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Abstract  
Wireless networks functioning on 4G and 5G technology offer a plethora of options to users in terms of connectivity and 

multimedia content. However, such networks are prone to severe signal attenuation and noise in a number of scenarios. 

Significant research in recent years has consequently focused on establishment of robust and accurate attenuation models to 

estimate channel noise and subsequent signal loss. The identified challenge therefore is to identify or develop accurate 

computationally inexpensive models implementable on available hardware for generation of estimates with low error and 

validate the solutions experimentally. The present work surveys some of the most relevant recent work in this domain, with 

added emphasis on rain attenuation models and machine learning based approaches, and offers a perspective on the 

establishment of a suitable dynamic signal attenuation model for high-speed wireless communication in outdoor as well as 

indoor environments, presenting the performance evaluation of an autoregression-based machine learning model. Multiple 

versions of the model are compared on the basis of root mean square error (RMSE) for different orders of regression 

polynomials to find the best-fit solution. The accuracy of the technique proposed in the paper is then compared in terms of 

RMSE to corresponding moderate and high complexity machine learning techniques implementing adaptive spline 

regression and artificial neural networks respectively. The proposed method is found to be quite accurate with low 

complexity, allowing the method to be practically applicable in multiple scenarios. 
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1- Introduction 

The present era has seen rapid advancement in the field of 

wireless communication technology, with extremely high 

data rates allowing users access to high quality multimedia 

content as well as streaming media services. In particular, 

the advent of 5G technology presents hitherto-unseen 

possibilities in the domain of wireless communication 

services. In such a scenario, reliability and Quality-of-

Service (QoS) are two critical parameters that must be at 

acceptable levels to ensure user satisfaction. 

The viability of 5G wireless communications was 

established in a seminal paper presenting different facets 

of millimeter wave wireless communication technology 

[1]. Corresponding attenuation models for 5G wireless 

communication signals have been reviewed in literature in 

recent times [2][3]. Diverse 5G-based applications have 

been proposed and established, in domains as diverse as 

agriculture [2] and security [4]. In all cases, the 

establishment and use of accurate attenuation models are 

critical to the success of proposed schemes. Other recent 

research establishes the impact of rain on channel noise 

and signal attenuation [5][6]. The present paper reviews 

recent techniques and models employed for estimation of 

rain attenuation, with focus on machine learning based 

approaches. The major contributions of the paper are as 

follows. 

 Extensive review of recent literature documenting 

novel approaches to the problem of estimation of 

wireless communication (especially 5G) signal 

attenuation. 

 Identification of novel solutions based on 

machine learning (ML) approaches, to improve 

model accuracy. 

 Proposal of an adaptive autoregression-based 

estimation model to achieve suitably low root 

mean square error (RMSE) at low computational 

complexity, compared to other ML and non-ML-

based techniques. 

 Verification of effectiveness of proposed model 

through real-world experiments in low, moderate 

and high mobility scenarios. 

 

The rest of the paper is organized in the following manner. 

Section 2 presents a survey of recent literature in the 

domain of attenuation modelling and estimation of 

wireless communication signals, with significant emphasis 
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on machine learning based techniques employed. Section 3 

presents the inferences drawn from the previous section 

and offers a basic conception of dynamic modelling which 

can help in improvement of the accuracy of estimation. 

Section 4 concludes the paper. 

2- Literature Survey 

The possibility of widespread commercial wireless 

communication in the millimeter wave bands has been 

explored some years back in a seminal work [1]. The 

challenges faced by wireless networks (up to 4G networks) 

have been extensively highlighted here, as well as the 

corresponding benefits offered by millimeter wave 

networks [1]. Following this paper and others in the same 

vein, extensive examination of attenuation models for 5G 

wireless signals have been carried out in recent years, due 

to noise and attenuation being critical limiting factors in 

the efficacy of modern wireless communication networks 

[2]. 

