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Abstract  
An efficient data aggregation approach in wireless sensor networks (WSNs) is to abstract the network data into a model. In 

this regard, regression modeling has been addressed in many studies recently. If the limited characteristics of the sensor 

nodes are omitted from consideration, a common regression technique could be employed after transmitting all the network 

data from the sensor nodes to the fusion center. However, it is not practical nor efferent. To overcome this issue, several 

distributed methods have been proposed in WSNs where the regression problem has been formulated as an optimization 

based data modeling problem. Although they are more energy efficient than the centralized method, the latency and 

prediction accuracy needs to be improved even further. In this paper, a new approach is proposed based on the particle 

swarm optimization (PSO) algorithm. Assuming a clustered network, firstly, the PSO algorithm is employed 

asynchronously to learn the network model of each cluster. In this step, every cluster model is learnt based on the size and 

data pattern of the cluster. Afterwards, the boosting technique is applied to achieve a better accuracy. The experimental 

results show that the proposed asynchronous distributed PSO brings up to 48% reduction in energy consumption. Moreover, 

the boosted model improves the prediction accuracy about 9% on the average. 
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1- Introduction 

In wireless sensor networks (WSNs), keeping massive 

ongoing data is an expensive task due to the limited power 

supply and capacity of the sensor nodes. Moreover, this 

data is expected to be analyzed in order to extract more 

useful information about the phenomenon of interest. In 

this regard, regression modelling has been addressed as an 

efficient approach for abstracting [1], [2] and analyzing the 

network data [3], [4].  

Distributed data and limited characteristics of the sensor 

nodes impose major challenges on performing regression 

over WSNs. A naive simple solution is to gather all the 

network data in the fusion center and obtain the network 

regressor using a well-known technique [5], [6]. Although 

a high accuracy is achieved, a huge data transmission from 

the sensor nodes to the fusion center is needed which 

makes this solution inapplicable, especially when the 

network grows in size.  

To overcome both the communication and the 

computation constraints of the sensor nodes, several  

Learning/optimization algorithms have been proposed in 

many research papers.  

A distributed sub-gradient algorithm with uncoordinated 

dynamic step sizes has been proposed for multi-agent 

convex optimization problems [7]. In this algorithm, each 

agent   can utilize its estimation of the local function value. 

Theoretical analysis show all the agents reach a consensus 

on the optimal solution. The gradient methods have also 

been studied by [8], [9], [10] over a network with 

communication constraints. 

In [11], the information theoretic optimality of the 

distributed learning algorithms has been addressed in 

which each node is given i.i.d. samples and sends an 

abstracted function of the observed samples to a central 

node for decision making. 

The use of machine learning algorithms in clustered WSNs 

has been studied by [12] in order to decrease data 

communications and make use of the features of WSNs. 

Different applications of machine learning algorithms in 
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the context of WSNs has been recently reviewed by [13], 

[14], [15]. 

A kernel regression algorithm has been introduced in [16] 

to predict a signal    defined over the   network nodes 

with a series of   regularly sampled data points. A Laplace 

approximation is proposed to provide a lower bound for 

the marginal out-of-sample prediction uncertainty to 

address the large problems. 

Logistic regression fusion rule (LRFR) has been proposed 

in [17] in which the coefficients of the LRFR is learnt at 

first, and then, it is used to make a global decision about 

the presence/absence of the target.  

In [18], a quantized communication based distributed 

online regression algorithm has been proposed. Also, a 

distributed quantile regression algorithm has been 

proposed by [19], where, each node estimates the global 

parameter vector of a linear regression model by 

employing its local data as well as collaboration with the 

other nodes. Due to the sparsity of numerous natural and 

artificial systems, they have introduced    distributed 

quantile regression algorithm to exploit the sparsity and 

consequently to improve the performance of the method. 

An energy-efficient distributed learning framework has 

been proposed using the quantized signals in the context of 

IoT networks [20], [21]. This is a recursive least-squares 

algorithm that learns the parameters using low-bit 

quantized signals and requires low computational cost.  

Some distributed learning algorithms have also been 

suggested based on linear and polynomial regression 

models [22], [23]. 

