspectral 

unmixing. Weng et al. used a kernel to map hyperspectral 

data and library atoms to a suitable space to unmix 

hyperspectral information [20]. Sparse representation is 

also used to enhance hyperspectral images [21]. 

Recently, a variety of deep learning-based algorithms has 

shown their promising performance in various applications, 

including HSI classification [22]. Due to the success of 

deep learning in the field of pattern recognition, it has 

attracted many researchers in hyperspectral image 

classification and analysis [23], [24]. In [23], a 

convolutional neural network (CNN) architecture is 

proposed for HSI classification. They proposed a 3-D 

network that uses both spectral and spatial information. To 

effectively process the border areas in the image, it 

implemented a border mirroring strategy. The proposed 

algorithm is implemented on graphical processing units. In 

[24], a simplified deep neural network is proposed. This 

network, which is called MugNet, utilizes the relationship 

between different spectral bands and neighboring pixels. It 

also generates a convolution kernel using a semi-

supervised manner. The application of deep SVM in HSI 

classification is investigated in [25]. Four kernel functions 

were used in that study.  

However, it is commonly necessary to pre-process that 

spectral information to use in HSI analysis. This process 

includes reducing the number of bands using proper 

techniques. In this case, non-parametric weighted feature 

extraction (NWFE) has shown promising results in HSI 

dimension reduction [9]. It is further improved in [26] as 

KNWFE, taking advantage of the kernel method. In this 

paper, we try to improve within and between class 

scattering matrices, correcting data weightings.  

The rest of this paper is organized as follows: Section 2 

overviews the KNWFE method. In Section 3, we propose 

our corrections on the KNWFE followed by the performed 

experiments in Section 4. We conclude in Section 5. 

2- Related Work 

Most of the time, HSIs are not linearly separable. 

Therefore kernel methods are used to project the data into 

a feature space, where the classes are linearly separable. 

The kernel function is a similarity function that 

corresponds to an inner product in some expanded feature 

space. Some popular kernel functions are linear kernel, 

polynomial kernel and gaussian radial-basis-function (RBF) 

kernel. 

The proposed algorithm is a nonlinear kernel-mode 

based on the nonparametric weighted feature extraction 

(NWFE) method [26]. NWFE is a nonparametric method 

for high-dimensional multi-class pattern recognition 

problems. This algorithm is based on a non-parametric 

expression of the scatter matrix. The steps of this 

algorithm are to first calculate the Euclidean distance 

between each sample pair and place it in a matrix called 

the distance matrix. Then the weights matrix is calculated 

using the distance matrix. The weighted mean matrix is 

then calculated by putting different weights on every 

sample. Then, the distance between samples and their 

weighted means is calculated, as their closeness to the 

boundary. Finally, nonparametric between-class and 

within-class scatter matrices are defined, to put large 

weights on the samples close to the boundary and 

deemphasize samples far from the boundary. These 

matrices are defined respectively as [26]: 
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Despite that NWFE has better performance than LDA, it 

is still linear. The KNWFE method, a kernel-based 

nonlinear version of the NWFE, is presented to derive the 

non-Gaussian data feature [26]. In this method,   
( )

 in the 

scatter matrices is replaced by  (  
( )), where  ( ) is a 

kernel function. 

2-1- Kernel Nonparametric Weighted Feature 

Extraction 

The strategy of kernel-based methods is to map data 

from the original space to a higher-dimensional Hilbert 

space, where the data are expected to be more separable in 

this space. The kernel is an N×N matrix, where N is the 

total number of samples. In KNWFE, a weight matrix is 

firstly defined, based on data. 
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Where   represents a datum,          ,          ,   

is the number of classes,  (   ) is a part of kernel matrix,  , 

and  (   )  which is shown in (2). Matrix  (   ) , is then 

defined as in (3) which is used in the process [26]. 
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Where    
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 is defined in (4), and   and    are total 

number of data, and number of data in class  , respectively. 
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To obtain a transformation matrix, it is firstly needed to 

calculate the two matrices W and B (equations (5)-(12)). 
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In the above equations,    is the probability of i
th

 class. 

