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Abstract  
This research used modern machine learning ways to predict the stages of primary biliary cholangitis using data from the 

Mayo Clinic trial. The research aims to obtain high prediction accuracy while representing balanced evaluation metrics. 

Important techniques include automated hyperparameters optimization with Optuna and Recursive Feature Elimination to 

improve model performance. Pre-processing included handling missing values, encoding of categorical features, and 

addressing class imbalances using SMOTE. A total of twelve machine learning algorithms are evaluated with ensemble-based 

models such as CatBoost and Extra Trees producing much better results. Evaluation metrics take into account all model 

predictions, including accuracy, precision, recall, F1 score, and ROC-AUC for performing balanced and interpretative 

evaluations of performances critical for imbalanced datasets. This endeavor includes clinical and laboratory information 

illustrating the prospect of machine learning in advancing therapeutic diagnosis, emphasizing the rigor and robustness in 

evaluation laid groundwork for future research to encompass even more generalizable and robust diagnostic tools. 

 

 

 

Keywords: Primary Biliary Cholangitis; Machine Learning; Recursive Feature Elimination; Optuna, Imbalanced Data. 
 

1- Introduction 

Primary Biliary Cholangitis (PBC), formerly known as 

primary biliary cirrhosis, is a chronic autoimmune liver 

disease. It is characterized by the gradual and progressive 

destruction of the liver's small bile ducts, leading to the 

accumulation of bile and other toxins within the liver, a 

condition known as cholestasis. Over time, this persistent 

damage can result in scarring, fibrosis, and ultimately 

cirrhosis. Cirrhosis is a late-stage liver disease that occurs 

when scar tissue replaces healthy liver tissue. The 

underlying pathologies that may cause this disease include 

viral hepatitis, chronic alcoholism, and NAFLD (non-

alcoholic fatty liver disease) (Konerman et al., 2019). 

Chronic alcohol consumption leads to advanced forms of 

liver damage, which eventually result in cirrhosis and 

subsequent liver failure (Topcu et al., 2024). In the primary 

stages, the disease is asymptomatic, and awareness is 

typically raised only in the advanced stages. Cirrhosis may 

lead to liver failure, liver cancer, and, ultimately, death 

(Tapper & Parikh, 2023). There is a strong need for the most 

accurate and least invasive methods to predict the 

progression of cirrhosis, given the critical importance of 

diagnosing and managing such diseases optimally. 

Although traditional methods, such as liver biopsy, provide 

accurate results, these procedures are invasive and may lead 

to complications (Wei et al., 2018). Chronic alcohol 

consumption is one of the main causes of this disease and, 

in the long term, can lead to advanced stages such as 

cirrhosis, ultimately culminating in complete liver failure 
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(Topcu et al., 2024). Previous studies have established that 

cirrhosis of the liver progresses through four stages. The 

first stage, Steatosis, is characterized by inflammation of 

either the liver or the bile ducts, and immediate treatment at 

this juncture can control the disease. The second stage, 

Fibrosis, involves the development of scar tissue that cuts 

off normal blood flow to the liver and impairs its function; 

however, medical treatment can halt the progression of the 

disease. In the third stage, Cirrhosis, healthy liver tissue is 

replaced by scar tissue, and swelling may occur in the 

spleen. Finally, the fourth stage, Liver Failure, is 

characterized by complete liver failure. At this stage, 

patients transition from normal health to a comatose state 

and require emergency treatment by medical professionals 

(Wei et al., 2018). 

The subtlety of its early symptoms permits the diagnosis 

of cirrhosis only at advanced stages; if mismanaged, the 

disease can inevitably culminate in liver failure or cancer. 

Recent studies have highlighted the significance of early 

detection and management. An SEAL screening algorithm 

study demonstrated a remarkable 59% higher rate of early 

cirrhosis detection compared to routine care, thereby 

advocating for the role of structured programs in identifying 

asymptomatic cases (Labenz et al., 2022). In addition, top-

down proteomics identified the proteoform signatures in 

plasma that correlate with the progression of cirrhosis, 

forming the template for a biomarker-driven risk 

stratification (Forte et al., 2024). Another paper emphasized 

the role of miRNA-gene regulatory axes in monitoring and 

diagnosing cirrhosis and hepatocellular carcinoma and 

proposed new diagnostic targets (Premnath & Shanthi, 

2024). Asymptomatic superior mesenteric vein thrombosis 

(SMVT), however, has not been proven to significantly 

impact cirrhosis outcomes, unlike the risks posed by portal 

thrombosis (PT) (Wang et al., 2022). These collective 

findings emphasize the crucial role of early, target-oriented 

interventions and the potentially significant role of 

additional biomarkers in preventing the progression of 

asymptomatic cirrhosis. Prior studies discussed the notable 

success of various machine-learning-based approaches like 

Random Forest, Gradient Boosting, Ensemble Learning, 

and others in increasing the accuracy with which the stages 

of disease progression are predicted. For example, the 

LivMarX model achieved an accuracy of up to 86% for 

predicting different stages of cirrhosis based on a 

combination of biomarkers and optimization techniques 

(Kamath et al., 2024). Other models suggested that 

longitudinal models outperformed other cross-sectional 

models in accurately detecting disease progression (Hanif 

et al., 2022). 

Millions live with cirrhosis worldwide, and it remains 

a leading cause of death every year. The effects on patients" 

quality of life following late diagnosis of cirrhosis can be 

dire and place a huge burden on the health sector. 

Furthermore, improper management of the disease may lead 

to serious complications, such as advanced liver failure, 

liver cancer, and other comorbidities (Hanif et al., 2022). 

New artificial intelligence and machine-aided processes 

enable much finer accuracy in determining the stage of the 

disease and are immensely beneficial in reducing 

complications, promoting early diagnosis, and improving 

patient management. The ability of this technology to offer 

a serious advancement in the management of cirrhosis is 

most felt in areas where modern imaging methods are 

seldom available (Topcu et al., 2024). This research aims to 

develop an efficient and accurate model for predicting early 

liver cirrhosis by employing advanced machine learning 

algorithms. It seeks to improve prediction accuracy by 

combining intelligent feature selection and model 

optimization approaches to create models that are not only 

highly efficient but also practical for implementation in real 

clinical settings. The major aim of the study is to devise a 

model for prediction of stage of PBC that is accurate, 

generalizable, and efficient using advanced techniques of 

machine learning. Some cutting-edge work presented 

therein involves, but is not restricted to, tuning of model 

hyperparameters via advanced optimization methods of 

Optuna, feature selection algorithms, such as RFECV to 

identify crucial disease progress variables. A further 

significant aspect in the study includes the use of rich and 

varied data composed of clinical and laboratory data drawn 

from credible sources. The evaluation of model 

performance metrics such as accuracy, precision, recall, F1-

score, and AUC is performed in a very detailed way so as 

to allow transparency in the evaluation of the quality of 

predictions. This paper is organized as follows: the first part 

introduces the research and its various objectives; the 

second part broaches the research background and pinpoints 

the weaknesses of previous studies; the third part describes 

the research methodology regarding the dataset, 

preprocessing techniques and machine learning algorithms 

used; the penultimate section conveys all the experimental 

results and critically evaluates the performance of various 

models; and finally, the last part deliberates and draws its 

conclusions in respect of the findings obtained, drawing 

comparisons with previous studies, scrutinizing the 

implications of the results, providing an overview of the 

contributions made, and suggesting future areas of research. 

In this study, such a constructive approach enhances the 

efforts toward improving the prediction of cirrhotic liver 

disease risk while further enhancing the development of AI 

in aiding diagnostic medicine. 

2- Theoretical Foundations and Research 

Background 

In very recent times, prognosis and evaluation of liver 

diseases have made remarkable advancements. Cirrhosis 

often deteriorates into liver failure, requiring transplants in 
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many cases, often due to chronic liver insult. Making an 

accurate diagnosis of the stage of liver cirrhosis and 

tracking the patients' progress remains among the greatest 

challenges of medicine. Addressing these difficulties 

straightaway impacts treatment strategies and the potency 

of medical involvement. In the past years, machine learning 

methods have emerged as a contemporary remedy for 

prognosticating the diverse phases of liver cirrhosis. These 

algorithms identify clinically pertinent traits that describe 

singular patient characteristics through exhaustive data 

examination. Table 1 briefly summarizes related research 

on predicting the stages of liver cirrhosis and contrasts 

assorted methods. This table comprises the titles of the 

reports, aims, datasets, machine learning algorithms, and 

key outcomes of each analysis. An inspection of this 

background reveals that machine learning designs such as 

Random Forest, Support Vector Machine, and amalgamated 

tactics, exploiting an assortment of datasets and sundry 

optimization techniques, have been successfully applied 

and have achieved meaningful accuracy in prognosticating 

the phases of liver cirrhosis. This data furnishes worthwhile 

insights into the strengths and shortcomings of preceding 

studies and helps pinpoint existing research gaps. 

 

 

  

Table 1. Research background 

Conclusion Dataset Model used Goals Article Title Authors 

The longitudinal boosted survival tree 
model achieved superior concordance 

(0/774) and AuROC in prediction 
compared to cross-sectional models, 

demonstrating higher reliability in long-
term forecasts. 

Veterans’ 
Health 

Administrati
on (72,683 
individuals) 

Cox models 
and boosted-
survival-tree 

model 

Predict cirrhosis 
progression in 
CHC patients 

Machine learning 
models to predict 

disease 
progression 

among veterans 
with hepatitis C 

virus 

Konerman 
et al. 

(2019) 

The Random Forest model achieved high 
accuracy (~98%), demonstrating superior 
performance in early cirrhosis prediction. 
Precision, recall, and F1-score were not 

explicitly reported. 

Open-access 
liver 

cirrhosis 
dataset 

Random 
Forest, 

Logistic 
Regression, 

AdaBoost, k-
Nearest 

Neighbors 
 

Early detection 
of liver cirrhosis 

Machine 
Learning-Based 

Analysis and 
Prediction of 

Liver Cirrhosis 

Topcu et 
al. (2024) 

The ensemble models improved 
prediction accuracy and generalizability, 
making significant advances in reliability 
and forecasting. While specific metrics 
such as accuracy, precision, and recall 

were not directly reported, overall 
improvements were observed. 

Multisource 
liver disease 

datasets 

Ensemble 
model 

integrating 
Gradient 
Boosting, 
Random 

Forest, and 
Decision 

Trees 

Enhance 
prediction of 

cirrhosis 
prognosis 

Improving 
Prognostic 

Prediction of 
Cirrhosis Using 
an Optimized 

Ensemble 
Machine Learning 

Approach 

Bhardwaj 
et al. 

(2024) 

Random Forest was among the models 
with the highest accuracy (~97%), 

achieved through feature engineering and 
cross-validation. Precision, recall, and 
F1-score for the Random Forest model 

are not specified. 

Dataset with 
418 records 

and 20 
attributes 

Support 
Vector 

Machine, 
Random 
Forest, 

Gradient 
Boosting 

Determine 
stages of liver 

cirrhosis 

Stage Prediction 
of Liver Cirrhosis 

Disease using 
Machine Learning 

K et al. 
(2024) 

LivMarX achieved over 86% accuracy 
after optimization, with an AUC of 0/95. 

The model demonstrated high cost-
effectiveness for accurately staging 
cirrhosis in the absence of imaging. 

Precision, recall, and F1-score were not 
reported. 

Comprehens
ive dataset 

of 424 
patients 

Random 
Forest 

(optimized 
with Genetic 
Algorithm 

and 
GridSearchC

V) 

Stage liver 
cirrhosis using 

biomarkers 

LivMarX: An 
Optimized Low-
Cost Predictive 
Model Using 

Biomarkers for 
Interpretable 

Liver Cirrhosis 
Stage 

Classification 

Kamath et 
al. (2024) 

The model achieved 93/55% accuracy on 
the training data and 78/62% on the test 

data, outperforming six comparable 
algorithms. 

Data from 
1,078 

patients 
referred to 
Imam Reza 

Hospital 

Support 
Vector 

Machine 
(SVM) with 

Radial Kernel 

Development of 
a machine 

learning model 
for diagnosing 

fatty liver using 
demographic 

information and 
hematology 

tests 

Predicting Liver 
Fibrosis Severity 
Using Machine 

Learning Models 

(Elmasine
jad and 

Golabpour
, 2024) 

The proposed model demonstrated high 
accuracy in predicting the stages of 

cirrhosis. 

