• Home
  • Support vector machine
  • OpenAccess
    • List of Articles Support vector machine

      • Open Access Article

        1 - Foreground-Back ground Segmentation using K-Means Clustering Algorithm and Support Vector Machine
        Masoumeh Rezaei mansoureh rezaei Masoud Rezaei
        Foreground-background image segmentation has been an important research problem. It is one of the main tasks in the field of computer vision whose purpose is detecting variations in image sequences. It provides candidate objects for further attentional selection, e.g., More
        Foreground-background image segmentation has been an important research problem. It is one of the main tasks in the field of computer vision whose purpose is detecting variations in image sequences. It provides candidate objects for further attentional selection, e.g., in video surveillance. In this paper, we introduce an automatic and efficient Foreground-background segmentation. The proposed method starts with the detection of visually salient image regions with a saliency map that uses Fourier transform and a Gaussian filter. Then, each point in the maps classifies as salient or non-salient using a binary threshold. Next, a hole filling operator is applied for filling holes in the achieved image, and the area-opening method is used for removing small objects from the image. For better separation of the foreground and background, dilation and erosion operators are also used. Erosion and dilation operators are applied for shrinking and expanding the achieved region. Afterward, the foreground and background samples are achieved. Because the number of these data is large, K-means clustering is used as a sampling technique to restrict computational efforts in the region of interest. K cluster centers for each region are set for training of Support Vector Machine (SVM). SVM, as a powerful binary classifier, is used to segment the interest area from the background. The proposed method is applied on a benchmark dataset consisting of 1000 images and experimental results demonstrate the supremacy of the proposed method to some other foreground-background segmentation methods in terms of ER, VI, GCE, and PRI. Manuscript profile
      • Open Access Article

        2 - Fear Recognition Using Early Biologically Inspired Features Model
        Elham  Askari
        Facial expressions determine the inner emotional states of people. Different emotional states such as anger, fear, happiness, etc. can be recognized on people's faces. One of the most important emotional states is the state of fear because it is used to diagnose many di More
        Facial expressions determine the inner emotional states of people. Different emotional states such as anger, fear, happiness, etc. can be recognized on people's faces. One of the most important emotional states is the state of fear because it is used to diagnose many diseases such as panic syndrome, post-traumatic stress disorder, etc. The face is one of the biometrics that has been proposed to detect fear because it contains small features that increase the recognition rate. In this paper, a biological model inspired an early biological model is proposed to extract effective features for optimal fear detection. This model is inspired by the model of the brain and nervous system involved with the human brain, so it shows a similar function compare to brain. In this model, four computational layers were used. In the first layer, the input images will be pyramidal in six scales from large to small. Then the whole pyramid entered the next layer and Gabor filter was applied for each image and the results entered the next layer. In the third layer, a later reduction in feature extraction is performed. In the last layer, normalization will be done on the images. Finally, the outputs of the model are given to the svm classifier to perform the recognition operation. Experiments will be performed on JAFFE database images. In the experimental results, it can be seen that the proposed model shows better performance compared to other competing models such as BEL and Naive Bayes model with recognition accuracy, precision and recall of 99.33%, 99.71% and 99.5%, respectively Manuscript profile