The following steps are taken to obtain the transformation 

matrix (A) [26]. 

If the transformation matrix is derived according to 

Fisher's relationship as follows (Equation (13)), then it is 

necessary to use the decomposition of the eigenvalue and 

eigenvector to obtain P and U: 

     (13) 

Where P is the eigenvector of the kernel matrix and U is 

the eigenvector of equation (15). These eigenvectors are 

arranged based on the highest eigenvalues, and the 

eigenvector whose eigenvalues are zero or close to zero is 

eliminated. 

       (14) 

 

(   (   )  )   (      )  (15) 

Then, the transformation equation will be: 

    [
 (    )
 

 (    )
] (16) 

 

As a result of Equation (1), the KNWFE algorithm 

assigns greater weights to the samples close to the center 

of the class, in contrary to the boundary samples. 

Meanwhile, as it is illustrated in Fig. 1 the boundary 

samples are more determinant than samples close to the 

center of the class. Furthermore, this method does not 

differentiate between classes that are close to each other, 

and far apart in the production of the between-class 

scattering matrix. Whiles, it can have a significant effect 

on determining the final weight of the sample. The 

following is a description of the proposed method for 

solving the problems of this algorithm. 
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3- Optimized KNWFE 

To solve the first problem of assigning more weight to 

data close to the center of the class, we use a function with 

Rayleigh distribution. In such a way, we pass the 

scattering matrix elements through this function and give 

higher weights to the samples near the class boundary. We 

then discard twenty percent of the samples in each class to 

prevent high weight assignment to outliers. The proposed 

formulations are also designed so that they take into 

account the distance of classes. 

We define the weights   
(   )

 corresponding to   
(   )

 and 

another matrix   
   (   )

 so that   
   (   )

 are unnormalized 

weights of   
(   )

, and then we will have: 
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where i and j are indices of i
th
 and j

th
 classes,   is the index 

of the datum, and    is the total number of data in the 

class. 
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First, it is needed to modify   
(   )

, which is the 

membership degree of each data in its class, as follows. In 

this case, the more the data is away from the center of the 

class (boundary data), it will gain more weight.  
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The following equation (similar to the Rayleigh 

distribution function) is used to weaken the effect of 

distorted and noisy data and remove them from the data set. 

In this case, we must apply this relation to the entire 

matrix of   
(   )
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The value of   is the percentage of noisy data deletion. 

We chose this so that to consider 20% of the data of each 

class as offset data. That is, due to the above relationship, 

20 percent of the data in a class will be weighed less and 

will be considered as noisy data and will not be known as 

boundary data. We apply the relation to the total weight of 

  
   (   )

. Dividing by 0.606, we normalized those weights: 
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The final weights of the data for the within-class and 

between-class values will be as follows: 
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where the   parameter increases the effect of non-

normalized weights on the total weights. 
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We then normalize equations (22) and (23) and obtain 

equations (24) and (25). Multiplying the two terms, we can 

change the weight between the terms, by raising one of the 

terms to the power of  . One may change the power   to 

increase the effect of   
   (   )

. Thus, the weights   
(   )

 and 

  
(   )

 are replaced in the original algorithm and improve 

the results. The next steps are similar to the original 

algorithm to obtain the conversion matrix. 
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Superpixel segmentation algorithms were used along 

with the proposed kernel to increase the efficiency of the 

classification system [27]. This algorithm segments the 

HSI into a large number of superpixels. A superpixel 

consists of a combination of many contiguous pixels that 

have similar properties. Due to a large number of HSI 

bands, direct segmentation is not possible. Hence, we 

reduce the dimensionality using the proposed combined 

non-parametric kernel (CNPK) and classify it using SVM.  