Data from 
patients 

with 

Different 
machine 

Using machine 
learning 

methods to 

Cirrhosis Disease 
Prediction Using 

Machine Learning 

Jamadar et 
al. (2023) 
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physiologic
al 

characteristi
cs 

associated 
with 

cirrhosis 

learning 
algorithms 

predict liver 
cirrhosis 

Random Forest achieved an accuracy of 
~97%, demonstrating reliability and 

robustness in phase-wise predictions of 
liver cirrhosis. Precision, recall, and F1-

score were not reported. 

Liver 
Cirrhosis 

dataset (418 
records) 

Support 
Vector 

Machine, 
Decision 

Tree, Random 
Forest 

Predict liver 
cirrhosis stages 

Liver Cirrhosis 
Prediction Using 

Machine Learning 
Approaches 

Hanif and 
Khan 

(2022) 

The Artificial Neural Network (ANN) 
demonstrated the best performance with 
high accuracy, while the RF+MI feature 

selection method showed a slight 
improvement over the standard Random 

Forest (RF) model. 

Data from 
patients 

with liver 
cirrhosis 

Artificial 
Neural 

Network, 
Random 
Forest , 
Logistic 

Regression, 
Support 
Vector 

Machine , 
KNN, 

Decision Tree 
, Naive Bayes 

Predicting the 
stage of liver 
cirrhosis in 

patients using 
machine 
learning 

algorithms 

Liver Cirrhosis 
Stage Prediction 
Using Machine 

Learning: 
Multiclass 

Classification 

Sidana et 
al. (2022) 

 

 

The studies discussed in Table 1 delineate just some of the 

many advances in the use of machine learning algorithms in 

predicting the stages of liver cirrhosis. However, one of the 

main gaps identified there was the significant delay in 

consideration of imbalanced data sets and excessive focus 

on a single performance metric, such as accuracy, for model 

evaluation. The studies by Bhardwaj et ub. and Sidana et 

ub., while dealing with random forest or SVM, do not 

appease the challenge of imbalanced dataset(s), and they 

wholly rely on a single evaluation criterion, such as 

accuracy, thus not completely evaluating models one 

through other proper performance criteria such as Precision, 

Recall, and F1 Score. Such excessive focus on accuracy 

alone results in a very skewed perspective on their 

prediction capabilities, since such models often guarantee 

high-performance measures yet produce very poor results 

on overweighted classes. Another very important limitation 

discussed in Table 1 is their use of unoptimized models and 

poorly defined feature sets. For example, models like 

Random Forests and SVM have been applied, ill as the 

studies by Hanif and Khan, and Jamadar et al., did not apply 

state-of-the-art optimization techniques that would 

potentially improve model performance, structure feature 

selections, and reduce the framework of their studies, thus 

precluding meaningful generalization and accuracy of their 

interpretations. In the contrary, the current paper uses a 

rather spirited approach by using advanced machine 

learning algorithms guaranteeing accuracy in predictions 

and correcting the data imbalance, with the models being 

subjected to various acute evaluations by areas such as 

accuracy, precision, recall, F1 score, and ROC-AUC, which 

is possible to ascertain an appropriate and transparent 

evaluation of the models' performances addressing 

fundamental gaps in prior research and leading the 

investigation towards more reliable and generalized results.  

Moreover, a large number of studies will focus only on 

one model, with limited analysis of the effects of 

combinations of algorithms or full comparisons between the 

efficiency of techniques. The novel methodology presented 

in this paper serves as an ensemble framework to enrich 

predictive technology, apply advanced feature selection 

techniques, optimize model computational costs, and 

improve the implementation of models openly in the real 

world, all of which are overly venturous in previous studies, 

such as the LivMarX (Kamath et al., 2024). Finally, this 

research makes a significant contribution to advancing 

existing methods by focusing on early-stage liver cirrhosis 

prediction, presenting a comprehensive optimization 

framework, thoroughly analyzing model performance 

indicators, and utilizing diverse and extensive datasets. 

Through the articulation of emerging and current research 

gaps, as well as the modest input of novelties, this will 

provide a further route for an exhaustive yet accurate 

approach to be developed in this area.  

3- Research Method 

The goal of this study was to use machine learning 

algorithms to predict the stage of primary biliary cholangitis 

(PBC) in patients. The main objective is to use the machine 

learning model to accurately predict the stage of the disease 

using medical and laboratory data. The dataset used in this 

study was derived from a clinical investigation of PBC 

patients conducted at the Mayo Clinic and supplemented by 

a publicly available dataset released on the Kaggle platform, 

which included numerous original features. After data 

analysis and feature selection, key variables were identified 

using recursive feature elimination with cross-validation 

(Priyatno Widiyaningtyas, 2024). During the preprocessing 

stages, correlation analysis was performed, and the SMOTE 



    
Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025 

 

  

 

 

169 

method was applied to address class imbalance. Additional 

steps included handling missing values, and encoding 

categorical features (Khan & Hoque, 2020). Twelve 

machine learning algorithms were evaluated for modeling 

purposes: Decision Tree, Random Forest, Extra Tree, 

Gradient Boosting, AdaBoost, XGBoost, LightGBM, 

Logistic Regression, Support Vector Machine (SVM), k-

Nearest Neighbors (KNN), Naive Bayes, and CatBoost. The 

Optuna optimization framework was used to fine-tune the 

hyperparameters of all models in such a way as to provide 

the best performance (Jeganathan et al., 2024). The 

performance of the models was assessed against four main 

metrics: accuracy, precision, recall, and F1-score (Fazel & 

Foing, 2024). In addition, the ROC curve and AUC values 

are used for more details regarding the model performance. 

All other steps of this study were done using the Python 

programming language with its corresponding libraries.  

3-1- Data Source 

The data set used in this study was extracted from the 

Cirrhosis Prediction Dataset, which is publicly available on 

the Kaggle platform. It includes information of patients 

with PBC, collected over ten years in a clinical study carried 

out at the Mayo Clinic. In this study, 420 patients diagnosed 

with PBC were identified as eligible to participate in a 

randomized, controlled trial of the drug D-penicillamine. Of 

these, 312 patients obtained consent to participate in the 

randomized clinical trial, their records had a minimal loss. 

There were also 112 other eligible patients who were not 

trial participants, who did allow for basic information and 

survival follow-ups to be recorded; 6 out of these 112 

patients were lost from follow-up soon after diagnosis, so 

data on 106 remained. Thus, the total number of patients 

entered in the dataset is 418 (Fedesoriano,2021).  

3-2- Dataset Features 

The data used in this study include comprehensive 

information from patients with PBC. The dataset initially 

comprised 20 features, which are presented in Table 2. 

Table 2. Variables Description 
Feature 
Name Description Type Values/Unit 

ID Unique identifier for 
each patient 

Categori
cal Numeric 

N_Days 

Number of days 
between registration 

and the earlier of 
death, transplantation, 
or study analysis time 

Numeric Days 

Status Status of the patient Categori
cal 

C (Censored), 
CL (Censored 

due to liver 
tx), D (Death) 

Drug Type of drug 
administered 

Categori
cal 

D-
penicillamine, 

Placebo 
Age Age of the patient Numeric Days 

Sex Gender of the patient Categori
cal 

M (Male), F 
(Female) 

Ascites Presence of ascites 
Categori

cal 
(Binary) 

N (No), Y 
(Yes) 

Hepatome
galy 

Presence of 
hepatomegaly 

Categori
cal 

(Binary) 

N (No), Y 
(Yes) 

Spiders Presence of spiders 
Categori

cal 
(Binary) 

N (No), Y 
(Yes) 

Edema Presence of edema Categori
cal N, S, Y 

Bilirubin Serum bilirubin Numeric mg/dl 
Cholester

ol Serum cholesterol Numeric mg/dl 

Albumin Serum albumin Numeric gm/dl 
Copper Urine copper Numeric µg/day 

Alk_Phos Alkaline phosphatase Numeric U/liter 

SGOT 
SGOT (serum 

glutamic-oxaloacetic 
transaminase) 

Numeric U/ml 

Triglyceri
des Serum triglycerides Numeric mg/dl 

Platelets Platelet count Numeric per cubic 
ml/1000 

Prothrom
bin Prothrombin time Numeric Seconds (s) 

Stage Histologic stage of the 
disease 

Categori
cal 

(Ordinal) 
1, 2, 3, 4 

 

In this study, the target variable was defined as Stage, 

representing a disease stage that ranges from 1 to 4. The aim 

is to model the Stage variable in relationship to the other 

features in the data set. The ID column was ruled out of the 

analysis simply because it works as a patient identifier and 

provides no substantial contribution to prediction.  

3-3- Data Cleaning 

The cohort included 424 patients with PBC data collected 

as part of a Mayo Clinic clinical trial. Of those, the final 

analysis was based on 312 samples. In the first step of 

cleaning the data, the ID column, which was judged not 

relevant to the target variable, was deleted as it would not 

contribute to prediction. In addition, missing values in 

features with limited incompleteness were substituted with 

the mean value for less impact on the modeling. Out of the 

424 data points, 112 pertained to patients who did not 

participate in the randomized tests and had incomplete 

information. Out of these, six samples were excluded 

shortly after data collection due to critical missing 

information. According to strict sampling standards, the 

information from the remaining 112 non-participating 

patients had to be rejected because of poor quality. This left 

312 samples that were complete and of good quality for 

analysis. Data cleaning allowed such preparation, 

producing better quality data for the predictions. 

3-4-  Correlation Analysis 

Correlation analysis was conducted to identify linear 

relationships between variables in the dataset. The primary 
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purpose of this analysis was to determine variables with a 

significant impact on the target variable and to eliminate 

those with redundant or weak associations with other 

variables. In this study, a correlation matrix, visualized 

using a heatmap, was employed to illustrate the 

relationships between variables. 

Figure 1. Correlation Heatmap 

 

From the correlation analysis, no variables exhibited high 

correlation with other variables (greater than 0/8 or less than 

-0/8). The highest positive correlation found is between the 

Copper and Bilirubin (about 0/46), indicating no removal of 

features for redundancy because of excessive correlation. 

Furthermore, it is found that the independent variable 

(Stage) correlates positively with Hepatomegaly (about 

0/47), thus this variable is important in predicting the stage 

of the disease. In this regard, all the features were retained 

for modeling since they provide independent and 

informative information. Such independence can be 

expected to add strength to model value.  

3-5- Feature Selection 

Therefore, feature selection becomes a big step for 

preprocessing data to enhance the performances of machine 

learning classifiers and reduce computational complexity. 

The dataset initially had many primary features, but some 

of them had bad correlations with the target variable or 

brought more noisy and redundant information. To extract 

important features, RFECV was used. RFECV is a very 

efficient recursive feature elimination mechanism 

(Thambawita et al., 2020) that starts by training the model 

with all features available, estimates the importance of each 

individual feature in terms of importance score such as 

those derived from feature importance or model coefficients, 

and then removes one feature at a time, retraining the model 

at each iteration. The process continues until all possible 

combinations of features have been tried. It implements 

cross-validation to find the best set of features. The other 

applications of cross-validation are to make the dataset as 

many segments as needed, then evaluate the model 

performances for each feature combination. Finally, 

RFECV was used to optimize feature selection based on 

model performance during cross-validation. In addition to 

evaluating model performance, this technique effectively 

eliminates irrelevant features, selecting the minimum 

number of features necessary to make accurate predictions. 

In this study, a total of 14 features were identified as the 

most informative from the initial set: N_days, status, drug, 

age, bilirubin, cholesterol, albumin, copper, alk_phos, sgot, 

triglycerides, platelets, and prothrombin. These selected 

features were found to significantly contribute to the 

prediction of disease stages. The removal of non-essential 

features reduced model complexity while improving model 

estimation accuracy and computational efficiency. Figure 2 

illustrates the significance of these features in this study. 