On the other hand, several distributed regression models 

have been proposed in WSNs in which the learning 

problem is formulated as an optimization task [24].  To 

solve it, Incremental Gradient (IG) algorithm has been 

proposed in which the parameter to be estimated is 

circulated through the network. Along the way, each 

sensor node adjusts the parameter by performing a sub-

gradient [25] based on its own local data set. Increasing 

the network cycles, the accuracy might be improved. In 

[26], IG has been proposed with the addition of 

quantization technique which can be used in the presence 

of low bandwidth to reduce the bits of transmitted data. In 

[27], a cluster-based version of IG has been developed. It 

brings a better energy efficiency and robustness. 

Incremental Nelder-Mead Simplex (IS) has been proposed 

in [28] and [29] with the addition of boosting and re-

sampling techniques, respectively. They introduce a better 

accuracy and convergence rate. 

In [30] a new evolutionary based approach has been 

proposed based on the PSO algorithm, denoted as 

Distributed PSO (DP). In DP, the network is partitioned 

into a number of clusters, dedicating a swarm of particles 

for which. Then the regressor of each cluster is trained by 

employing PSO algorithm distributively within the cluster. 

The final model is obtained after combining the clusters 

models by the fusion center. This approach obtains a 

model closer to the centralized case, and decreases the 

latency significantly. However, its synchronous processes 

are in contrast with autonomous nature of WSNs. In 

addition, different clusters have their own cluster size and 

data pattern which are not taken into account by DP.  

IVeP [31] is another PSO based distributed approach that 

learns the network regression model using a multi-

objective optimization technique. They employ VEPSO 

model to perform the optimization task through inter- and 

intra-cluster cycles. The results show high prediction 

accuracy with moderate energy consumption. 

In this paper, a modified version of DP algorithm is 

proposed that can simultaneously decrease the 

communication overheads as well as improves the final 

prediction accuracy. Firstly, Asynchronous DP (ADP), has 

been proposed by defining a diversity threshold for the 

particles within each cluster swarm. As a result, each 

cluster regressor is learned regardless of the status of the 

other clusters. Defining diversity thresholds, the number of 

transmissions is reduced. However the final accuracy 

might be decreased on the other hand. In this regard, 

Boosted ADP (BADP) has been introduced which boosts 

the clusters regressors and keeps the overall accuracy in 

high. The proposed algorithms have been compared with 

IG- and IS-based algorithms as well as IVeP and 

centralized approaches in terms of the accuracy, latency, 

and communication cost. The results show that ADP and 

BADP bring the lowest latency. Moreover, thanks to the 

boosting technique, BADP learns a model closer to the 

centralized approach while the communication cost still 

remains considerably acceptable. The contributions of this 

paper are: 

 Asynchronous DP algorithm is proposed in which in-

cluster optimization is performed asynchronously 

based on the size and data patterns of the cluster. While 

this is in accordance to the autonomous operations of 

the sensor networks, it brings more energy efficiency. 

 The obtained model by ADP is boosted to improve the 

overall accuracy even further. Accordingly, Boosted 

ADP algorithm is proposed that obtains a high accurate 

network model and closer to the centralized approach 

with quite acceptable communication requirements. 

 

The rest of this paper is organized as follows. Distributed 

regression problem is formally stated in section 2. The 

proposed approach is introduced in section 3. Evaluation 

and experimental results are discussed in section 4 and the 

last section is concluding remarks. 

2- Distributed Regression in WSNs 

Consider a sensor network with   nodes and 

  measurements per node spatially distributed in an 
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area. Every sensor node is expected to capture the 

phenomenon of interest in pre-defined time intervals 

[32]. Each measurement is stored as a record as: 

                           

 

in which (            ) denotes to the  -th 

node's location,         is epoch number, and      is the 

captured measurement. Now, considering 

  *                   +       
       

 

as the feature space and: 

 

  *    +       
       

 

 

as the labels, the aim of the parametric regression is to 

learn the coefficients of the mapping function      , 

i.e.  , such that the RMS error be minimized: 

 

    ( ( | ))  

√
 

  
∑ ∑ , (                   | )      -

  
   

 
    (1) 

 

Throughout this paper the following assumptions will be 

held: 

 The learning process starts by disseminating a query 

from the fusion center to cluster heads. 