Fig. 1. The importance of boundary s in SVM classification 
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4- Experiments 

We used three sets of HSI to evaluate the effectiveness 

of the proposed OKNWFE. The first set is taken from a 

forest-agricultural area in the northeast of the Indiana state, 

using the AVIRIS sensor in 1992. This image has a 220 

band and 145×145 pixels. The dataset has 16 different 

classes and 10366 samples. Due to the absorption of 

radiations by the atmosphere, some of the bands are highly 

noisy and do not contain reliable information. Therefore, 

we reject the 30 noisy bands to improve the classification. 

The secondary data belongs to an area at Pavia University. 

This image is of size 610×340 and the high resolution of 

1.3 meters per pixel in each band. The remaining number 

of channels after removing the noisy bands is 103, with a 

spectral range of 0.43 to 0.86 micrometers. This data 

includes nine different classes which are: Asphalt, 

meadows, gravel, trees, metal sheets, bare soil, bitumen, 

brick blocks, and shadows [3]. The third data belongs to 

the Pavia urban area, which is a 115 dimensional and 

1096×715 pixel image. Removing the noisy bands, 102 

bands remained for the image. This data includes nine 

different classes, which are water, trees, asphalt, brick 

blocks, bitumen, tiles, shadows, meadows, and soils. 

 
 

 
 

4-1- Parameter Setting 

As in [26], we used 8 of 16 classes in AVIRIS data to 

evaluate the baseline and the proposed method. The 

simulation time for the AVIRIS data and the KNWFE 

method was 43 minutes, and for the OKNWFE method it 

was 57 minutes; for the data of the Pavia University and 

the KNWFE 82 minutes; for the 108-minute OKNWFE 

method, for the Pavia urban area data and the KNWFE 

method, 104 minutes, for the method OKNWFE is 130 

minutes. The experiments were carried out using Core i5 

3210M CPU and 6GB of RAM under the plate of 

MATLAB. Selected classes are, Corn-no till, Corn-min till, 

grass, Hay-windrowed, Soybeans-notill, Soybeans-min till, 

Soybeans-clean till and Woods, which are labeled class1 

through class8 respectively. One thousand samples were 

used for each class of PAVIA urban area data. For each of 

the three datasets of each class, 300 samples were used to 

obtain the transformation matrix using the algorithm, and 

350 samples were used to learn the SVM classifier. Since 

training data are randomly selected to train the classifier, 

5-fold cross-validation is used to improve predictive 

performance. The Gaussian kernel sigma value variations 

are set at {0.02, 0.2, 2, 20, ..., 2000} for the OKNWFE 

method and {0.02, 0.2, 2, ..., 220} for KNWFE. The range 

of variations of the Gaussian kernel sigma value of the 

SVM class for both OKNWFE and KNWFE methods is 

{0.2, 2, 20, ..., 200}. Also, the range of variations of C 

value for both OKNWFE and KNWFE is {0.1, 1, 10, 100, 

10
3
, …, 10

6
}. The number of neighbors in the k-NN is also 

{1, 3, 5, 7, 9, 11}, and the range of Minkowski distance 

order changes is {2, 3, 4, 5}. We have randomly test 

values of the   of the Gaussian kernel for both the 

proposed OKNWFE and KNWFE. In the classification 

experiments, the best empirical values of   are used (Table 

I &Table II). 

 

 

Table I. The best-tuned used for OKNWFE and KNWFE for the 
AVIRIS dataset 

Method OKNWFE KNWFE 

Kernel type Gaussian Gaussian 

Value of 𝜎 6.6 0.5 

SVM kernel type Gaussian Gaussian 

SVM kernel width 20 20 

Value of C 520000 500000 

Number of k in k-NN 7 7 

Distance type Minkowski Minkowski 

Order 3 3 

 