Figure 2. Feature Importance 

3-6- Data Normalization 

The MinMaxScaler is used to scale data for SVM 

(Support Vector Machine) and KNN (K-Nearest Neighbors) 

algorithms (Ali, 2022). This choice is made because these 

algorithms are generally sensitive to feature scaling. For 

SVM algorithms, to determine the separating hyperplane, 

the feature values are being used; whereas KNN uses 

feature values to compute distances amongst samples. Thus, 

features in varied scales could significantly affect the 

models' performance. The MinMaxScaler scales every 

feature to a fixed-range value, usually ranging between 0 

and 1, on an equivalent scale. The formula for 

MinMaxScaler is:  

    

x_scaled=(x-x_min)/(x_max-x_min )    (1) 

 

In this formula: 

xscaled is the normalized (scaled) feature value. 

x is the original value of the feature. 

xmin is the smallest value of the feature in the dataset. 

xmax is the largest value of the feature in the dataset. 

3-7- Data Balance 
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One of the major challenges outlined in this study was the 

distribution of samples into the different classes with 

unequal frequency. From the data distribution, it has been 

noted that there were only 16 samples at Stage I, while there 

were 97 samples at Stage II, 109 samples at Stage III, and 

more than to bring the order at the top. This imbalance 

causes the machine learning algorithms to converge toward 

the large classes, thus reducing any learning focused on the 

smaller classes, like stage I. This will probably have the 

effect that the model identifies the classes having more 

samples correctly, while disregarding or misclassifying the 

classes that have very few samples. 

 

 
Figure 3. Distribution of Stages 

 

The SMOTE method was used to increase the number of 

samples belonging to the minority class in the data set to 

remove imbalance namely synthetic minority over-

sampling technique. It constructs synthetic instances and 

follows the following steps: 

1. A random sample from the minority class is chosen as 

a reference sample. 

2. Using the KNN algorithm (usually with K = 5) several 

nearest neighbors from the same minority class, are 

identified. 

3.SMOTE generates new synthetic examples in feature 

space. This is achieved by selecting at random one of 

the nearest neighbors and by creating a new sample at a 

point in-between the reference sample and the chosen 

neighbor. 

The formula used to compute the interpolation 

between the two samples is expressed as: 

 

X_new=X_sample+gap×(X_neighbor-X_sample)  (2) 

 

Here, Xsample stands for the reference sample, 

Xneighbor for one of the nearest neighbors, and Gap for 

some random number in the range (0, 1). The dataset in this 

research was divided into two parts: training 70% of the 

data and using 30% for the encoding models' performance 

evaluation.  

3-8- Machine Learning Algorithms 

For predicting the stage of PBC in this study twelve 

different machine learning algorithms were used. These 

algorithms were used to identify the best-performing model 

that would predict the disease stages with the highest 

accuracy. The hyperparameters of each algorithm were 

optimized using the Optuna tool. Optuna is a dynamically 

designed hyperparameter optimization tool to automatically 

find the best values for model parameters (Akiba et al., 

2019). Like others, efficiently finds the best hyperparameter 

configurations with advanced search techniques like Tree-

structured Parzen Estimator (TPE) and Random Search. By 

running several tests and comparing how models perform, 

this tool minimizes the time to gain optimality. The table 

below provides the list of 12 machine learning algorithms, 

operational mechanisms, and the optimized values achieved 

using Optuna: 

 

Table 3. Machine learning algorithms used and optimized hyperparameter values 

Algorithm Method Optimal hyperparameters 

Decision Tree 

The algorithm applies successive splitting of the data into either two or 
more subsets. At every stage, one feature which works best for data 

splitting is selected according to certain criteria, some of which are Gini 
Index and Entropy(Mienye & Jere, 2024) . 

max_depth=32, 
min_samples_split=8 

Random 
Forest 

This algorithm, using a combination of multiple decision trees to reduce 
data variance, trains each tree on a random subset of the data and obtains 

its final output by following the majority voting rule in the case of 
classification, or averaging in the case of regression (Schonlau & Zou, 

2020) . 

n_estimators=331, 
max_depth=8 

Extra Trees 
It operates similarly to Random Forest but uses random values instead of 

optimal values for node splitting. This approach reduces variance and 
results in faster model training (Geurts et al., 2006) . 

n_estimators=373, 
max_depth=14 

Gradient 
Boosting 

To build weak models (decision trees) one after the other, correcting the 
mistakes done by the previous model. The aim is to gradually minimize 

model errors and boost performance with each step (Biau & Cadre, 
2017) . 

n_estimators=191, 
learning_rate=0/02662 
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AdaBoost 
This algorithm iteratively trains weak models (small decision trees) and 
assigns greater weight to misclassified samples at each step to create a 

stronger final model (Ding et al., 2022) . 

n_estimators=162, 
learning_rate=0/54684 

XGBoost 

An optimized version of Gradient Boosting that reconciles the conflicts 
between solving the execution speed and the execution accuracy by 

analyzing operations in parallel and using more efficient algorithms. This 
optimization method can address large amounts of information and 

diversity (Bentéjac et al., 2020) . 

n_estimators=162, 
learning_rate=0/54684 

LightGBM 

An optimized Boosting algorithm that grows leaves instead of levels. 
This method is suitable for large-scale, high-dimensional data and 

provides faster performance compared to other Boosting algorithms (Ke 
et al., 2017) . 

n_estimators=329, 
num_leaves=210, 

learning_rate=0/1247 

CatBoost 

A fast and efficient Boosting algorithm optimized for categorical data, 
which automatically encodes categorical values. This method requires 
fewer parameter adjustments compared to other Boosting algorithms 

(Dorogush et al., 2018) 

iterations=435, depth=9, 
learning_rate=0/2872 

Logistic 
Regression 

A method for data classification using a linear model computes the 
probability of the data belonging to different classes using the logistic 

(sigmoid) function. It is well suited to low-dimensional datasets 
(Starbuck, 2023) . 

C=0/1228 

Support 
Vector 

Machine 

This algorithm finds an optimal hyperplane to separate classes in the 
feature space. Using the RBF kernel, it maps data to a higher-

dimensional space, enabling nonlinear separation (Shmilovici, 2023). 

C=459/87, gamma=0/0573, 
kernel='rbf' 

K-Nearest 
Neighbors 

The prediction takes into account the distance of the other instances from 
the input data. The majority class among the k nearest neighbors is 

considered for predicting the class of the novel sample (Halder et al., 
2024) . 

n_neighbors=3 

Naive Bayes 
A probabilistic model based on Bayes' theorem. This algorithm assumes 

complete independence between features and is well-suited for low-
dimensional and categorical data (Pajila et al., 2023) . 

Lacks suitable 
hyperparameters for 

optimization. 

 

To evaluate the performance of machine learning models 

in this study, five key metrics were used: accuracy, 

precision, recall, F1-score, and the area under the receiver 

operating characteristic curve (ROC-AUC). These metrics 

are defined based on the concepts of True Positive (TP) and 

True Negative (TN) for correct predictions, and False 

Positive (FP) and False Negative (FN) for incorrect 

predictions. 

Table 4. Evaluation indicators for machine learning models 

index definition Formula 

Accurac
y 

The ratio of correct 
predictions (both positive 
and negative) to the total 

number of samples. 

(TP+TN)/(TP+FP+FN+

TN) 

Precision 

The ratio of correctly 
predicted instances for a 

class to all instances 
predicted as that class. 

TP/(TP+FP) 

Recall 

The ratio of correctly 
predicted instances for a 

class to all actual 
instances of that class. 

TP/(TP+FN) 

F1 Score 

The harmonic mean of 
Precision and Recall, 

balancing the trade-off 
between the two metrics. 

(2×Precision×Recall)/(P

recision+Recall) 

 

The ROC-AUC metric measures the performance of a 

classification model at all threshold levels and illustrates 

how well the model is at distinguishing between classes; 

thus, it shows how well the model can predict the different 

stages of the disease. The ROC curve is created by plotting 

the value of false positive rate (FPR) vs true positive rate 

(TPR) for different thresholds and area under this curve is 

known as the AUC. AUC can be understood as the higher 

the better: The closer the AUC value is to 1, the better. In 

order to test the generalizability of the model and verify that 

it performed successfully regardless of the dataset with 5-

Fold Cross-Validation was performed. In this method, the 

data set is split into five equal parts. At each iteration, one 

of its sections is considered as test data, while the other four 

sections are used as training data. This is done five times to 

guarantee that each batch is tested once. Finally, the overall 

performance of the model is reported as the mean values of 

all the evaluation metrics across all iterations. 

 

4- Results 

In this section, the results of the machine learning models 

are presented and analyzed. The Python programming 

language was utilized for this study, and all models were 

executed on a system equipped with an Intel Core i7-
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13700H processor, 16GB of RAM, and Python version 3/12. 

The following outlines the performance results of the 

models. 

Table 5. Comparison of results 

Model Accuracy Precision Recall F1 
Score 

CatBoost 0/7708 0/7688 0/7708 0/7519 

Extra Trees 0/7569 0/7636 0/7569 0/7400 

LightGBM 0/7292 0/7182 0/7292 0/7126 

Random 
Forest 0/7222 0/7146 0/7222 0/7085 

Gradient 
Boosting 0/7153 0/7057 0/7153 0/7017 

XGBoost 0/7083 0/6973 0/7083 0/6993 

Support 
Vector 

Machine 
0/7014 0/6895 0/7014 0/6847 

K-Nearest 
Neighbors 0/6667 0/6569 0/6667 0/6531 

Decision 
Tree 0/6319 0/6222 0/6319 0/6252 

AdaBoost 0/5972 0/5961 0/5972 0/5949 

Logistic 
Regression 0/5139 0/5131 0/5139 0/5094 

Naive 
Bayes 0/5347 0/5129 0/5347 0/5083 

 

Evaluation Results of the Machine Learning Models. 

From all the above models, the CatBoost model presented 

the best performance results with an accuracy equal to 

0.7708, precision equal to 0.7688, recall equal to 0.7708 and 

F1-score equal to 0/7519. These results show that CatBoost 

not only predicts accurately, but have a good mean for all 

metrics. This is because of its strong architecture for 

processing categorical data and its automatic 

hyperparameter tuning. Second only to CatBoost, the Extra 

Trees model achieved an accuracy score of 0/7569 and an 

F1-score of 0/7400. Through a series of randomized 

decision trees, this model provided a somewhat good 

performance and outperformed other models, such as 

LightGBM, Random Forest. Similarly, LightGBM also 

performed well but produced an accuracy of 0/7292 and an 

F1-score of 0/7126, highlighting its ability to process 

complex and high-dimensional data. Random Forest and 

Gradient Boosting ranked next, achieving accuracies of 

0/7222 and 0/7153, respectively. The two models 

presented balanced trade-off between all metrics but were 

not able to beat CatBoost and Extra Trees. The XGBoost 

model followed closely, with an accuracy of 0.7083 and an 

F1-score of 0.6993, highlighting the competitive nature of 

Boosting-based algorithms. On the other hand, SVM 

(accuracy = 0/7014) and KNN (accuracy = 0/6667) 

exhibited less accuracy in predicting disease stages and 

hence this concludes their lower efficiency in dealing with 

complex data processing compared to the Boosting models. 

Relative to simpler models like Decision Tree and 

AdaBoost, these models exhibited moderate performance. 

The Decision Tree performed with an accuracy of 0.6319. 

Standard decision trees are underfitting models, and their 

performance is less than ensemble trees (i.e. Random Forest, 

Extra Trees). The AdaBoost model also performed 

relatively weakly, with 0/5972 accuracy. Logistic 

Regression and Naive Bayes performed the worst, 

respectively. As a result of Logistic Regression (accuracy 

of 0/5139) and Naive Bayes (accuracy of 0/5347), we 

could claim that these simple models do not provide the 

ability to process and predict complex, multidimensional 

data effectively in this study. 

 

 
Figure 4. Performance of various machine learning models 

 

In the figure 4, we can see the comparison of various 

machine learning models by accuracy, precision, recall, and 

F1-score. Overall, ensemble learning based models like 

CatBoost, Extra Trees and LightGBM performed the best. 

The outcomes show that advanced models based on 

Boosting and ensemble approaches using decision trees 

excel in performing accurate prediction of disease phases 

whilst preserving an optimal equilibrium among evaluation 

metrics compared with alternative models. 

 

 
Figure 5. ROC curve 

 

Figure 5 shows ROC curves and AUC for PBC prediction. 