 Every sensor node can localize itself by executing a 

well-knownlocalization algorithm [33], [34]. 

 Since clustering is not the subject of this paper, it is 

assumed that the network is partitioned into   clusters 

via a well know clustering algorithm [35], 

[36], designating a cluster head for each 

cluster,    ,…,   . 

 The member nodes belonging to the cluster   are 

denotes as {   
( )
       

( )
} where    is the size of the 

cluster.  

 The local data set of    
( )
, cluster data  , and global 

network data are denoted as    
( )

,     

 
   

  
*   

( )
+, and        

 *   +, respectively. 

 The   denotes the size of the parameter under estimate. 

Table 1 shows the Nomenclature used in this study. 

 

 

 

 

 

 

 

 

 

Table 1. Nomenclature used in this study. 

Symbol Definition 

  Number of sensor nodes 

  Number of sensor measurements 

  Number of clusters 

    Cluster head j 

   
( )

 Sensor node i in cluster j 

   
( )

 The local data of    
( )

 

    The cluster data j 

   The global(network) data 

   The cluster regression model j 

     The network regression model 

  The feature space 

   The swarm size 

   The problem dimensionality 

 ( ) The diversity of swarm j 

     The dimension d of particle i 

  
 
 The weight of the local repressor of    

( )
 

 

3- The Proposed Approach 

In Algorithm1, the basic idea of DP algorithm [13] has 

been recalled. The ADP is introduced afterwards. In 

summary, DP has the following steps: 

1. Inside each cluster, every sensor node is given a swarm 

of particles to learn the cluster model. To do this, each 

cluster node obtains the model of its local data and 

sends it to other cluster nodes. Then, every cluster node 

employs the received local models to regenerate the 

whole cluster data. Now, every sensor is ready to start 

its local PSO to learn a candidate cluster regressor. 

2. During the in-cluster optimizations, in order to 

guarantee the convergence of different swarms of the 

cluster nodes, the best particles are exchanged inside 

the cluster.  

3. After completing the in-cluster optimization process, 

the cluster models are transmitted from the cluster 

heads to the fusion center. 

4. The final network model is obtained by a weighted 

combination technique. 
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Algorithm 1: Distributed PSO (DP) [13] 

 

Fusion Center disseminates the desired model 

for each cluster   do 

    data_view_unification() 

    parameters_initialization() 

    for   in range 1:            

        for each cluster node i do 

               
 
 runs a local PSO 

                 
 
 sends its best particle to the     

        end for 

            sends the best of the best particles to its members 

    end for 

        sends    and its RMSE to the fusion center 

end for 

The fusion center obtains      by weighted averaging 

 

 

3-1- Asynchronous DP (ADP) 

The major drawback of DP is that the migration steps 

should be synchronized for all clusters. In more words, the 

particles of a particular cluster might be convergedbefore 

the final migration, while more migration steps might be 

required in another cluster. This is because different 

clusters have different data patterns and cluster size. By 

eliminating the extra migrations inside the converged 

clusters, the energy consumption is 

reduced. Furthermore, the synchronized clusters are in 

contrast with the autonomous nature of WSNs. To resolve 

these issues, asynchronous DP (ADP) is introduced in this 

section.  

Attractive and Repulsive PSO, called as ARPSO, is a 

variant of PSO model in which the particles can switch 

between two phases [37], [38]. This approach is based on 

the diversity guided evolutionary algorithm (DGEA) 

developed by [39]. In ARPSO, the particles obey from the 

diversity of the swarm to alternate between an attraction 

and repulsion phases to make a proper exploitation-

exploration tradeoff. Accordingly, the swarm diversity is 

defined as: 

 

         ( ( ))  
 

  
∑ √∑ (    ( )    ̅̅ ̅( ))

   
   

  
   

 (2) 

 

where    is the swarm size,    is the dimensionality of the 

problem, and  ̅̅ ̅ is the average of the dimension   over all 

the particles, i.e.  

 

  ̅̅ ̅( )  
∑     ( )
  
   

  
  (3) 

 

Although ARPSO was originally applied to one 

swarm, nothing prevents its application to sub-swarms 

[40].  