Table II. The best-tuned parameters for the optimized KNWFE and 

the KNWFE for the Pavia University Dataset 

Method OKNWFE KNWFE 

Kernel type Gaussian Gaussian 

Value of 𝜎 2000 220 

SVM kernel type Gaussian Gaussian 

SVM kernel width 20 20 

Value of C 10000 10000 

Number of k in k-NN 7 7 

Distance type Minkowski Minkowski 

Order 3 3 

 

Table III. The best-tuned parameters for the optimized KNWFE 
and KNWFE for the Pavia urban area data set 

Method OKNWFE KNWFE 

Kernel type Gaussian Gaussian 

Value of 𝜎 1300 2 

SVM kernel type Gaussian Gaussian 

SVM kernel width 20 20 

Value of C 10000 10000 

Number of k in k-NN 7 9 

Distance type Minkowski Minkowski 

Order 3 3 

 

Table IV. The results obtained from the optimized KNWFE 
simulation and KNWFE for AVIRIS data 

Criterions 
Overall 

Accuracy (%) 

Average 

accuracy (%) 

Kappa 

coefficient 

Classifier SVM 
k-

NN 
SVM 

k-

NN 
SVM k-NN 

OKNWFE 87.04 82.15 90.36 86.58 0.8462 0.7889 

KNWFE 79.49 76.08 81.57 81.36 0.7569 0.7184 
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Table I shows the empirically determined parameters for 

KNWFE and the proposed OKNWFE methods for the 

AVIRIS dataset. Conducting experiments on the AVIRIS 

dataset, it is empirically determined that the optimum 

value of σ for the Gaussian KNWFE is 0.5, while it is 6.6 

for the Gaussian OKNWFE, and the value of C is 500,000 

and 520,000 for KNWFE and OKNWFE respectively. The 

rest of the parameters are the same for both methods. 

 

 

 

 

 
Table III depicts that we empirically choose the value of 

1300 and 2 for σ of OKNWFE and KNWFE, respectively. 

We also determine the number of K in KNN as 6 for 

OKNWFE and 9 for KNWFE. Table VI show the simulation 

results of both KNWFE and OKNWFE on all the three 

datasets. Table VI and Table VII how the SVM and k-NN 

classification accuracy on the AVIRIS data. 

 

 
 

Table V. The results obtained from the optimized KNWFE 
simulation and KNWFE for data from the University of Pavia 

Criterions 
Overall 

Accuracy (%) 

Average 

accuracy (%) 

Kappa 

coefficient 

Classifier SVM k-NN SVM k-NN SVM k-NN 

OKNWFE 88.73 81.10 91.86 87.26 0.8542 0.7585 

KNWFE 83.88 71.08 88.45 78.12 0.7923 0.6254 

 

Table VI. The classification accuracy of each class of AVIRIS 

data using the SVM for both methods (%) 

Class 1 2 3 4 

OKNWFE 83.12 88.12 95.97 100 

KNWFE 71.96 72.06 72.63 98.97 

Class 5 6 7 8 

OKNWFE 90.59 78.11 93.15 93.81 

KNWFE 89.56 71.88 81.59 93.89 

 

Table VII. The classification accuracy of each class of AVIRIS 

data using the k-NN for both methods (%) 

Class 1 2 3 4 

OKNWFE 73.01 81.53 95.77 99.59 

KNWFE 59.55 73.86 94.56 99.79 

Class 5 6 7 8 

OKNWFE 89.87 72.24 90.71 89.95 

KNWFE 85.95 66.73 83.87 86.55 

 

Table VIII. The confusion matrix of AVIRIS data classification using the 

OKNWFE and SVM classifier 

Class 1 2 3 4 5 6 7 8 

1 1192 14 3 1 71 97 55 1 

2 16 735 0 0 6 32 45 0 

3 1 0 447 2 1 1 2 13 

4 0 0 0 489 0 0 0 0 

5 21 6 5 0 877 39 20 0 

6 181 122 12 5 123 1928 97 0 

7 14 12 3 0 6 7 572 0 

8 0 0 74 6 0 0 0 1214 

 