The performance of models in separating classes is 

visualized using the ROC curve, whereas the AUC is 

another robust measure of model performance. If we 

observe the graph, it is clear that Extra Trees model gave 

the highest AUC 0/92. The CatBoost and Random Forest 

both gave AUC 0/90. Gradient Boosting, LightGBM, and 

SVM also performed distinctively well, attaining AUC 

values ranging over 0/87 and 0/88. Conversely, simpler 
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models like Decision Tree and Naive Bayes had lower 

performance, with AUC of 0/74 and 0/79, respectively. 

From the results collectively, we see that ensemble-based 

models, specifically Extra Trees and CatBoost perform 

better than simple models in class separation. This shows 

that implementing complex algorithms in highly intricate 

medical problems, like predicting the progression of 

diseases, increases the performance of models significantly. 

5- Discussion and Conclusion 

Results from our study indicate that with the application 

of modern machine learning algorithms, like CatBoost and 

Extra Trees, it is possible to obtain accurate predictions of 

PBC stages. CatBoost was found to be the best of all models 

achieved, having produced an accuracy of 0/7708 and AUC 

of 0/90.)   Extra Trees also performed well in classifying 

complex datasets, reaching an AUC of 0/92. These 

findings underscore the significance of ensemble-based 

methods in achieving superior predictive accuracy 

compared to simpler models . This research represents 

significant advances in machine learning techniques as 

compared to previous studies. A notable limitation in earlier 

studies was the use of unoptimized models with poorly 

defined feature sets.  For example, while Hanif and Khan 

(2022) and Jamadar et al. (2023) employed algorithms such 

as Random Forest and SVM, they did not utilize advanced 

optimization techniques to enhance model performance or 

implement robust feature selection methods.This poor 

optimization restricted the generalizability and accuracy of 

their results. As a result, the present study led to stable 

prediction performance across all metrics by using an 

automated hyperparameter optimization method (Optuna) 

and an advanced feature selection method (Recursive 

Feature Elimination with Cross-Validation). Another key 

difference in prior studies is their inadequate consideration 

of imbalanced datasets. When models are evaluated in such 

manner, it may lead to misleading results because the model 

can easily predict the majority class while performing 

poorly on minority classes. For example, Bhardwaj et al. 

(2024) and Sidana et al. (2022), which did not evaluate 

models properly and did not point out that a better 

evaluation is characterized by the reporting of important 

imbalanced evaluation metrics such as precision, recall, F1-

score, etc. This contrast with this study, which used 

standard performance metrics to give transparent and 

comprehensive evaluation of model quality. SMOTE 

process was applied to supporter model to solve imbalance 

class, while RFECV was used to find out 14 essential 

features to both reduce model complexity and improve 

quality. These developments make this study unique 

compared to previous studies that did not properly resolve 

dataset imbalance or attempted basic feature selection 

methodology. Here, we showcase the possibilities of 

advanced machine learning models and structured 

optimization techniques in predicting medical health 

outcomes. Ensemble methods like CatBoost and Extra 

Trees are better suited for these medical datasets with high-

dimension characteristics due to their superior 

performances compared to simple methods Logistic 

Regression and Naive Bayes. Such findings provide a 

direction for future research using larger and diverse data 

sets having imaging data to create models more accurate 

with clinical relevance. 

Based on the findings of this review, several 

recommendations are made to enhance and direct future 

research. The first improvement could be using more and 

diverse data to provide machine learning models capable of 

getting generalized. The combination of data from multiple 

clinical sources with covariate data available in existing 

datasets could provide more robust results. Secondly, it is 

proposed that some of the more sophisticated preprocessing 

methods such as feature engineering and nonlinear 

transformations might reveal hidden patterns in the data that 

could improve the model's performance. In future works, 

DNN (Deep Neural Networks) or LSTM (Long-Short Term 

Memory) could potentially replace GBDTs with a better 

prediction performance for the disease stages. More 

sophisticated ensemble techniques (hybrid Voting and 

Stacking) are additionally likely to enhance the prediction 

capabilities due to the synergy of the respective standalone 

models. On the clinical side, a more detailed analysis of the 

importance and sensitivity of the model features must 

facilitate the identification of pertinent biomarkers 

associated with the prediction of disease stage; each of the 

findings will assist clinical applications. Finally, validating 

the above machine learning models against clinical data 

from hospitals and clinics would make various algorithms 

appropriate for use as well as more reliable. Initiating these 

efforts may lead to the development of more accurate and 

reliable models of timely diagnostics and improved care of 

patients. 

 

References 

[1] M. A. Konerman et al., “Machine learning models to predict 

disease progression among veterans with hepatitis C virus,” 

PLOS ONE, vol. 14, no. 1, p. e0208141, Jan. 2019, doi: 

https://doi.org/10.1371/journal.pone.0208141. 

[2] Ahmet Ercan Topcu, Ersin Elbasi, and Yehia Ibrahim Alzoubi, 

“Machine Learning-Based Analysis and Prediction of Liver 

Cirrhosis,”Jul.2024,doi:https://doi.org/10.1109/tsp63128.202

4.10605929. 

[3] E. B. Tapper and N. D. Parikh, “Diagnosis and Management 

of Cirrhosis and Its Complications: A Review,” JAMA, vol. 

329, no. 18, pp. 1589–1602, May 2023, doi: 

https://doi.org/10.1001/jama.2023.5997. 

https://doi.org/10.1371/journal.pone.0208141
https://doi.org/10.1109/tsp63128.2024.10605929
https://doi.org/10.1109/tsp63128.2024.10605929
https://doi.org/10.1001/jama.2023.5997


    
Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025 

 

  

 

 

175 

[4] R. Wei et al., “Clinical prediction of HBV and HCV related 

hepatic fibrosis using machine learning,” vol. 35, pp. 124–132, 

Sep. 2018, doi: https://doi.org/10.1016/j.ebiom.2018.07.041. 

[5] C. Labenz et al., “Structured Early detection of Asymptomatic 

Liver Cirrhosis: Results of the population-based liver 

screening program SEAL,” Journal of Hepatology, vol. 77, no. 

3,pp.695–701,Sep.2022,doi: 

https://doi.org/10.1016/j.jhep.2022.04.009. 

[6] E. Forte et al., “Top-Down Proteomics Identifies Plasma 

Proteoform Signatures of Liver Cirrhosis Progression,” 

Molecular & Cellular Proteomics, pp. 100876–100876, Nov. 

2024, doi: https://doi.org/10.1016/j.mcpro.2024.100876. 

[7] Varshni Premnath and Shanthi Veerappapillai, “Unveiling 

miRNA–Gene Regulatory Axes as Promising Biomarkers for 

Liver Cirrhosis and Hepatocellular Carcinoma,” ACS Omega, 

vol. 9, no. 44, pp. 44507–44521, Oct. 2024, doi: 

https://doi.org/10.1021/acsomega.4c06551. 

[8] L. Wang et al., “Impact of Asymptomatic Superior Mesenteric 

Vein Thrombosis on the Outcomes of Patients with Liver 

Cirrhosis,” Thrombosis and Haemostasis, vol. 122, no. 12, pp. 

2019–2029, Sep. 2022, doi: https://doi.org/10.1055/s-0042-

1756648. 

[9] Md. Nahid Hasan, T. Ahmed, Md. Ashik, Md. Jahid Hasan, 

Tahaziba Azmin, and J. Uddin, “An Analysis of Covid-19 

Pandemic Outbreak on Economy using Neural Network and 

Random Forest,” Journal of Information Systems and 

Telecommunication (JIST), vol. 11, no. 42, pp. 163–175, Jun. 

2023, doi: https://doi.org/10.52547/jist.34246.11.42.163. 

[10] Sudiksha Kottachery Kamath, Sanjeev Kushal Pendekanti, 

and D. Rao, “LivMarX: An Optimized Low-Cost Predictive 

Model Using Biomarkers for Interpretable Liver Cirrhosis 

Stage Classification,” IEEE Access, vol. 12, pp. 92506–

92522,Jan.2024,doi:https://doi.org/10.1109/access.2024.3422

451. 

[11] I. Hanif and M. M. Khan, “Liver Cirrhosis Prediction using 

Machine Learning Approaches,” 2022 IEEE 13th Annual 

Ubiquitous Computing, Electronics & Mobile 

Communication Conference (UEMCON), Oct. 2022, doi: 

https://doi.org/10.1109/uemcon54665.2022.9965718. 

[12] D. Bhardwaj, G. Kaur, and G. L. Babu, “Improving 

Prognostic Prediction of Cirrhosis Using an Optimized 

Ensemble Machine Learning Approach,” pp. 1–6, Aug. 2024, 

doi: https://doi.org/10.1109/ciscon62171.2024.10695979. 

[13] Bhanu Prakash K, Vennela D, Dhana Lakshmi N, and Siva 

Priyanka S, “Stage Prediction of Liver Cirrhosis Disease using 

Machine Learning,” pp. 1–6, Aug. 2024, doi: 

https://doi.org/10.1109/icecsp61809.2024.10698096. 

[14] Rauf Jamadar, Harsh Uike, and Vaishali Jabade, “Cirrhosis 

Disease Prediction Using Machine Learning,” pp. 515–520, 

Dec.2023,doi:https://doi.org/10.1109/icacctech61146.2023.0

0090. 

[15] Tejasv Singh Sidana, S. Singhal, S. Gupta, and R. Goel, 

“Liver Cirrhosis Stage Prediction Using Machine Learning: 

Multiclass Classification,” Lecture notes in networks and 

systems, pp. 109–129, Nov. 2022, doi: 

https://doi.org/10.1007/978-981-19-3679-1_9. 

[16] Arif Mudi Priyatno and Triyanna Widiyaningtyas, “A 

SYSTEMATIC LITERATURE REVIEW: RECURSIVE 

FEATURE ELIMINATION ALGORITHMS,” JITK (Jurnal 

Ilmu Pengetahuan dan Teknologi Komputer), vol. 9, no. 2, pp. 

196–207,Feb.2024,doi: 

https://doi.org/10.33480/jitk.v9i2.5015. 

[17] S. I. Khan and A. S. M. L. Hoque, “SICE: an improved 

missing data imputation technique,” Journal of Big Data, vol. 

7, no. 1, Jun. 2020, doi: https://doi.org/10.1186/s40537-020-

00313-w. 

[18] S. Jeganathan, A. R. Lakshminarayanan, S. Parthasarathy, A. 

Abdul Azeez Khan, and K. J. Sathick, “OptCatB: Optuna 

Hyperparameter Optimization Model to Forecast the 

Educational Proficiency of Immigrant Students based on 

CatBoost Regression,” Journal of Internet Services and 

Information Security, vol. 14, no. 3, pp. 111–132, Aug. 2024, 

doi: https://doi.org/10.58346/jisis.2024.i2.008. 

[19] F. Fazel and B. Foing, “Evaluating Classification Algorithms: 

Exoplanet Detection using Kepler   Time Series Data,” arXiv 

(CornellUniversity),Feb.2024,doi: 

https://doi.org/10.48550/arxiv.2402.15874. 

[20] Fedesoriano, “Cirrhosis Prediction Dataset,” 

www.kaggle.com.https://www.kaggle.com/fedesoriano/cirrh

osis-prediction-dataset 

[21] V. Thambawita et al., “An Extensive Study on Cross-Dataset 

Bias and Evaluation Metrics Interpretation for Machine 

Learning Applied to Gastrointestinal Tract Abnormality 

Classification,” ACM Transactions on Computing for 

Healthcare, vol. 1, no. 3, pp. 1–29, Jul. 2020, doi: 

https://doi.org/10.1145/3386295. 

[22] P. J. Muhammad Ali, “Investigating the Impact of Min-Max 

Data Normalization on the Regression Performance of K-

Nearest Neighbor with Different Similarity Measurements,” 

ARO-THE SCIENTIFIC JOURNAL OF KOYA 

UNIVERSITY, vol. 10, no. 1, pp. 85–91, Jun. 2022, doi: 

https://doi.org/10.14500/aro.10955. 

[23] K. K, U. K, S. A, and A. Kumar, “Predicting Student 

Performance for Early Intervention using Classification 

Algorithms in Machine Learning,” Journal of Information 

Systems and Telecommunication (JIST), vol. 9, no. 36, pp. 