The diversity equation in ARPSO has been adopted in 

ADPfor measuring the diversity of the clusters swarms. In 

cluster  , the diversity is calculated using only the best 

particles received from thecluster nodes: 
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where: 

      ̅̅ ̅̅ ̅̅ ̅̅ ̅( ) = 
∑         

 
( )

  
   

  
  (5) 

 

If the diversity (Eq. 4) be greater than a threshold 

   the in-cluster optimization is stopped, and the cluster 

regressor is transmitted to the fusion center as well as the 

corresponding RMS error. The final model is obtained by 

the fusion center similar to the idea proposed in DP

algorithm. The steps of ADP is shown in Algorithm 2.  

3-2- Boosted ADP (BADP) 

Defining smaller thresholds, the quality of the clusters 

models are expected to be increased in ADP 

algorithm. However, it brings more communication 

cost. In this regard, in order to keep both energy efficiency 

and high accuracy, a boosting technique is applied on ADP 

inspiring from [28]. In Boosted ADP (BADP) 

algorithm, firstly, the clusters regressors are obtained 

using a diversity threshold, as explained in 

ADP. Then, each cluster model is boosted before 

transmitting to the fusion center. To do this, within the 

cluster  , the cluster head broadcasts the final obtained 

regressor and the size of the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

Journal of Information Systems and Telecommunication, Vol.10, No.4, October-December 2022 

  

 

 

263 

Algorithm 2: Asynchronous PSO (ADP) 

 

Fusion Center disseminates the desired model 

for each cluster   do 

    data_view_unification() 

    parameters_initialization() 

    for each cluster node i do 

            
 
 runs a local PSO 

             
 
 sends its best particle to the     

    end for 

        calculates the cluster diversity, i.e. Eq. 4 

    if the diversity is larger than   then 

            sends the best of the best particles to its members  

    else 

            sends    and its RMSE to the fusion center 

    end if 

end for 

The fusion center obtains      by weighted averaging 

 

 

cluster data to its member nodes. Each member node, e.g. 

  
 
 ,tests the cluster model on its own local data set and 

calculates a partial weight for it,   
 
 .Afterwards, a new 

learner,   
 
, is trained over data points labeled incorrectly 

by the cluster model [28]. Similarly, the new learner is test 

over the local data set and a local weight is computed [11]: 

 

  
 
 

                              

|   |
 (6) 

 

The new learner acts as a weak learner when applying on 

the cluster data, as ithas been trained over a small data set. 

So, it should be combined with the new leaners obtained 

by the other cluster nodes to build a second stronger 

regressor. For this pupose,   
 
 sends   

 
   

 
 as well as   

 
  

to the cluster head. The cluster head aggregates the 

received partial weights to compute the weight of its 

regressor,   . Now, a new boosted cluster model is 

obtained as: 

 

  
              ∑   

 
   

   
   

  (7) 

 

The last step is to calculate the in-cluster RMS error of the 

new boosted modelusing the cluster data as explained in 

ADP algorithm. Finally, the boosted model and its RMS 

error are sent to the fusion center, and the global model is 

obtained. Algorithm 3 describesthe steps of BADP 

algorithm. Although the computational complexity has not 

been found as a major concern in WSNs, we can provide 

an estimation of the computational complexity for a single  

 

Algorithm 3: Boosted ADP (BADP) 

 

Fusion Center disseminates the desired model 

for each cluster   do 

    data_view_unification() 

    parameters_initialization() 

    for each cluster node i do 

            
 
 runs a local PSO 

             
 
 sends its best particle to the     

    end for 

        calculates the cluster diversity, i.e. Eq. 4 

    if the diversity is larger than   then 

            sends the best of the best particles to its members  

    else 

            sends    and the cluster data size to its members 

        for each cluster node   do 

               
 
 tests   

    on    
 
 and obtains two data  

                                   partitions as         
 

 and          
 

  

               
 
 computes   

 
, the partial weight of   

    

                
 
 runs a local PSO over          

 
 to learn    

 
 

               
 
 computes   

 
, the weight of   

 
 as Eq. 6. 