Table IX. The confusion matrix of AVIRIS data classification using the 
KNWFE and SVM classifier 

Class 1 2 3 4 5 6 7 8 

1 1032 79 4 0 114 105 100 0 

2 52 601 2 1 11 86 81 0 

3 0 0 361 1 0 0 2 133 

4 0 0 4 484 0 0 0 1 

5 36 4 6 0 867 28 27 0 

6 237 135 20 4 177 1774 116 5 

7 36 29 6 0 16 24 501 2 

8 0 0 79 0 0 0 0 1215 
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Feature dimention

OKNWFE

Fig. 2. Hugh diagram for OKNWFE and KNWFE using 

Fig. 3. OKNWFE classification map using SVM classification 

for the AVIRIS data 
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4-2- Dispersion Map Analysis 

To prevent the same results from being exceeded, we 

refrain from providing details of the results of other 

datasets. In the following, only the results of the SVM 

classification for the AVIRIS data are given. Table VIII 

and Table IX show the confusion matrices for both 

methods using the SVM classifier on the AVIRIS dataset. 

As the results of the experiments show, the proposed 

method with optimized data weights is superior to the 

KNWFE method. This improvement will come at the 

expense of increased computing. 

The Hugh diagram is shown in Fig. 2. This figure shows 

the classification accuracy concerning the number of 

features. As it is clear from the curve, the accuracy of both 

the methods increases with the number of features until it 

goes to a so-called saturation. This also demonstrates that 

the OKNWFE method can achieve better performance for 

all the number of features. 

 

 
 

Fig. 3 and Fig. 4 represent the classification map, where 

each class represented with a color. Spots on some classes, 

which are more pronounced in the corn-notill class, 

indicate classification errors. As the comparison of the two 

images clearly shows, this error in OKNWFE is far less 

than in KNWFE. Fig. 5 and Fig. 6 show the dispersion 

map for both the methods using SVM classifier on 

AVIRIS data. As it is clear from Fig. 2, with the increase 

in the number of features, the separability of classes 

increases. As the number of features increases, the slope of 

the curve decreases and eventually reaches almost zero. It 

is also clear that the proposed method has more 

classification accuracy than the KNWFE method at each 

step and with the same number of attributes. 

4-3- Experimental  Results and Analysis 

In this paper, we propose a hybrid non-parametric 

optimized kernel method for HSI classification, comparing 

its performance with some of the state-of-the-art methods 

of HSI classification as baseline methods. These methods 

include: SC-MK [28], RMK [29], RPNet [30]. Table X 

compares the performance of the base methods with the 

proposed CNPK method for the PAVIA university 

database.  This table shows the classification efficiency of 

each class as well as the overall performance (OA).  Each 

method was performed ten times using randomly selected 

samples to ensure the generality of the results, and we 

entered the average accuracy for each method in the table. 

The results show that the proposed method is more 

efficient in most classes than other methods. Also, in 

overall performance, the proposed method shows better 

results than all classes. 

Fig. 4. Classification of the KNWFE method map using the 

SVM classification for the AVIRIS data 

Fig. 5. Dispersion map of OKNWFE for the AVIRIS data 

Fig. 6. Dispersion map of the KNWFE method for the AVIRIS 

data 
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The same experiment is performed on the PAVIA urban 

database. Table XI illustrates the classification results for 

this database. 