2-1- Attenuation Models 

A number of established channel models have been 

examined in [2] in the context of their suitability for 

modelling the propagation of millimeter wave 

communication signals of a wide range of frequencies 

through free space. The authors in [2] have made 

extremely important contributions to the field by 

examining propagation of signals below 6 GHz as well as 

at 28 GHz and above, which are relevant for different 

classes of 5G communication networks. 5G D2D 

communications have been extensively surveyed in [3], 

and the benchmark measures for various aspects of such 

communication networks have been discussed here, 

inclusive of specific attenuation models for D2D networks. 

Heterogeneous access scenarios for 5G D2D networks 

have been examined in [4], with the models employed 

linking to the security aspects of such networks [4]. 

 

Rain attenuation is significant for millimeter wave signals, 

to the extent of around 7 dB per kilometer along the slant 

path in the 28 GHz band [2]. As a consequence, accurate 

estimation of the attenuation of communication signals 

affected by rain has been the focus of many researchers in 

recent times [5][6]. Terrestrial attenuation models in 

particular are specifically relevant for terrestrial 5G 

communication [5]. Rain statistics for K band (25.84 GHz) 

and E band (77.52 GHz) signals have been observed on a 

yearly basis to generate accurate estimates for short-range 

fixed links [6]. The work outlined in [6] allows for 

compensation of the wet antenna effect. The effect of rain 

is most pronounced in the tropical regions, as a 

consequence of which region-specific models are often 

used for achieving appreciable accuracy in such scenarios 

[7]. The effects of rainfall and knife-edge diffraction are 

examined in detail for fixed millimeter wave systems, in 

[8]. Attenuation models for multiple frequencies are often 

used in practical scenarios. However, in inclement weather 

conditions, such models may fail to generate accurate 

estimates and, in such cases, alternative means for 

generation of estimates can be considered [9]. Additionally, 

short-range terrestrial communication systems are affected 

by parameters such as the distance factor which affects the 

estimate of signal strength as well as overall link budget 

for both K (25 GHz) and E (75 GHz) bands [10]. In arid 

climates, dust storms may also severely hamper link 

capacity through random and anomalous diffraction of 

millimeter wave signals [11]. Recent researchers have also 

shown interest in the presently-unlicensed V band (60 

GHz) for 5G backhaul networks, spanning both Line-of-

Sight (LoS) and Non-LOS scenarios [12]. Significant 

variation in link performance is observed for both sub-6 

GHz as well as 26/28 GHz bands in tropical locations, due 

to extensive rainfall [13]. Attenuation models for both 

outdoor [14] as well as indoor locations have been 

explored by researchers in recent times [15]. Indoor 

environments present an array of challenges due to 

diffraction as well as absorption by organic and inorganic 

obstacles, especially human body-based absorption [15]. 

The effects are significant at 28 GHz, as observed in [15]. 

A recent approach has also explored dynamic modelling 

for an indoor millimeter wave link (28-30 GHz), with 

favourable results [16].  

 

Rain attenuation has also been studied by various 

researchers in recent years with the application of 

modified channel models such as the shadowed Rician 

fading model, which allows for accurate bit error rate 

(BER) and signal to noise ratio (SNR) estimation for 

satellite to land systems, and additionally identifies the 

effect of estimation error on the capacity of the satellite 

communication system under observation [17]. One recent 

significant work in the domain proposes a unified 

approach which allows for estimation of rain attenuation 

both on the slant or vertical path as well as the horizontal 

path [18]. Location specific attenuation models for slant 

path have also been proposed in [19] and [20], for specific 

tropical locations, which significantly outperform existing 

standard models such as ITU-R, Karasawa and DAH 

models, but may not be able to produce acceptably 

accurate results in other regions. Worst-month statistics 

are also a reflection of the accuracy of such models, and 

established models such as ITU-R have been found to 

come up short in regions with greater meteorological 

diversity, such as tropical locations [21]. In this context, 

one recent paper clearly delineates the characteristics of 

microwave and millimeter wave channels which allows 

the accurate characterization of such channels in a variety 

of environments [22]. Machine learning based approaches 
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have also emerged as important tools in this context, for 

different frequency bands [23][24]. 