               
 
 sends   

 
   

 
 and   

 
 to     

         end for 

             computes    using *  
 
+
   

  
 

             computes its final regressor   
        as Eq. 7 

             sends    and its RMSE to the fusion center  

    end if 

end for 

The fusion center obtains      by weighted averaging 

 

  

sensor node belonging to the cluster j in DP, ADP, and 

BADP algorithms. For DP algorithm we have: 

 (  )   (                           )  

   (              ) 

where: 

 

 (                       )    (         )    (  ) 
 

in which  (         ) denotes the computational time of 

running the PSO algorithm over the cluster data by the 

sensor node and O(  ) is the required time for resampling 

of m measurements using a k-parameters data model and: 

 

 (              )    (    (         )) 

 

where M denotes the number of migration steps. Similarly, 

for ADP and BADP algorithms we have: 
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 (   )     (         )     (  )     (   

  (         )) 
where    is the required migration steps for the 

corresponding cluster j and: 

 

 (    )     (         )     (  )     (    

  (         ))  
                             (                               ) 

 

Totally, the computational time complexity of a sensor 

node in DP algorithm could be simplified as: 

 

T(DP) =  (   (         )) +  (  ) 
 

and for ADP and BADP we would have: 

 

T(ADP) = T(BADP) =  (    (         )) +  (  ) 

4- Evaluation and Results 

The proposed algorithms have been compared with their

distributed counterparts, IG, IS, BIS, IS-Resampling, IVeP 

and the centralized approach. In all of these algorithms, 

the learning problem is formulated as an optimization task, 

as discussed in Section 2. Two datasets have been used for 

comparison. In the first one, Berkeley Intel Lab network 

[41], there are 54 sensor nodes with two corrupted 

ones. Mica2Dot sensors with weather boards capture 

humidity, light, voltage, and temperature in every 31 

seconds. As mentioned before, regression modeling 

has been performed only over temperature readings. Two 

portions ofthe network data, named as DS1 and DS2, have 

been chosen such thateach sensor node has 100 and 2880 

(measuring for one day) data points, respectively. So, the 

global data,   , has 5200 and 149760 data points in 

total, respectively. The second network, denoted as DS3, is 

an artificial network with 100 sensors distributed 

uniformly over a square of 100   . Each sensor has 

collected a dataset of size 200. The phenomenon under 

study, temperature, is sensed in each epoch from 1 to 

200. This data is generated using Eq. (8) with an additive 

Gaussian noise of mean 0 and variance 1,  (   )  The 

coefficients of the model are randomly chosen in the range 

of (-10, 10).  

Ten Fold Cross Validation method (10-CV) has been 

adopted for each approach. In 10-CV, the data set is 

divided into 10 partitions for 10 times. Each time, one of 

the partitions is used as the test data and the learning will 

be executed with the remaining parts. Finally, the 

average results will be found. In [42], some polynomial 

models have been suggestedfor the Berkeley network data 

set. It was reported that a linear space and quadratic time 

model can be fitted more accurately. Accordingly, in order 

to fit a model on the network data, a spatiotemporal model 

with linear in space and quadratic in time has been chosen 

as: 

    (              | )
                      

           

(8) 

where the node location (         ) and epoch number 

(     ) introduce the feature set while the captured 

temperature per epoch is the label. Therefore, the proposed 

approach aims to learn the coefficients  of a set of basis 

functions as *                      +. Accordingly, the 

RMS error could be calculated as: 

 

    (    ( | ))

 √
 

  
∑∑

,                 

         
                 -

  

   

 

   

 

      (9) 

In order to have a good exploration-exploitation 

tradeoff, the inertia weight,  ,is usually decreased during 

the time as [43]: 

 

 ( )        
    

  
(         )  (10) 

where    is the maximum number of iterations and   

denotesto the current iteration number. The particles starts 

with a maximum value      and linearly decrease their 

inertia weights to a pre-defined minimum value     .  

As the problem addressed in this study is a data-centric 

application, the discrete-event simulators are not required. 

Accordingly, all the algorithms have been implemented 

with Java using Eclipse IDE and the experiments were 

performed on an Intel dual core processor with 4 GB RAM 

memory.  

4-1- Prediction Accuracy 

The prediction accuracy of different approaches have been 

shown in Table 2. As all the data points are available 

for the centralized approach, a good accuracy is achieved 

at the end of the learning process. In practice, IG suffers 

from a low convergence rate and requires to pass several 

cycles in order to obtain an average accuracy. In our 

experiments, the accuracy of IG has been obtained through 

40 cycles. While IS based approaches obtain better results 

within one network cycle. 