 

 
 

5- Conclusion and Discussion 

In this paper, we propose a feature extraction method 

that reduces the dimensions of a hyperspectral image so 

that the different segments of the image are better 

distinguishable. The method, which is called OKNWFE, 

results in the improvement of HSI classification. This 

improvement is obtained at the cost of an increase in 

computation complexity. As shown in Table IV to Table VI 

and Fig. 2 to Fig. 6, the OKNWFE method outperforms 

KNWFE. The dispersion map, drawn for the first and 

second characteristics, shows that the OKNWFE method 

provides better separation than the KNWFE method, and 

the classification map shows that the proposed method has 

less error in the classification of classes had. The 

experimental results suggest that the proposed method, in 

combination with the superpixel segmentation algorithms, 

has superior performance to the state-of-the-art systems for 

HIS classification. Based on the results and the proposed 

method, suggestions can be made for future research. As 

future work, one may use this kernel on CNNs for 

classifying hyperspectral images. This kernel can be an 

activation function on CNN. Adapting this kernel to 

achieve an optimal CNN could be the subject of future 

research. The type and number of other layers besides this 

activation function is another subject worth exploring. 

Calculating optimal kernel parameters for kernel-based 

methods using cross-validation is very time-consuming, so 

studying computation reduction methods can be a useful 

study. Besides, one may use synthetic kernels and find 

combination parameters using the classical optimization 

method.  

 

References 
[1] H. Li, H. Zhou, L. Pan, and Q. Du, “Gabor feature-based 

composite kernel method for hyperspectral image 

classification,” vol. 54, no. 10, 2018, doi: 

10.1049/el.2018.0272. 

[2] D. Hong, X. Wu, P. Ghamisi, J. Chanussot, N. Yokoya, and 

X. X. Zhu, “Invariant Attribute Profiles: A Spatial-Frequency 

Joint Feature Extractor for Hyperspectral Image 

Classification,” IEEE Trans. Geosci. Remote Sens., pp. 1–18, 

2020, doi: 10.1109/TGRS.2019.2957251. 

[3] S. Suresh and S. Lal, “A Metaheuristic Framework based 

Automated Spatial-Spectral Graph for Land Cover 

Classification from Multispectral and Hyperspectral Satellite 

Images,” Infrared Phys. Technol., vol. 105, no. January, p. 

103172, 2020, doi: 10.1016/j.infrared.2019.103172. 

[4] P. Xiang et al., “Hyperspectral anomaly detection by local 

joint subspace process and support vector machine,” Int. J. 

Remote Sens., vol. 41, no. 10, pp. 3798–3819, 2020. 

[5] P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza, 

“Advanced spectral classifiers for hyperspectral images: A 

review,” IEEE Geosci. Remote Sens. Mag., vol. 5, no. 1, pp. 

8–32, 2017. 

[6] L. Fang, Z. Liu, and W. Song, “Deep Hashing Neural 

Networks for Hyperspectral,” IEEE Geosci. Remote Sens. 

Lett., vol. PP, pp. 1–5, 2019, doi: 

10.1109/LGRS.2019.2899823. 

[7] E. M. Paoletti, M. J. Haut, J. Plaza, and A. Plaza, 

“Deep&Dense Convolutional Neural Network for 

Hyperspectral Image Classification,” Remote Sens., vol. 10, 

no. 9, pp. 1–21, 2018, doi: 10.3390/rs10091454. 

[8] H. Lee, M. Kim, D. Jeong, S. Delwiche, K. Chao, and B.-K. 

Cho, “Detection of cracks on tomatoes using a hyperspectral 

near-infrared reflectance imaging system,” Sensors, vol. 14, 

no. 10, pp. 18837–18850, 2014. 

[9] B.-C. Kuo and D. A. Landgrebe, “Nonparametric weighted 

feature extraction for classification,” IEEE Trans. Geosci. 

Remote Sens., vol. 42, no. 5, pp. 1096–1105, 2004. 

[10] M. R. Almeida, L. P. L. Logrado, J. J. Zacca, D. N. 

Correa, and R. J. Poppi, “Raman hyperspectral imaging in 

conjunction with independent component analysis as a 

forensic tool for explosive analysis: The case of an ATM 

explosion,” Talanta, vol. 174, pp. 628–632, 2017. 