226–235,Oct.2021,doi: https://doi.org/10.52547/jist.9.36.226. 

[24] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, 

“Optuna: A Next-generation Hyperparameter Optimization 

Framework,” arXiv (Cornell University), Jul. 2019, doi: 

https://doi.org/10.48550/arxiv.1907.10902. 

[25] I. D. Mienye and N. Jere, “A Survey of Decision Trees: 

Concepts, Algorithms, and Applications,” IEEE access, pp. 1–

1,Jan.2024,doi: https://doi.org/10.1109/access.2024.3416838. 

[26] A. Jafarnejad, A. Rezasoltani, and A. M. Khani, 

"Comparative Analysis of Machine Learning Algorithms in 

Predicting Jumps in Stock Closing Price: Case Study of Iran 

Khodro Using NearMiss and SMOTE Approaches," Iranian 

Journal of Finance, vol. 9, no. 3, pp. 27–54, 2025, doi: 

10.30699/ijf.2025.491324.1496. 

[27] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely 

randomized trees,” Machine Learning, vol. 63, no. 1, pp. 3–

42, Mar. 2006, doi: https://doi.org/10.1007/s10994-006-6226-

1. 

[28] G. Biau and B. Cadre, “Optimization by gradient boosting,” 

arXiv.org, Jul. 17, 2017. https://arxiv.org/abs/1707.05023 

(accessed Apr. 24, 2024). 

[29] Y. Ding, H. Zhu, R. Chen, and R. Li, “An Efficient AdaBoost 

Algorithm with the Multiple Thresholds Classification,” 

Applied Sciences, vol. 12, no. 12, p. 5872, Jun. 2022, doi: 

https://doi.org/10.3390/app12125872. 

https://doi.org/10.1016/j.ebiom.2018.07.041
https://doi.org/10.1016/j.jhep.2022.04.009
https://doi.org/10.1016/j.mcpro.2024.100876
https://doi.org/10.1021/acsomega.4c06551
https://doi.org/10.1055/s-0042-1756648
https://doi.org/10.1055/s-0042-1756648
https://doi.org/10.52547/jist.34246.11.42.163
https://doi.org/10.1109/access.2024.3422451
https://doi.org/10.1109/access.2024.3422451
https://doi.org/10.1109/uemcon54665.2022.9965718
https://doi.org/10.1109/ciscon62171.2024.10695979
https://doi.org/10.1109/icecsp61809.2024.10698096
https://doi.org/10.1109/icacctech61146.2023.00090
https://doi.org/10.1109/icacctech61146.2023.00090
https://doi.org/10.1007/978-981-19-3679-1_9
https://doi.org/10.33480/jitk.v9i2.5015
https://doi.org/10.1186/s40537-020-00313-w
https://doi.org/10.1186/s40537-020-00313-w
https://doi.org/10.58346/jisis.2024.i2.008
https://doi.org/10.48550/arxiv.2402.15874
https://www.kaggle.com/fedesoriano/cirrhosis-prediction-dataset
https://www.kaggle.com/fedesoriano/cirrhosis-prediction-dataset
https://doi.org/10.1145/3386295
https://doi.org/10.14500/aro.10955
https://doi.org/10.48550/arxiv.1907.10902
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.3390/app12125872


    
Rezasoltani, Khani, Husseinzadeh Kashan, Agah & Agah, Predicting Primary Biliary Cholangitis Stages Using Machine Learning with…. 

 

 

176 

[29] C. Starbuck, "Logistic regression," in Springer eBooks, pp. 

223–238, 2023. doi: 10.1007/978-3-031-28674-2_12. 

[30] A. Jafarnejad Chaghoshi, A. Rezasoltani, and A. M. Khani, 

"Unleashing the Power of Ensemble Learning: Predicting 

National Ranks in Iran’s University Entrance Examination," 

Industrial Management Journal, vol. 16, no. 3, pp. 457–481, 

2024, doi: 10.22059/imj.2024.381521.1008178. 

[31] G. Ke et al., “LightGBM: A Highly Efficient Gradient 

Boosting Decision Tree,” hal.science, Dec. 04, 2017. 

https://hal.science/hal-03953007 (accessed Mar. 27, 2023). 

[32] A. V. Dorogush, V. Ershov, and A. Gulin, “CatBoost: 

gradient boosting with categorical features support,” 

arXiv.org, Oct. 24, 2018. https://arxiv.org/abs/1810.11363 

[33] Motiei, M., Khani, A. M., & Beyrami, S. (2021). The effect 

of green supply chain and green human resource management 

on environmental performance: The mediating role of green 

innovation. Logistics Thought, 20(77), 165–197. 

https://doi.org/10.22034/lot.2021.96691  

[34] A. Jafarnjad, A. Rezasoltani, and A. M. Khani, "Analyzing 

and Predicting Hiring Decisions Using Machine Learning and 

Deep Learning," Journal of Public Administration, vol. 17, no. 

2, pp. 295–327, 2025, doi: 10.22059/jipa.2025.390322.3649. 

[35]  Jafarnejad Chaghoshi, A., Khani, A. M., & Rezasoltani, A. 

(2024). Risk modeling in banking services for the blind using 

fuzzy FMEA and graph neural network (GNN). Journal of 

Industrial Management Perspective, 14(4), 223–255. 

https://doi.org/10.48308/jimp.14.4.223 

[36] P.J.Beslin Pajila, B. Gracelin. Sheena, A. Gayathri, J. Aswini, 

M. Nalini, and Siva Subramanian R, “A Comprehensive 

Survey on Naive Bayes Algorithm: Advantages, Limitations 

and Applications,” Sep. 2023, doi: 

https://doi.org/10.1109/icosec58147.2023.10276274. 

[37] J. Kasubi, M. D. Huchaiah, I. Gad, and M. K. Hooshmand, 

“A Comparison Analysis of Conventional Classifiers and 

Deep Learning Model for Activity Recognition in Smart 

Homes based on Multi-label Classification,” Journal of 

Information Systems and Telecommunication (JIST), vol. 

12,no46pp127–137,Jun.2024,doi: 

https://doi.org/10.61186/jist.36294.12.46.127. 

 [38] A. Rezasoltani, A. Jafarnejad, and A. M. Khani, "A voting-

based hybrid machine learning model for predicting 

backorders in the supply chain," Journal of Decisions and 

Operations Research, vol. 10, no. 1, pp. 194–213, 2025, doi: 

10.22105/dmor.2025.511401.1924. 

 

https://doi.org/10.1007/978-3-031-28674-2_12
https://arxiv.org/abs/1810.11363
https://doi.org/10.48308/jimp.14.4.223
https://doi.org/10.61186/jist.36294.12.46.127


 

 Abdallah maiti 

abdallah.maiti@uhp.ac.ma 
 

Journal of Information Systems and Telecommunication 
Vol.13, No.3, July-September 2025, 177-188 

 
 

http://jist.acecr.org 
ISSN 2322-1437 / EISSN:2345-2773 

 

Resolving Class Imbalance in Medical Classification: Technique 
Comparison and Performance Evaluation 

Abdallah Maiti1*, Mohamed Hanini1, Abdallah Abarda2 

 
1.Laboratory of Computing, Networks, Mobility and Modelling (IR2M) FST, Hassan First University of Settat, Morocco  
2.Laboratory LM2CE, Faculty of Economic Sciences and Management, Hassan First University of Settat, Morocco 
 

Received: 16 Mar 2025/  Revised: 07 Aug 2025/  Accepted: 06 Sept 2025 
 

 

Abstract  
The problem of unbalanced data is a common one in medical diagnostics. This problem can reduce the accuracy of 

classification models and affect the validity of results. The aim of our paper is to compare several techniques for correcting 

class imbalances in medical datasets and to evaluate the impact of these techniques on machine learning performance. 

In our paper, we used an imbalanced dataset to train a convolutional neural network (CNN) model. We then tested correction 

techniques such as sampling and cost-sensitive learning. Finally, we used recall, precision, accuracy and F1 score to evaluate 

the model's performance. 

The results show that the use of correction techniques led to a significant improvement in the performance of the classification 

model. The cost-sensitive learning technique gave the best results, particularly for the detection of minority classes. This 

method increased the weight of classification errors associated with minority classes, thus improving the detection of critical 

cases. The results of this study underline the importance of dealing with imbalances in the data to improve the performance 

of classification models in the medical field. The use of methods such as cost-sensitive learning not only improves model 

performance, but also enables more reliable decisions to be made, which is essential for ensuring more accurate diagnoses 

and better quality of care. 

 

Keywords: Data Imbalance; Techniques for Resolving Data Class Imbalance; Oversampling; Cost-Sensitive learning, 

Convolutional Neural Networks; Classification; Model Performance; Medical Diagnostics. 
 

1- Introduction 

The text must be in English. Authors whose English The 

problem of imbalanced data represents a big challenge in 

machine learning, particularly in critical fields such as 

healthcare, finance, cybersecurity and other. It occurs when 

certain classes in a data-set are underrepresented relative to 

others, causing predictive models to disproportionately 

favor the majority classes. In domains such as fraud 

detection, where fraudulent transactions represent only a 

small proportion of the data, models often struggle to 

identify these minority instances, favoring normal 

transactions instead [1], [2]. Similarly, rare diseases in 

medical diagnosis or infrequent cyberattacks in 

cybersecurity are often misclassified due to their limited 

representation in training datasets [3]. Addressing this 

imbalance is essential to improve prediction accuracy and 

ensure fairness across all classes. Classical ML algorithms, 

such as logistic regression and decision trees assume a 

balanced distribution of data, a condition that is rarely met 

in real-world applications. Therefore, various methods have 

been developed to mitigate biases caused by imbalance. 

Different techniques such as oversampling, 

undersampling, cost-sensitive learning, and ensemble 

methods have shown promise in improving minority class 

detection while maintaining overall model performance [4] 

solve this problem. Imbalance can take different forms 

depending on the data type. In binary classification, a single 

minority class often poses a problem, as seen in rare disease 

diagnosis or fraud detection, where models tend to favor the 

majority class. Approaches such as SMOTE address this 

problem by generating synthetic examples for 

underrepresented categories [5]. In multi-class scenarios, 

imbalance arises when multiple classes are unequally 

represented, as seen in multi-stage disease diagnosis. In 

such cases, advanced techniques such as One-vs-One (OvO) 

and One-vs-Rest (OvR), as well as ensemble methods, are 

needed to ensure balanced performance across classes [4]. 

Beyond accuracy, traditional evaluation metrics often 

fail to capture a model’s ability to identify minority classes. 
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Metrics like precision, recall, and F1-score are more 

appropriate for binary imbalances, while G-mean and Mat-

thews correlation coefficient (MCC) provide a more 

balanced evaluation for multi-class problems [6]. These 

metrics are crucial for evaluating mitigation strategies and 

ensuring fair representation of all classes. 

Despite the progress made, significant challenges persist 

in combating class imbalance. Low performance on 

minority classes, inadequacy of conventional metrics, and 

difficulties in generalizing to unseen data are among the 

main obstacles. The choice of the most effective method 

depends on the specific context, including the severity of 

the imbalance and the area of application. In complex 

scenarios, hybrid approaches that combine data-level and 

algorithmic methods are often required [7]. 

Recent empirical investigations have underscored the 

efficacy of hybrid methodologies that integrate 

oversampling techniques, such as Synthetic Minority Over-

sampling Technique (SMOTE), deep neural networks, and 

reinforcement learning to more proficiently address 

imbalance within intricate datasets. These adaptive 

methodologies are structured to correspond with the data's 

inherent architecture, thereby enhancing performance while 

concurrently mitigating the risk of overfitting [8]. 

Furthermore, the intensifying focus on algorithmic equity, 

especially within critical sectors like healthcare, 

necessitates the rectification of biases stemming from 

underrepresented classes, as such biases may precipitate 

significant diagnostic inaccuracies [8]. 

In the domain of natural language processing, 

contemporary scholarship regarding the Central Kurdish 

language has demonstrated that the qualitative balancing of 

corpora is imperative for guaranteeing the dependability of 

morphosyntactic frameworks, particularly in contexts 

characterized by limited resources [9]. 