In ADP, thanks to ( ) learning several candidate models 

and (  ) the high accuracy of each cluster model, a good 

accuracy is achieved. However, integrating the boosting 

technique with the ADP algorithm leads the final accuracy 

becomes much closer to the centralized case and 

consequently BADP outperforms its 

distributed counterparts in most cases. Moreover, BADP 
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shows more stable accuracies in both networks rather than 

the other methods. This indicates how the boosted  

 
Table 2. The final RMS error of different approaches based on each 

data set. 

 
 

Table 3. The RMSE comparison of BADP algorithm with [44]. 

 

Algorithm RMSE 

BADP 2.917 

[44]-LG 

[44]-PV 

[44]-UV 

[44]-RA 

      

      

      

      

 

regressor can accurately predict those parts of the 

phenomena that labeled inaccurately by the first learner.  

The prediction accuracy of the BADP has also been 

compared with the reported results of [44] where a multi-

objective sensor placement algorithm has been proposed. 

The performance of the state estimation of the temperature 

measurements has been evaluated based on the RMSE. As 

shown in Table 3, the proposed BADP could obtain better 

or completely close prediction accuracy compared to [44] 

which is not a distributed algorithm. 

In Figure 1, the convergence rate of different cluster 

swarms have been depicted based on threedata sets. As it 

is expected, some cluster swarms converge faster than the 

other ones due to their size and data patterns. As a 

result, lesser in-cluster communications would be 

required. To show how the swarms diversity could 

decrease the energy consumption, 5 diversity thresholds 

have been definedfor each dataset and shown in Table 4.  

The prediction accuracy using each defined diversity 

threshold has been demonstrated in Figure 2 along with 

the corresponding amount of energy saving in comparison 

with the DP algorithm. It is concluded from the Figure 

2 that the energy consumption of DP algorithm could be 

decreased up to %48 by the proposed approach while the 

final RMSE is quite high. As it was shown, by using more 

tight diversity thresholds, the final prediction accuracy is 

increased. However, a trade-off should be made between 

the energy consumption and the prediction accuracyusing 

diversity thresholds. It should be noticed that the reported 

results in Table 1 are based on   . 

Table 4. Swarms diversity thresholds 

 
 

 

 

 
(a) Dataset 1 

 
(b) Dataset 2 

 
(c) Dataset 3 

Figure 1.Theconvergencerateofdifferentclusters’swarm 

4-2- Latency 

Regarding to the ongoing sensor measurements, the 

network model is valuable for some pre-specified periods 

of time. Thus, when the measurements is refreshed, it is 

required to train the regression model with the new

network data. In this regard, the required time to rebuild 

the model is important, known as the latency metric: the  
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Figure 2. The impact of varying swarms diversity thresholds on 

the energy consumption. 

 

number of iterations to visit all the network data for the 

first time [27]. The latency of different approaches has 

been compared in Table 5. 

The centralized approach just needs one iteration to visit 

the whole network data, and so, its latency is  ( ). In IG 

and IS based approaches, the latency is  ( ), as they need  

one network cycle to get access to the network data. In 

IVeP algorithm, one in-cluster cycle is required and thus 

its latency is  (  )  where    is the size of the largest 

cluster. If we let the number of clusters equals to √ , then 

the latency of IVeP would be  (√ ) . In ADP and 

BADP, the training process is started synchronously in all  

clusters. Consequently the latency would be the same as 

the centralized method, i.e.  ( ). 