 

Indoor attenuation models have also grown in importance 

from a commercial context during recent years. 

Consequently, researchers have sought to focus on multi-

frequency model (for 14 and 22 GHz) establishment in 

indoor environments [25]. The significant 28 GHz band 

has also been examined using LoS and NLoS models as 

well as using X-band signal [26]. Path loss models are 

critical to the successful implementation of 5G 

communication systems, and researchers in [27] have 

extensively examined the comparative performance of 

different path loss models in estimation of path loss for 

sub-6 GHz 5G networks, with emphasis on both indoor as 

well as outdoor urban and industrial environments. 

Though generalized models for macroenvironments have 

been proposed in context of 5G networks, indoor 

performance of such models can be significantly improved 

[28]. One recent work however has achieved excellent 

results in terms of elevation of RAN bottlenecks in indoor 

and outdoor environments [29]. Another interesting work 

has illustrated the effects of low-emissivity glass on 5G 

signal in indoor environments [30]. 

2-2- Machine Learning Based Approaches 

Among the different approaches employed by researchers 

to generate accurate attenuation predictions, machine 

learning techniques have increased in popularity. 

Supervised learning methods have been established to be 

effective in [5]. Such models are especially effective in 

scenarios where traditional models are unable to accurately 

predict signal attenuation [9]. Machine learning techniques 

can also be used in conjunction with different LoS and 

Non-LoS channel models to predict link performance in a 

wide range of network scenarios and mobility conditions 

[12][13]. They also allow integration of multiple factors, 

such as antenna geometry [14] and the generation of 

accurate estimates in dynamic network conditions with 

significant diffraction and attenuation [15][16]. Thus, such 

approaches can be effectively leveraged to increase the 

efficacy and robustness of a proposed attenuation model.  

 

Among different machine learning based approaches, low 

complexity techniques have gained in popularity due to 

their ease of use and integrability into communication 

infrastructures at low costs. For example, spline-based 

machine learning approaches have been found to achieve 

greater accuracy than other regression-based methods in 

estimation of rain attenuation [23][24]. Similar techniques 

have also been applied to predict LoS and NLoS path 

losses in indoor environments with suitably low 

complexity and low root mean square error (RMSE) [26]. 

Other supervised machine learning techniques have also 

been found to yield appreciable accuracy in outdoor 

environments [5][9] as well as indoors [15][16][27] for 

different network configurations and scenarios. The 

techniques outlined in [15] and [16] are especially 

important considering the fact that consistently accurate 

estimates have often been proved to be difficult to 

generate in dynamic indoor environments which often 

allow more complex propagation scenarios to exist 

compared to corresponding outdoor implementation 

environments. Unsurprisingly, therefore, most proposed 

techniques and models are found to perform better in one 

or a few types of scenarios and locations. Other popular 

methods include ray-tracing for establishment and testing 

of multi-frequency indoor and outdoor models [31]. Wall 

correction factor-based modelling has also borne fruitful 

results for researchers, since such structures may lead to 

diverse fading scenarios and can significantly affect the 

estimates generated by models not compensating for 

fading and signal attenuation events engendered by such 

indoor and outdoor structures [32]. However, outdoor 

models are vulnerable to inclement meteorological 

phenomena, but otherwise achieve higher network 

performance [33]. Another innovative approach uses 

machine learning algorithms to offset environmental losses 

through accurate tracking of received signal strength [34]. 