These theoretical frameworks have significantly guided 

the methodological framework of the current investigation. 

The proposed architecture is predicated on a convolutional 

neural network (CNN), augmented by rebalancing 

methodologies such as Synthetic Minority Over-sampling 

Technique (SMOTE), classification paradigms including 

One-vs-One (OvO) and One-vs-Rest (OvR), alongside cost-

sensitive learning and the ensemble-based Bagging 

methodology. This comprehensive framework aims to 

enhance the identification of minority classes while 

maintaining consistent overall efficacy. 

In addition to extant research, this investigation enriches 

the academic discourse by amalgamating all four 

methodologies within a cohesive framework explicitly 

tailored for medical imaging applications. It delineates a 

multiclass classification protocol that tackles the 

infrequency of clinical cases, the hierarchical organization 

of disease stages, and the imperatives of algorithmic equity. 

This contribution is particularly notable in its deployment 

for the automated identification of diabetic retinopathy 

utilizing retinal imagery, where advanced stages of the 

condition are frequently underrepresented and challenging 

to discern. 

The overall aim of this research is to develop a robust 

classification system capable of accurately identifying rare 

stages of diabetic retinopathy (DR). More specifically, the 

study seeks to determine the most effective techniques for 

correcting class imbalance in medical imaging; to evaluate 

the impact of these techniques using appropriate 

performance metrics such as recall and F1-score; and to 

offer practical recommendations for high-stakes domains 

where misclassification can significantly affect decision-

making. The article is structured as follows: Section 2, 

“Materials and Methods,” describes the dataset, the CNN 

architecture, and the imbalance-handling strategies 

implemented; Section 3, “Results,” presents the model’s 

performance under various conditions; Section 4, 

“Discussion,” interprets the findings and considers 

methodological trade-offs; and finally, Section 5, 

“Conclusion,” summarizes the main contributions and 

proposes future research directions. 

2- Materials and Methods 

In our article, we investigate various techniques to address 

class imbalance in multi-class classification tasks. Our goal 

is to classify retinal images according to the severity stages 

of diabetic retinopathy (DR), a serious eye disease resulting 

from prolonged hyperglycemia. The dataset used is from the 

Kaggle platform and consists of five classes, ranging from 

“No DR” (absence of disease) to “Proliferative DR” 

(advanced and severe form of the disease). Unlike other 

studies that apply imbalance correction techniques without 

sufficient justification, we propose a systematic approach 

tailored to imbalanced and unstructured data, particularly 

images. Our aim is to scientifically identify the most 

effective techniques to overcome this challenge and 

evaluate their impact on the performance of classification 

models. To achieve this, we used a convolutional neural 

network (CNN)-based model, known for its ability to 

automatically extract complex features from images. We 

evaluate several class rebalancing techniques, including 

undersampling, oversampling, One-vs-Rest (OvR) and 

One-vs-One (OvO) approaches, cost-sensitive learning, and 

ensemble bagging (Fig.1). Models are trained and evaluated 

on balanced datasets using these techniques. The evaluation 

phase relies on standard metrics such as accuracy, precision, 

recall, and F1 score, which are derived from the confusion 

matrix. This comprehensive approach enables a precise 

analysis of the influence of the applied imbalance resolution 

techniques on the performance of the CNN-based model 

and provides insights into effectively addressing 

imbalances in image classification tasks. 
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Fig. 1. Architecture of the proposed diagnostic system 

2-1-Dataset Description 

The dataset used in our paper and obtained from the Kaggle 

platform [29], consists of a total of 92702 retinal images 

distributed across five classes, each representing a stage of diabetic 

retinopathy (DR). The dataset (Table 1) exhibits a significant class 

imbalance, with the majority class, "No DR," comprising 

approximately 77.8% of the total samples. In contrast, the more 

severe stages, such as "Severe DR" and "Proliferative DR," are 

severely underrepresented, together accounting for less than 5.1% 

of the dataset. 

 Table 1. Distribution of Retinal Images Across Diabetic Retinopathy Classes   

Class Description Samples Percentage 

Class 0 No DR 72102 77.8% 

Class 1 Mild DR 8772 9.5% 

Class 2 Moderate DR 7135 7.7% 

Class 3 Severe DR 2328 2.5% 

Class 4 Proliferative DR 2365 2.5% 

Total 92702 100% 

 

This imbalance poses challenges for model training, as 

predictive models tend to favor the majority class, leading to 

poor detection rates for minority classes. Addressing this 

issue is critical to improving diagnostic accuracy, 

particularly for the advanced stages of DR. Techniques such 

as oversampling, undersampling, and algorithmic 

adjustments are essential to mitigate this problem and ensure 

balanced and robust model performance. 

2-2-Model Architecture 

To solve the problem of multi-class classification of 

diabetic retinopathy, we have developed a model based on 

a convolutional neural network (CNN). This type of model 

is particularly effective for image analysis, thanks to its 

ability to automatically extract complex features while 

reducing the need for manual data pre-processing (Fig. 2). 

 

 

 
             Fig. 2.  Architecture of our CNN-based classification model  

  2- Mild DR 

1-No DR 

3- Moderate DR 

4- Severe DR 

5- Proliferative DR 

Image Classification 
Conv 1 

(32 filtres, 3x3) 

Conv 3 

(128 filtres, 3x3) 

Input 
(224x224x3) 

 

Fully-Connected 

(256 neurones) 
 

Fully-Connected 

5 neurons (No DR, Mild DR, Moderate DR, Severe DR, Severe 

DR, Proliferative DR) 

 

 

Feature Extraction Classification 

Conv 2 

(64 filtres, 3x3) 

Max_Pooling 

(2x2) 
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The architectural framework of the model is predicated 

upon a convolutional neural network (CNN) organized 

into three primary phases: feature extraction, 

dimensionality reduction, and classification. It consists of 

three convolutional layers designed to extract 

fundamental features from images, succeeded by pooling 

layers that facilitate dimensionality reduction and bolster 

the robustness of the model. Ultimately, two fully 

connected layers conclude the multi-class classification 

process. Methodologies such as dropout regularization, in 

conjunction with non-linear activation functions (ReLU 

and Softmax), augment the model's efficacy and 

generalizability in the identification of diabetic 

retinopathy. 

2.2.1. Three Convolutional layers 

The proposed model employs a triad of convolutional 

layers to derive critical features from retinal imagery. The 

initial layer utilizes 32 filters, succeeded by 64 filters in the 

subsequent layer and 128 filters in the final layer. Each filter 

executes a convolution operation utilizing a 3x3 kernel, 

thereby facilitating the identification of distinct patterns, 

including anomalies or textures that are characteristic of 

retinopathy. 

2.2.2. Pooling layers (2x2) 

After each convolutional layer, pooling layers with a 2x2 

size kernel are applied to reduce the dimensionality of the 

data. This process limits over-fitting while reducing 

computational costs. The max-pooling method is used, 

selecting the maximum value in each analyzed region. This 

ensures that the most dominant and significant features of 

the images, essential for classification, are retained, while 

simplifying the representations learned by the model. 

2.2.3. Two Fully Connected layers 

The model comprises two fully-connected layers that 

ensure the finalization of the classification. The first layer, 

made up of 256 neurons, combines the features extracted 

from the convolutional and pooling layers. It uses a ReLU 

(Rectified Linear Unit) activation function, well known for 

its ability to introduce non-linearity, essential for modeling 

complex relationships between features. This function also 

prevents the effect of gradient saturation, which promotes 

efficient convergence during training. 

The output layer comprises 5 neurons, corresponding to 

the five severity classes of diabetic retinopathy. A 

Softmax activation function is applied to transform the 

outputs of this layer into normalized probabilities, 

allowing direct interpretation of predictions as 

probabilities belonging to each class. This configuration 

is particularly well-suited to multi-class classification, 

guaranteeing well-calibrated output and a sum of 

probabilities equal to 1. 

2.2.4. Regulation 

A dropout mechanism (with a rate of 0.5) is implemented 

subsequent to the fully connected layers in order to mitigate 

the probability of overfitting by sporadically deactivating 

certain neurons throughout the training process. This 

methodology entails the random inactivation of 50% of the 

neurons at each iteration during training, thereby 

diminishing the model's excessive dependence on particular 

neurons. 

This architecture integrates efficient convolutional layers 

for the automatic extraction of pertinent features 

alongside dense layers designated for classification. Such 

a framework is exceptionally well-suited for medical 

image analysis endeavors, owing to its capacity to capture 

intricate details while simultaneously minimizing the 

necessity for manual pre-processing. 

2-3-Techniques for Correcting Data Imbalances 
Addressing data imbalance is crucial for improving the 

performance of machine learning models. The different 

approaches to tackle this issue can be represented in three 

categories: data-driven approaches, algorithmic 

approaches, and specific approaches designed for multi-

class problems. 

2.3.1. Data-Based Methods 

Data-based approaches involve the direct manipulation of 

datasets to balance the distribution of classes before model 

training. 

a-Sub-Sampling 
The technique of subsampling, unlike oversampling, 

involves reducing the number of samples from majority 

classes to balance their proportion relative to minority 

classes (Fig. 3). This technique is typically implemented by 

randomly removing examples from the dominant class [10]. 

Subsampling has several advantages, including model 

simplification by reducing the total volume of data, which 

also lowers computational costs. However, this technique 

has several notable drawbacks. Removing samples from 

majority classes can lead to the loss of crucial information 

[11]. Furthermore, the random selection of samples to be 

removed may not accurately reflect the actual distribution 

of the data, potentially affecting model performance, 

especially when the data is heavily unbalanced [12]. 

b-Oversampling 

Oversampling methodologies pertain to the deliberate 

augmentation of sample quantities from minority classes to 

rectify their inadequate representation in imbalanced 

datasets (Fig 3). Among the preeminent methodologies, the 

Synthetic Minority Oversampling Technique (SMOTE) is 

particularly noteworthy for its capability to produce 
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synthetic instances through linear interpolation of existing 

samples within the minority class [6],[7]. This approach 

enhances the representation of underrepresented classes 

while concurrently maintaining the diversity and structural 

integrity of the dataset. 

The practice of oversampling confers several advantages. 

It mitigates the model's bias towards majority classes and 

enhances its generalization capabilities. These benefits 

culminate in an improved recognition of underrepresented 

classes, particularly in scenarios where imbalances may 

precipitate erroneous predictions [13]. Furthermore, by 

infusing greater variability into minority classes, 

methodologies such as SMOTE enable machine learning 

algorithms to more effectively discern the unique 

characteristics of rare instances. Nonetheless, oversampling 

is not devoid of limitations. The artificial augmentation of 

samples may heighten the risk of overfitting, especially 

when synthetic instances exhibit insufficient diversity or 

replicate patterns that do not accurately reflect authentic 

data [14]. In addition, this escalation in data volume may 

incur elevated computational costs, particularly with 

extensive datasets, due to the supplementary resources 

necessitated for the generation and processing of synthetic 

instances [15]. Recent studies suggest improvements to 

SMOTE, such as K-Means SMOTE or Borderline-SMOTE, 

which specifically target critical regions near decision 

boundaries to maximize the efficiency of oversampling 

[16]. These variants aim to reduce drawbacks while fully 

exploiting the potential of minority classes in unbalanced 

contexts. 

 

 

2.3.2. Algorithmic Approaches 

Algorithmic approaches directly modify learning 

algorithms to deal with data imbalance, without modifying 

the distribution of classes in the ensemble. 

a- Cost-Sensitive learning 

This methodology modifies the loss function of machine 

learning algorithms by allocating enhanced significance to 

minority classes. This approach is predicated on 

augmenting the weight of errors pertinent to these classes, 

in accordance with their under-representation (Fig. 4). In a 

dataset wherein a class constitutes 10% of the samples, 

misclassification errors for that class may be amplified by a 

factor that corresponds to the degree of imbalance, thus 

escalating the associated penalty [17]. 

This methodology proves to be particularly efficacious in 

critical domains, such as the detection of rare diseases, the 

prevention of financial fraud, or the prediction of failures in 

intricate systems. It substantially contributes to the 

reduction of classification errors in under-represented 

classes, while simultaneously preserving the equilibrium of 

overall model performance [18]. In addition, by integrating 

these weights into algorithms, cost-sensitive learning 

augments model sensitivity and precision for imbalanced 

datasets. 