[11] Z. Chen, J. Jiang, X. Jiang, X. Fang, and Z. Cai, 

“Spectral-spatial feature extraction of hyperspectral images 

based on propagation filter,” Sensors (Switzerland), vol. 18, 

no. 6, pp. 1–16, 2018, doi: 10.3390/s18061978. 

[12] J. Jiang, J. Ma, C. Chen, Z. Wang, Z. Cai, and L. 

Wang, “SuperPCA: A Superpixelwise PCA Approach for 

Table X Classification performance for PAVIA university dataset 
Class name SC-MK RMK RPNet CNPK 

Asphalt 0.8279 0.9821 0.952 0.9709 

Meadows 0.9083 0.9783 0.9663 0.9668 

Gravel 0.9176 0.9588 0.8856 0.9781 

Trees 0.9652 0.905 0.9618 0.9676 

Metal sheets 0.9999 0.9715 0.9634 0.9999 

Bare soil 0.9711 0.9902 0.9088 0.9937 

Bitumen 0.9601 0.9923 0.7825 0.9994 

Bricks 0.9063 0.9731 0.9306 0.9725 

Shadows 0.9682 0.5602 0.8222 0.9927 

OA 0.9361 0.9235 0.9082 0.9824 

 

Table XI Classification performance for PAVIA urban area dataset 
Class name SC-MK RMK RPNet CNPK 

Water 0.9992 0.9739 0.9952 1.0000 

Tree 0.9186 0.8222 0.9008 0.9573 

Asphalt 0.9723 0.9289 0.969 0.9755 

Blocking 

Bricks 
0.9904 0.9771 0.9936 0.9924 

Bitumen 0.9978 0.9573 0.9768 0.9735 

Tiles 0.994 0.9667 0.9618 0.9683 

Shadows 0.9684 0.9752 0.9273 0.9873 

Meadows 0.9831 0.9262 0.948 0.99 

Bare Soil 0.9719 0.8162 0.9765 0.9863 

OA 0.9773 0.9271 0.961 0.9812 

 



    

Journal of Information Systems and Telecommunication, Vol.10, No.2, April-June 2022 

  

 

 

119 

Unsupervised Feature Extraction of Hyperspectral Imagery,” 

IEEE Trans. Geosci. Remote Sens., vol. 56, no. 8, pp. 4581–

4593, Aug. 2018, doi: 10.1109/TGRS.2018.2828029. 

[13] H. Su, S. Member, B. Zhao, Q. Du, P. Du, and S. 

Member, “With Local Correlation Features for Hyperspectral 

Image Classification,” IEEE Trans. Geosci. Remote Sens., 

vol. PP, pp. 1–12, 2018, doi: 10.1109/TGRS.2018.2866190. 

[14] G. Camps-Valls and L. Bruzzone, “Kernel-based 

methods for hyperspectral image classification,” IEEE Trans. 

Geosci. Remote Sens., vol. 43, no. 6, pp. 1351–1362, Jun. 

2005, doi: 10.1109/TGRS.2005.846154. 

[15] M. Khodadadzadeh, P. Ghamisi, C. Contreras, and R. 

Gloaguen, “Subspace Multinomial Logistic Regression 

Ensemble for Classification of Hyperspectral Images,” in 

IGARSS 2018 - 2018 IEEE International Geoscience and 

Remote Sensing Symposium, Jul. 2018, pp. 5740–5743, doi: 

10.1109/IGARSS.2018.8519404. 

[16] S. Song, H. Zhou, J. Zhou, K. Qian, K. Cheng, and Z. 

Zhang, “Hyperspectral anomaly detection based on 

anomalous component extraction framework,” Infrared Phys. 

Technol., vol. 96, pp. 340–350, 2019, doi: 

10.1016/j.infrared.2018.12.008. 

[17] E. Blanzieri and F. Melgani, “Nearest Neighbor 

Classification of Remote Sensing Images With the Maximal 

Margin Principle,” IEEE Trans. Geosci. Remote Sens., vol. 