Another recent paper has looked at machine learning based 

beam quality estimation for improvement of SNR through 

the application of deep neural networks [35]. Attenuation 

map-based positioning systems have been presented in [36] 

with the help of a deep learning architecture. A low-

complexity pilot assignment algorithm presented in [37] 

allows the mitigation of channel state errors and noise for 

massive-MIMO systems. A graph-colouring based 

algorithm is presented for channel estimation in massive-

MIMO D2D underlay systems for optimal pilot 

assignment, for improvement of parameters such as SNR 

[38]. A deep learning-based channel estimation approach 

is also presented in [39], for generation of estimates from 

received omni-beam patterns, in the context of vehicular 

communication. Another relevant recent work presents an 

ensemble prediction system for nowcasting of attenuation 

data for highly accurate prediction of attenuation events 

such as heavy rainfall [40]. Other ML-based techniques 

have also proved to yield excellent results in diverse fields 

such as in the health monitoring of electrical systems, 

employing a combination of the Continuous Wavelet 

Transform (CWT) and Convolutional Neural Network 

(CNN)-based approaches [41]. Residual Neural Network 

(ResNet)-based approaches have also yielded accurate 

results in sleep-stage detection through examination of 

EEG signals, and such approaches are expected to be 

effective in time-series based prediction of signal 

attenuation [42]. A feature extraction methodology based 

on fractal analysis can also be effective for implementing 

feature extraction for a given time-series [43], which is 
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another approach towards a high-accuracy solution for 

prediction of signal attenuation. 

The survey of recent relevant literature indicates the 

presence of a significant research gap in terms of proposal 

of a suitable dynamic signal attenuation model for 5G 

communication with compensation for different 

meteorological events inclusive of rain, in different 

geographies around the world. The present work 

consequently stems from a need to address these issues in 

view of the great potential 5G communication possesses as 

well as the significant challenges posed to its effective 

implementation, which can be alleviated through the 

investigation of suitable models which can guarantee 

acceptably accurate performance in practical scenarios. 

3- Proposed Model 

On inspection of the recent research in the establishment 

of attenuation models for 5G millimeter wave 

communication signals, two major challenges are found to 

emerge. First, the attenuation of a 5G signal varies 

significantly due to meteorological phenomena such as 

rain, as well as the micro-environment of the network (for 

example, diffraction due to sand storms in arid regions). 

Second, attenuation models for indoor and outdoor 

environments are found to vary to a significant extent, and 

lack dynamicity to a certain degree. 

 

In such a scenario, the application of suitable machine 

learning techniques allows for design and establishment of 

dynamic models which can adapt to changes in the 

network conditions and can therefore generate estimates 

with greater accuracy than typically used attenuation 

models. It is also to be kept in mind that adaptive machine 

learning based model are more robust in the face of 

significant meteorological variations, further increasing 

the usefulness of such models in the present context. As a 

consequence, a dynamic machine learning based model 

which accounts for both LoS and NLoS signal propagation 

would seem to be ideal in the given scenario. 

The present work therefore proposes an autoregression-

based machine learning model for generation of 

attenuation estimates which can be applied for real-time as 

well as non-real-time time series data. The basic system 

model is illustrated in the following Figure 1. 

 

 

Fig. 1  N-Step Autoregression Estimator 

 

The autoregression model generates regression estimates 

based on the previous N values of the signal attenuation 

and adjusts the weight of the values based on the 

estimation error. The estimation results are presented in 

the following section. The corresponding relations for 

autoregression estimation are expressed in equation 1 

which follows, with F being the autoregression function, Y 

being the estimated output, X being the independent 

attenuation variable, C being the associated coefficient 

weight, and t being the instant of time. 

 

                       ∑   
         

 
                             (1) 

 

The corresponding path loss attenuation model applied for 

simulation of the scenario is the standard 3GPP urban 

microenvironment model [2] with attenuation X being 

dependent on distance d as well as constants α, β and γ, as 

shown in equation 2. 

  

                                                             (2) 

4- Results and Conclusions 

Five different types of ML based autoregression 

estimation techniques are used to generate attenuation 

estimates in this study. The techniques are: forward-

backward technique, least-squares estimation, Yule-walker 

technique, Burg’s Method and Geometric Lattice 

Technique. The individual results are obtained for 

statistical samples generated over 1000 test runs each, for 

polynomials of order 4, 6 and 8 respectively. The 

corresponding results are presented in Figures 2 to 6, 

which follow. 