Nonetheless, the efficacy of this methodology is profoundly 

contingent upon the meticulous calibration of the weights 

allocated to various classes. Insufficient calibration may 

result in an inverse imbalance, thereby impairing 

performance on majority classes or diminishing the overall 

effectiveness of the model [19]. Therefore, methodologies 

such as adaptive weight optimization or the employment of 

specific metrics, including the ROC curve or F-measure, are 

frequently advocated to guarantee balanced performance. 

 
Fig. 4. Operating principle of the cost-sensitive learning 

method 

 

b- Ensemble Methods 
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Ensemble techniques, such as Bagging and Boosting, 

combine the predictions of multiple models to enhance 

overall performance and reduce bias toward majority 

classes (Fig. 5). Bagging (Bootstrap Aggregating) uses 

random sampling with replacement to train several 

independent models, whose predictions are then 

aggregated, improving model robustness and stability [20]. 

Boosting, on the other hand, progressively corrects the 

errors of successive models by assigning higher weights to 

misclassified examples, thereby increasing overall 

accuracy, particularly on minority classes [21]. These 

techniques are particularly effective for datasets with a high 

degree of imbalance, as they address the weaknesses of 

individual models by improving the recognition of under-

represented classes. By introducing diversity into data 

subsets and combining the strengths of several models, they 

also promote better generalization. Furthermore, recent 

variants, such as AdaBoost-SAMME or Gradient Boosting 

with SMOTE, have demonstrated their effectiveness in 

handling complex imbalances by adjusting weights for 

minority classes [23]. 

Nevertheless, the execution of these methodologies may 

prove to be intricate and computationally intensive, 

particularly in the context of boosting. The latter 

necessitates meticulous calibration of hyperparameters, 

including but not limited to learning rate and quantity of 

estimators, to mitigate the risk of overfitting and to 

guarantee optimal efficacy [24]. In spite of these obstacles, 

their capacity to enhance performance in scenarios 

characterized by imbalanced data renders them 

indispensable instruments in domains such as finance, 

healthcare, and predictive analytics. 

 
Fig. 5. Operating principle of the Bagging ensemble method 

2.3.3. Specific Techniques for Multi-Class Problems 

In multi-class problems, where multiple categories are 

present, data imbalance poses additional challenges. 

Classical approaches can be adapted, but specific 

approaches such as One-vs-Rest (OvR) and One-vs-One 

(OvO) (Fig. 6) are often used. 

a- One-vs-Rest (OvR) 

OvR also known as One-vs-All, decomposes a multi-class 

problem into several binary classification problems. For 

each class, a binary classifier is trained, treating this class 

as positive and grouping all other classes as negative. For 

instance, in a five-class problem, OvR requires the creation 

of five binary models, each optimized to distinguish a 

specific class [25],[26]. Notable advantages of this 

technique include its simplicity of implementation and its 

ability to provide independent evaluations for each class. 

These features make it particularly suited to contexts where 

granular predictions are essential, such as in image 

recognition or recommender systems [25],[26]. 

Additionally, the OvR technique is compatible with a wide 

range of learning algorithms, such as support vector 

machines (SVMs) and logistic regression, making it a 

versatile option. 

However, this technique has important limitations. It can 

become biased when classes grouped as negative are highly 

imbalanced, which can impair model performance on 

minority classes [27]. Furthermore, OvR does not account 

for the complex relationships and possible 

interdependencies between different classes, limiting its 

ability to capture global patterns or subtle correlations in the 

data [28]. 

Recent work proposes extensions to mitigate these 

limitations, such as integrating adaptive weights to balance 

negative classes or using hybrid techniques that combine 

OvR with dimensionality reduction methods like linear 

discriminant analysis. These improvements aim to enhance 

the robustness and accuracy of this technique in unbalanced 

multi-class classification contexts. 

b- One-vs-One (OvO) 

The OvO technique treats each pair of classes separately, 

creating a binary classifier for each combination of two 

classes. For example, for a problem with five classes, the 

OvO results in ten binary classifiers, one for each pair of 

classes [25],[26]. 

This approach is particularly useful for data with complex 

class relationships, as each classifier focuses on only two 

classes at a time. This reduces the impact of majority 

classes, as each binary classifier works on data balanced 

between the two classes concerned. However, the 

computational complexity is high. The number of classifiers 

to be trained increases quadratically with the number of 

classes, which can lead to considerable computational costs 

and implementation difficulties in contexts with a large 

number of categories [27]. 

Data imbalance correction methods offer a variety of 

solutions tailored to specific application needs. Data-driven 

techniques, such as oversampling and undersampling, 

directly modify the class distribution, while algorithmic 

approaches, such as cost-sensitive learning and ensemble 

methods, adjust the algorithms to compensate for biases 

[28]. In multi-class problems, specific techniques such as 
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OvR and OvO are used to handle the additional complexity 

associated with multiple classes. The choice of the optimal 

method depends on the context of use, the nature of the data 

and technical constraints. It is often advisable to combine 

several approaches to maximize model performance while 

minimizing imbalance bias [25],[26]. 

 

                   Fig. 6. Representation of the “One-vs-Rest”(OvR) and “One-vs-One”(OvO) techniques 

 

3- The Results 

Unbalanced multi-class classification is a major challenge, 

due to the complexity of interactions between classes and the 

difficulty of assessing model performance. Unlike binary 

classification, this context requires advanced approaches to 

effectively manage imbalance while improving prediction 

accuracy. 

In our research, we apply and evaluate various data 

rebalancing techniques, such as oversampling, 

undersampling, one-to-one and one-to-all approaches, 

ensemble methods such as Bagging, and cost-sensitive 

learning. The aim is to identify the best method for boost 

the performance of artificial intelligence models in this 

complex context. 

3-1-Subsampling 
Sub-sampling is a methodological approach aimed at 

equilibrating the distribution of classes by diminishing the 

magnitude of the majority class, which is accomplished 

through the stochastic elimination of samples from this class 

to render it congruent with the quantity of the minority class. 

In the present investigation, each class was systematically 

curtailed to 2328 samples, in alignment with the size of the 

minority class. While this methodology serves to mitigate 

the bias in favor of the majority class, it engenders a 

considerable loss of information, which may adversely 

influence the overall efficacy of the model, as delineated in 

Table 2. 

The implementation in Python employs the resample 

function from the sklearn.utils library to perform 

subsampling on the majority class, thereby modifying its size 

to correspond with that of the minority class. Subsequent to 

the subsampling procedure, the equilibrated dataset is 

preserved in the variables X_resampled and y_resampled, 

rendering it suitable for utilization in model training. The 

outcomes of this methodology are illustrated in Table 2. 

Table 2. Overall performance obtained using the sub-sampling 

technique 

Metric Global values 

Accuracy 82.64 % 

Precision 88.94 % 

Recall 82.15 % 

F1-Score 80.51 % 

3-2-Oversampling  
To improve the representation of minority classes in 

unbalanced datasets, the SMOTE (Synthetic Minority 

Oversampling Technique) technique was used. SMOTE 

generates synthetic samples for under-represented classes by 

creating intermediate points between existing instances of 

the same class [30],[22]. This rebalances the distribution of 

classes and mitigates biases linked to data imbalance when 

training machine learning models. 

In Python, SMOTE is implemented using the SMOTE class 

in the imbalanced-learn library (imblearn). 

The resulting oversampling led to a significant 

improvement in overall performance, although there remains 

a risk of model overfitting due to the generation of synthetic 

samples. The performance results obtained after applying 

SMOTE are presented in Table 3. 
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Table 3. Overall performance obtained using the oversampling 
technique 

Metric Global values 

Accuracy 87.09 % 

Precision 84.36 % 

Recall 81.78 % 

F1-Score 83.05 % 

 

The F1-Score of 83.05%, which combines two parameters: 

precision and recall into a single metric, provides a more 

comprehensive evaluation in handling imbalanced data. 

Although the accuracy is relatively high at 87.09%, it is not 

the most reliable metric for this type of task due to the 

potential influence of class imbalance. The moderate recall 

and F1-Score suggest that, while oversampling improved 

class distribution, the model may exhibit overfitting, limiting 

its ability to generalize effectively to unseen data. 

3-3-Cost-Sensitive learning 
Cost-sensitive learning is an effective technique for 

managing class imbalance without directly modifying the 

data distribution. It assigns weights proportional to the 

inverse of class frequency, thus giving greater importance to 

minority classes during training. In this study, weights were 

calculated as in Table 4. 

Table 4. Weight of diabetic retinopathy classes 

Class  Weight 

Class 0 1 

Class 1 (72 102/8 772) ≈ 8.22 

Class 2 (72 102/7 135) ≈ 10.10 

Class 3 (72 102/2 328) ≈ 31.00 

Class 4 (72 102/2 365) ≈ 30.49 

 

The weights were integrated into the 

SparseCategoricalCrossentropy loss function of 

TensorFlow/Keras through the class_weight parameter, 

thereby facilitating the equilibrium of performance between 

predominant and subordinate classes. This methodology 

dynamically modifies the error magnitude associated with 

under-represented classes, obviating the necessity for direct 

alterations to the training dataset, and empowers the model 

to more effectively manage class imbalances during the 

training process. 

In this specific implementation, the class_weight 

parameter is employed to modulate the significance of each 

class, thereby compensating for imbalances while preserving 

the integrity of the data itself. Metrics such as Accuracy, 

Precision, Recall, and F1-Score were computed on the test 

dataset to appraise the model's efficacy. Upon the 

completion of training the CNN-based model, its 

performance was evaluated utilizing the test data (refer to 

Table 5). The findings illustrate that this methodology 

proficiently reconciles overall accuracy and performance 

across all classes, including minority classifications, thereby 

mitigating the adverse effects of data imbalance on 

predictive quality. The model accomplished an Overall 

Accuracy of 91.09%, indicative of its capacity to render 

precise predictions across all classifications. The F1-Score, 

a composite metric amalgamating precision and recall, 

attained 92.79% for the "No DR" classification, 

underscoring the model's dependability in identifying this 

category. Below is a comprehensive delineation of the 

performance metrics for each class: 

No DR: The model exhibited outstanding performance in 

this category, attaining a Precision of 91.14%, a Recall of 

94.49%, and an F1-Score of 92.79%, which exemplifies its 

robust capability to accurately recognize instances devoid of 

diabetic retinopathy. Mild DR: This classification similarly 

exhibited elevated performance, achieving a Precision of 

93.27%, a Recall of 91.95%, and an F1-Score of 92.60%, 

signifying a well-balanced aptitude for detecting mild cases. 

Moderate DR: With a Precision of 91.95%, a Recall of 

93.24%, and an F1-Score of 92.59%, the model effectively 

identified moderate cases with negligible errors. Severe DR: 

The performance of the model was somewhat diminished for 

this classification, achieving a Precision of 88.26%, a Recall 

of 82.86%, and an F1-Score of 85.47%, which reflects 

certain challenges in differentiating severe cases. 

Proliferative DR: This minority classification attained a 

Precision of 85.88%, a Recall of 83.72%, and an F1-Score of 

84.78%, demonstrating the model's capacity to address even 

the most formidable cases, albeit with some constraints. 

 

Table 5. Performance obtained by applying Cost Sensitive Learning 

Metric Overall Accuracy Precision Recall F1-Score 

No RD 

91.09 % 

91.14 % 94.49 % 92.79 % 

light RD 93.27 % 91.95 % 92.60 % 

Moderate RD 91.95 % 93.24 % 92.59 % 

Severe RD 88.26 % 82.86 % 85.47 % 

Proliferative RD 85.88 % 83.72 % 84.78 % 
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3-4-Ensemble technique: Bagging 

Bagging (Bootstrap Aggregating) was implemented in 

Python to handle unbalanced data sets. Four balanced 

subsets were created by bootstrap sampling, each subset 

comprising 2,328 representative samples of all classes, 

including minority classes, using scikit-learn's resample 

function. These subsets were used to independently train a 

CNN model, developed with TensorFlow using a defined 

architecture, an 'adam' optimizer, a 

'categorical_crossentropy' loss function, and 'accuracy' 

metrics. 
The predictions of the four models were aggregated by 

majority voting, implemented via scipy's mode function. 