4-3- Communication Cost 

Bit/meter metric has been used for comparing the 

communication requirements of the 

approaches. According to [24], assume the network 

has been deployed in a unit square area. Having the 

size and average distance of each 

transmission, the communication requirements of 

each approach can be evaluated. Every transmission 

in all the studied approaches falls in one of the 

following transmission types and the corresponding 

average distance can be achieved similar to [24]: 

cluster node - cluster node:  
 

 

 

 

 

 

 

Table 5. Latency comparison 

Algorithm Latency 

IG  ( ) 
IS  ( ) 

BIS  ( ) 
IS-Resampling  ( ) 

IVeP  (√ ) 
ADP  ( ) 

BADP  ( ) 
Centralized  ( ) 

 

    (√       ) 
cluster head - cluster head:  

    (√    √  √ ) 

sensor node - fusion center:  

    ( ) 
cluster head - cluster node:  

    (  √ ) 
cluster head - fusion center:  

    (  √ ) 
 

The size of the parameter(s) transmitted between two 

consecutive sensors in IG and IS based approaches 

are as follows: 

 In IG algorithm, a double vector of size   is 

transmitted [24]. 

 In IS algorithm and the first pass of BIS, |   | 
(an integer of size 1) and a double vector of size   

are transmitted [28]. 

 In the second pass of BIS, three parameter 

transmissions are happened: the partial weight of 

the learned regressor (a double value), the size of 

the global data, |  |  (an integer of size 

1), and the partial weighted combination of local 

regressors which is a double vector of size    
 In IS-Resampling algorithm, a double vector of 

size   and a double vector of size 2 

(           ) are transmitted.  

In the centralized approach,   data values are 

transmitted between a sensor node and the fusion

center. Thus,   transmissions of size   would be 

required. As each data point in our experiments 

contains three features with a label, we have    . 
The communication requirements of the ADP 

algorithm is similar to DP. Firstly, a parameter of 

size   is transmitted from the cluster nodes to cluster  
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Table 6. Types and size of transmissions of different approaches 

 
 

Table 7. Comparing the communication order. Without loss of generality, 

we follow [27] and let   √  and   denotes the average number of 

iterations in ADP and BADP algorithms. 

 

 
 

 

head, and vice versa. Then, a driver message by size 

of 2    is transmitted from the cluster head to the 

members. Afterwards, during the in-cluster 

optimization,  the best particle of each cluster node 

by size of    with an RMS error of size 1, and the 

best of thebest particles by size of    are transmitted 

between the cluster head and the cluster members at 

each migration step. Then, each cluster node sends its 

regressor with the corresponding RMS error to the 

cluster head by size of  +1. Finally, each cluster head 

sends the obtained cluster model with its RMS error 

by size of     to the fusion center. In BADP 

algorithm, every cluster node transmits an extra 

parameter of size      new learner plus its partial 

weight, to the cluster head. In Table 6, the parameter 

transmissions of all approaches have been 

summarized based on transmission size and type. For 

IVeP algorithm, the communication cost analysis is 

recalled from [31]. Accordingly, the total 

communication cost of different approaches are 

obtained as shown in Table 7. 

In this regard, the communication cost of the 

centralized approach is the highest due to a huge data 

transmission. As mentioned before, IG practically 

needs to meet a large number of cycles to obtain an 

average accuracy. As a result, its energy 

consumption is higher than the other distributed 

approaches while IS has the lowest 

transmissions. From Table 6, it can be understood 

that in-cluster communications consume less energy 

due to a smaller average distance. On the other 

hand, the main part of the transmissions in  ADP as 

well as BADP has been spent in clusters. Thanks to 

this property, ADP and BADP both work moderately

in terms of the energy consumption, as shown in 

Table 7. 

5- Conclusion 

A novel distributed data modeling approach has been 

proposed based on multi-swarm PSO algorithm. In the 

proposed approach, the task of learning the regression 

model of a cluster is assigned to a swarm ofparticles. Each 

swarm executes an in-cluster optimization process to learn 

the cluster regressor asynchronously. The most important 

feature of this approach is that the optimization of each 

swarm is terminatedaccording to the size and data pattern 

of its cluster. This property leads to save up to 48% of 

energy consumption by eliminating extra migration steps 

while the accuracy is high. In order to improve the 

prediction accuracy even further, a boosting technique is 

also employed in a distributed manner. The proposed 

approach has been evaluated against two real and artificial 

network data and compared to common distributed 

regression modeling techniques as well as the centralized 

approach. The results show the boosted model improves 

the prediction accuracy about 9% on the average. Due to 

the recent advances in the sensor nodes technologies, more 

complex machine learning algorithms, such as Deep 

Learning, could be employed to achieve higher prediction 

accuracies in the context of WSNs [45], [46].  
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