 
(a) 
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(b) 

 
(c) 

Fig. 2  Forward-Backward Method: (a) 4th order polynomial (b) 6th 

order polynomial (c) 8th order polynomial 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3  Least-Squares Method: (a) 4th order polynomial (b) 6th order 
polynomial (c) 8th order polynomial 

 
(a) 

 
(b) 

 
(c) 

Fig. 4  Yule-Walker Method: (a) 4th order polynomial (b) 6th order 
polynomial (c) 8th order polynomial 
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(a) 

 
(b) 

 
(c) 

Fig. 5  Burg’s Method: (a) 4th order polynomial (b) 6th order 
polynomial (c) 8th order polynomial 

 
(a) 

 
(b) 

 
(c) 

Fig. 6  Geometric Lattice Method: (a) 4th order polynomial (b) 6th 

order polynomial (c) 8th order polynomial 

The RMSE or root mean square error metric is used to 

evaluate the accuracy of the estimated attenuation values 

in this work. The various techniques are therefore 

compared according to both the error as well as the RMSE 

metrics in the present work. The RMSE is measured due to 

the fact that the metric is statistically more significant than 

the mean error in terms of representation of the dataset, 

since it is less prone to bias than mean error metric. The 

corresponding values for each technique are presented in 

Table 1. 

 
Table 1. Comparison of RMSE 

Technique 
RMSE for Polynomial Order 

4 6 8 

Forward-

Backward 
0.7758 1.2751 10.2541 

Least-Squares 2.0739 20.9429 1.2008 

Yule-Walker 1.8334 1.5183 0.5932 

Burg’s 

Method 
12.4825 1.2436 2.1097 

Geometric 

Lattice 
2.8168 2.6201 39.9316 
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From Table 1, it is seen that even though the Forward-

Backward or Burg methods may sometimes generate 

marginally more accurate estimates, they are prone to 

fluctuation of accuracy with polynomial order. The Yule-

Walker method is optimal in the sense that it generates 

agreeably correct estimates even for higher order 

polynomial models and does not suddenly decrease in 

accuracy for any of the polynomials. The comparative 

RMSE performance of all techniques is shown in the 

following Figure 7, which validates the abovementioned 

inference. 

 

 

Fig. 7  Comparative RMSE Performance of Techniques 

The autoregression-based machine learning technique is 

compared to corresponding artificial neural network 

(ANN) based method [39] and adaptive spline regression-

based method [25]. The RMSE metric is used to compare 

between the three methods. The corresponding Table 2 

presents the comparative results observed. 

 
Table 2. Comparison of Autoregression, ANN and Adaptive Spline 

Regression Methods 

Technique RMSE Complexity 

Autoregression 0.5932 Low 

ANN 0.0713 High 

Adaptive Spline 

Regression 
0.9811 Moderate 

 

The complexity of the proposed method can be estimated 

in the following manner. Assuming the application of the 

Yule-Walker method, the power spectral density of the 

time series is repeatedly computed and adjusted using a 

small set of k samples (among a possible N samples). 

Assuming the worst-case convergence of the technique, 

that is, after N cycles, the worst-case time complexity of 

the proposed technique is O(kN) << O(N
2
), and 

considering the small set of samples k examined to 

generate estimates at each step, k<<N, which allows the 

worst-case complexity of the technique to be estimated as 

O(N). This complexity is significantly lesser than the 

O(N
2
) complexity of the adaptive spline technique and the 

O(N
r
) for r>2 complexity of the ANN method.  

 

The comparative results show that the autoregression 

based technique achieves suitably low RMSE at low 

complexity, compared to the other techniques, allowing 

this proposed technique to be easily implementable in 

practical scenarios. Another important fact that must be 

kept in mind is that the RMSE is not extremely low, which 

indicates that the model does not suffer from significant 

overfitting error, which in turn allows the proposed model 

to be more dynamic. 