46, no. 6, pp. 1804–1811, Jun. 2008, doi: 

10.1109/TGRS.2008.916090. 

[18] D. Tuia and G. Camps-Valls, “Semisupervised Remote 

Sensing Image Classification With Cluster Kernels,” IEEE 

Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 224–228, Apr. 

2009, doi: 10.1109/LGRS.2008.2010275. 

[19] Y. Chen, N. M. Nasrabadi, and T. D. Tran, 

“Hyperspectral Image Classification via.pdf,” vol. 51, no. 1, 

pp. 217–231, 2013. 

[20] X. Weng, W. Lei, and X. Ren, “Kernel sparse 

representation for hyperspectral unmixing based on high 

mutual coherence spectral library,” Int. J. Remote Sens., vol. 

41, no. 4, pp. 1286–1301, 2020, doi: 

10.1080/01431161.2019.1666215. 

[21] Y. Xu, Z. Wu, J. Chanussot, and Z. Wei, “Nonlocal 

Patch Tensor Sparse Representation for Hyperspectral Image 

Super-Resolution,” IEEE Trans. Image Process., vol. 28, no. 

6, pp. 3034–3047, 2019, doi: 10.1109/TIP.2019.2893530. 

[22] G. Cheng, Z. Li, J. Han, X. Yao, and L. Guo, 

“Exploring Hierarchical Convolutional Features for 

Hyperspectral Image Classification,” IEEE Trans. Geosci. 

Remote Sens., vol. PP, pp. 1–11, 2018, doi: 

10.1109/TGRS.2018.2841823. 

[23] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, 

“ISPRS Journal of Photogrammetry and Remote Sensing A 

new deep convolutional neural network for fast hyperspectral 

image classification,” ISPRS J. Photogramm. Remote Sens., 

vol. 145, pp. 120–147, 2018, doi: 

10.1016/j.isprsjprs.2017.11.021. 

[24] B. Pan, Z. Shi, and X. Xu, “ISPRS Journal of 

Photogrammetry and Remote Sensing MugNet : Deep 

learning for hyperspectral image classification using limited 

samples,” ISPRS J. Photogramm. Remote Sens., 2017, doi: 

10.1016/j.isprsjprs.2017.11.003. 

[25] O. Okwuashi and C. E. Ndehedehe, “Deep support 

vector machine for hyperspectral image classification,” 

Pattern Recognit., vol. 103, pp. 2–25, 2020, doi: 

10.1016/j.patcog.2020.107298. 

[26] B. C. Kuo, C. H. Li, and J. M. Yang, “Kernel 

nonparametric weighted feature extraction for hyperspectral 

image classification,” IEEE Trans. Geosci. Remote Sens., 

vol. 47, no. 4, pp. 1139–1155, 2009, doi: 

10.1109/TGRS.2008.2008308. 

[27] L. Sun, C. Ma, Y. Chen, H. J. Shim, Z. Wu, and B. 

Jeon, “Adjacent superpixel-based multiscale spatial-spectral 

kernel for hyperspectral classification,” IEEE J. Sel. Top. 

Appl. Earth Obs. Remote Sens., vol. 12, no. 6, pp. 1905–

1919, 2019. 

[28] T. Zhan, L. Sun, Y. Xu, G. Yang, Y. Zhang, and Z. 

Wu, “Hyperspectral classification via superpixel kernel 

learning-based low rank representation,” Remote Sens., vol. 

10, no. 10, p. 1639, 2018. 

[29] J. Liu, Z. Wu, Z. Xiao, and J. Yang, “Region-based 

relaxed multiple kernel collaborative representation for 

hyperspectral image classification,” IEEE Access, vol. 5, pp. 

20921–20933, 2017. 

[30] Y. Xu, B. Du, F. Zhang, and L. Zhang, “Hyperspectral 

image classification via a random patches network,” ISPRS J. 

Photogramm. Remote Sens., vol. 142, pp. 344–357, 2018. 

 