 

Next, the proposed technique is compared to the ANN and 

adaptive spline-based methods for different mobility 

scenarios, ranging from 1 m/sec (low mobility) to 30 

m/sec (high mobility), with respect to the same RMSE 

parameter. In all cases, the transmitters are considered to 

be fixed while the devices receiving the signal are made 

mobile. The experiments are repeated to generate 1000 

sets of results, which are then averaged to generate the 

results, for each of the techniques. The results achieved by 

the three techniques compared in the present work are 

illustrated in the following Table 3. 

 
Table 3. Comparison of Autoregression, ANN and Adaptive Spline 

Regression Estimates for different Mobility Scenarios 

Technique RMSE Mobility 

Autoregression 0.61 Low (1m/sec) 

ANN 0.09 Low (1m/sec) 

Adaptive Spline 

Regression 
0.93 Low (1m/sec) 

Autoregression 0.69 Moderate (15m/sec) 

ANN 0.11 Moderate (15m/sec) 

Adaptive Spline 

Regression 
1.31 Moderate (15m/sec) 

Autoregression 0.89 High (30m/sec) 

ANN 0.23 High (30m/sec) 

Adaptive Spline 

Regression 
1.75 High (30m/sec) 

   

The comparative results are illustrated graphically in the 

following Figure 8. 
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Fig. 8  Comparative RMSE Performance of Techniques in different 
Mobility Scenarios 

From the results obtained through experiments and 

illustrated in Figure 8, a continuous increase of RMSE is 

observed for each of the three compared techniques, which 

is expected due to the fading conditions expected in the 

different mobility scenarios. However, the proposed 

technique, which maintains an RMSE value much lower 

than the adaptive spline method, has the slowest change in 

RMSE among the three methods, which indicates its 

stability in a dynamically changing mobility scenario. 

Such a stability may be attributed to the comparatively 

low-complexity approach that the proposed 

autoregression-based method takes in comparison to the 

other two techniques. The experimental results achieved 

consequently show that the proposed autoregression-based 

technique achieves acceptable performance in practical 

scenarios, which is a basic requirement that must be met 

for the model to be able to generate accurate estimates in 

significantly dynamic environments. Additionally, a neural 

network-based technique can also be used in conjunction 

with the proposed method in order to reduce the RMSE 

while restricting the overall complexity of such a hybrid 

technique to moderate levels. On the other hand, if 

reduction of complexity is a more significant issue for a 

particular implementation scenario, a linear spline 

regression method can be used in conjunction with the 

proposed autoregression technique to allow for low-

complexity model design without significant loss in model 

accuracy.  

5- Conclusions 

On inspection of the recent research in the establishment 

of attenuation models for 5G millimeter wave 

communication signals, two major challenges are found to 

emerge. First, the attenuation of a 5G signal varies 

significantly due to meteorological phenomena such as 

rain, as well as the micro-environment of the network (for 

example, diffraction due to sand storms in arid regions). 

Second, attenuation models for indoor and outdoor 

environments are found to vary to a significant extent, and 

lack dynamicity to a certain degree. In such a scenario, the 

application of suitable machine learning techniques allows 

for design and establishment of dynamic models which 

can adapt to changes in the network conditions and can 

therefore generate estimates with greater accuracy than 

typically used attenuation models. It is also to be kept in 

mind that adaptive machine learning based model are more 

robust in the face of significant meteorological variations, 

further increasing the usefulness of such models in the 

present context. As a consequence, a dynamic machine 

learning based model which accounts for both LoS and 

NLoS signal propagation can be designed, as shown in this 

work, allowing optimization of RMSE of predictions at 

suitably low complexity, which in turn ensures that such a 

solution can be cheaply and easily implemented in 

practical scenarios for estimation of signal attenuation for 

4G and 5G networks.  
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