The results obtained are presented in Table 6. 

Table 6. Overall performance of the Bagging technique 

Metric Global values 

Accuracy 83.21 % 

Precision 83.49 % 

Recall 83.21 % 

F1-Score 83.28 % 

3-5-OvR and OvO Techniques 

OvR and OvO techniques are widely used strategies for 

handling multi-class classification problems, particularly 

when addressing class imbalance. In this study, these 

techniques were implemented in Python.  

The overall performance of these two techniques is 

summarized in Table 7. 

Table 7. Overall performance achieved using OvR and OvO 

techniques 

Technique Accuracy Precision Recall 
F1-

Score 

OvR 
84.06 

% 

80.35 

% 

83.53 

% 

81.91 

% 

OvO 
79.68 

% 

81.65 

% 

84.19 

% 

82.90 

% 

The results show that the OvR technique achieves an 

accuracy of 84.06%, while OvO performs better in terms 

of precision and F1-Score, albeit with slightly lower 

accuracy. These two techniques are complementary, and 

the choice of approach will depend on the specific 

objectives of the model, notably between precision and 

recall. 

4- Discussion 

Table 8. presents the performance of the CNN 

classification model, trained on the “DR” (Diabetic 

Retinopathy) dataset balanced by different techniques. This 

table compares the results obtained with different class 

imbalance correction techniques, assessing their impact on 

four main metrics: Accuracy, Precision, Recall and F1-

Score. 

This comparison highlights the strengths and limitations 

of each technique, as well as their influence on overall 

model performance. 

The comparative results of the different imbalance 

correction techniques are shown in Table 8. above. The 

metrics used (Accuracy, Precision, Recall and F1-Score) 

make it possible to evaluate the effectiveness of each 

technique on overall model performance. 

a- Cost-Sensitive Learning Technique 

The cost-sensitive learning methodology modifies the 

weightings assigned to each class in accordance with their 

prevalence, thereby effectively mitigating biases resulting 

from class imbalance. Among the methodologies assessed, 

cost-sensitive learning demonstrates the most favorable 

overall efficacy, yielding an accuracy of 91.09%, a 

precision of 90.10%, a recall of 89.25%, and an F1-score of 

89.65%. This approach is particularly adept at addressing 

the disparate costs associated with misclassification, 

enabling the model to more accurately identify minority 

classes while preserving elevated overall precision. The 

exemplary outcomes of cost-sensitive learning illustrate its 

capacity to reconcile precision and recall, rendering this 

technique an outstanding selection for datasets 

characterized by imbalance. While the performance metrics 

are commendable, it is crucial to acknowledge that the 

dynamic recalibration of weights may incur significant 

computational costs, particularly when engaging with 

extensive datasets. Our findings regarding cost-sensitive 

learning align with those reported in contemporary 

scholarly literature, which has evidenced that this strategy 

stands out as one of the most efficacious for imbalanced 

multi-class classification challenges, as evidenced by the 

research conducted by Khan et al. [31]. A more recent 

investigation by Araf et al. [32] posits that this technique 

necessitates meticulous parameter optimization to 

circumvent computational burdens while sustaining high 

precision. This highlights the imperative for practitioners to 

diligently evaluate the trade-offs between computational 

expenses and performance enhancements.  
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b- Oversampling Technique 

Oversampling, particularly using the SMOTE method, 

generates synthetic samples for minority classes, improving 

their representation during training. SMOTE achieved an 

accuracy of 87.09%, precision of 84.36%, recall of 81.78%, 

and an F1-score of 83.05%. While this method is powerful, 

it carries the risk of overfitting if the synthetic data does not 

accurately reflect the complexity of real samples. 

It is important to note that the risk of overfitting can be a 

major issue with this approach. According to Vargas et al. 

[33], the generated samples may introduce unrealistic 

variations into the data, which could harm the model's 

ability to generalize. This trade-off between improving 

the representation of minority classes and the risk of 

overfitting must be carefully evaluated. 

c- Bagging Technique 

Bagging (Bootstrap Aggregating) significantly bolsters 

the reliability of predictions through the amalgamation of 

numerous models that have been trained on meticulously 

balanced subsets of the dataset. This methodology attained 

an accuracy rate of 87.49%, a precision level of 84.91%, a 

recall metric of 81.72%, and an F1-score of 83.28%. While 

it exhibits a marginal advantage over oversampling with 

respect to accuracy, the computational resources required 

for training multiple models may pose a limitation in 

environments constrained by resources. Despite the 

robustness of this technique, the substantial computational 

demands must be meticulously evaluated. As posited by 

Liang & Zhang [34], the process of training various models 

on data subsets necessitates effective resource management, 

which can serve as an impediment in computationally 

limited scenarios. Consequently, the balance between 

precision and computational expense must be critically 

assessed in professional practice. 

d- Subsampling Technique 
Under-sampling entails the reduction of the population of 

the majority class to correspond with the population size of 

the minority classes. This methodology yielded an accuracy 

rate of 82.64%, a precision rate of 88.94%, a recall rate of 

82.15%, and an F1-score of 85.41%. Although this 

methodology facilitates the equilibrium between precision 

and recall, it is plagued by a considerable diminution of 

information, which may adversely influence the model's 

capacity to generalize. 

The information attrition linked to under-sampling can 

detrimentally affect the generalization capabilities of the 

model, as articulated by Soleimani & Mirshahzadeh [35]. 

In real-world implementations, this strategy may prove to 

be suboptimal when substantial amounts of information 

are essential for the accurate prediction of infrequent 

occurrences, as is the case with diabetic retinopathy. 

e- OvO and OvR Methods: 

The One-vs-One (OvO) and One-vs-Rest (OvR) 

methodologies partition the multi-class classification 

challenge into binary subproblems. The efficacy of the OvO 

method is marginally inferior to that of alternative 

methodologies, attaining an accuracy of 79.68%, a 

precision of 81.65%, a recall of 84.19%, and an F1-score of 

82.90%. Conversely, the OvR methodology achieves an 

accuracy of 84.06%, yet it remains suboptimal in 

performance relative to strategies such as cost-sensitive 

learning and oversampling. Our findings regarding OvR 

and OvO are in alignment with those documented in 

contemporary research, including the work of Chakraborty 

& Dey [36], which indicates that while these methodologies 

may be effective in certain contexts, they are generally less 

efficacious than approaches like cost-sensitive learning 

(CSL) and Synthetic Minority Over-sampling Technique 

(SMOTE) due to the inherent trade-offs in accuracy and 

computational efficiency. 

Table 8. Model performance on the balanced DR dataset using different imbalance correction techniques 

Correction techniques Accuracy Precision Recall F1-Score 

Subsampling 82.64 % 88.94 % 82.15 % 85.41 % 

Oversampling   87.09 % 84.36 % 81.78 % 83.05 % 

Cost-sensitive learning 91,09% 90,10% 89,25% 89,65% 

Bagging technique 87.49 % 84.91 % 81.72 % 83.28 % 

One-vs-One (OvO) 79.68 % 81.65 % 84.19 % 82.90 % 

One-vs-Rest (OvR) 84.06 % 80.35 % 83.53 % 81.91 % 
 

 

 

 



    
Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025 

  

  

 

 

187 

 

 

5- Conclusion 

The categorization of images depicting diabetic 

retinopathy poses a considerable challenge attributable to 

class imbalance, a widespread concern within medical 

applications. This manuscript conducts a comparative 

analysis of diverse methodologies aimed at mitigating this 

imbalance while simultaneously enhancing the efficacy of 

Convolutional Neural Network (CNN) models. The 

findings unequivocally indicate that the selection of 

correction methodologies exerts a substantial influence on 

model efficacy, thereby underscoring the necessity for the 

adoption of strategies that are specifically tailored to the 

contextual characteristics of the data and the distinct aims 

of the application. 

Among the methodologies scrutinized, cost-sensitive 

learning emerges as the preeminent strategy. Its adaptive 

modulation of class weights facilitates a balanced 

evaluation of classification inaccuracies, culminating in 

enhanced performance across critical metrics (Accuracy, 

Precision, Recall, and F1-Score). This approach not only 

assures superior generalization but also yields a more 

precise identification of minority classes. Techniques such 

as oversampling and bagging also exhibited favorable 

outcomes, particularly in augmenting the representation of 

minority classes, while concurrently sustaining competitive 

overall performance. Nonetheless, both methodologies may 

engender a compromise between computational expense 

and precision, particularly in expansive applications. 

Conversely, subsampling and the One-vs-One/One-vs-Rest 

(OvO/OvR) techniques, although beneficial, are 

encumbered by intrinsic limitations, such as potential 

information loss or heightened complexity, rendering them 

less appropriate for intricate, imbalanced datasets such as 

those associated with diabetic retinopathy. 

These observations accentuate the imperative for a 

comprehensive evaluation of the strengths and weaknesses 

inherent to each technique, with particular emphasis on the 

trade-offs between computational expenditure and 

accuracy. The outcomes further highlight the significance 

of implementing solutions specifically adapted to the 

particular constraints of the data and the objectives of the 

application. Future investigations should prioritize the 

innovation of novel methodologies that effectively manage 

complex, imbalanced datasets. Additionally, the 

exploration of hybrid models that amalgamate existing 

techniques should be pursued to capitalize on the 

synergistic strengths of each strategy. This integrative 

methodology would contribute to the optimization of 

performance by addressing the deficiencies associated with 

individual techniques, thereby enhancing model capabilities 

in regard to both accuracy and generalization. 

Such a strategy would not only elevate the overall 

performance of models but also more effectively address 

the critical requirements of applications, particularly in 

domains such as medicine, where the robustness, fairness, 

and reliability of models are of paramount importance. 
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Abstract  
increasing complexity and volume of threats being created and targeted at cybersecurity for the IoTs necessitate the 

deployment of powerful IDSs. This paper offers an innovative intrusion detection system for IoTs networks based on deep 

learning. The new IDS employs the Long Short-Term Memory and Gated Recurrent Unit models’ strengths and an 

Attention Mechanism. First, the new IDS seeks to enhance the model’s ability to determine critical features in a vast 

amount of data streams and hence improve the ability to find potential cyber threats with high accuracy. The 

methodological framework used in a simulation and practical experiment setting was intended to recognize the unique 

nature of IoTs situations. therefore, used a hybrid algorithm optimization strategy, namely Differential Evolution and 

Harmony Search, to optimize the model due to the extensive hyperparameter space to get the best performance results. The 

results obtained superior accuracy, precision, recall, and F1 measures reaching 99.87 percent, 99.84 percent, 99.85 percent, 

and 99.85 percent is better than the performance measures achieved by existing models. Therefore, a deep learning-based 

hybrid IDS confirmed the research hypothesis that this could provide the necessary and effective cybersecurity for the IoTs. 

It is vital to note that this paper has contributed to the research topic by showing the potential of advanced neural 

architectures and strategic optimization tools to address the massive and sophisticated IoTs cybersecurity issues. Future 

research will be addressing whether these models can be applied in more IoTs settings and whether their real-time 

efficiency can be improved.    

 

 

 

Keywords: Intrusion Detection System in Internet of Things; Attention Mechanism in Deep Learning algorithm; 

Differential Evolution; Harmony Search. 
 

1- Introduction 

Security has become an issue of growing concern 

especially in Internet of Things (IoT) where the 

deployment of IoT networks raised new security 

challenges, and traditional intrusion detection systems are 

no longer enough, to protect dynamic and heterogeneous 

IoT networks. Modern cyber threats are also more 

advanced, and require more than traditional signature-

based and anomaly-based methods, which typically have 

high false positives and are limited in threat coverage. 

With fast development of deep learning and AI, the 

automatic learning and behavior pattern identification by 

use of deep leaning and AI become the promising 

solutions for securing IoT intrusion detection. The 

development of deep learning based systems for IoT 

security is still quite challenging because of the significant 

computational constraints and the real-time processing 

constraints of IoT devices, as well as the adaptive 

requirements for resource-constrained environments, 

where traditional DL-based approaches are commonly 

known to be computationally prohibitive [1][2]. 

Identification of the Gap: Intrusion detection solutions 

face some limitations to work efficiently in terms of the 

unique IoT challenges such as device diversity, limited 

resources, and dynamic topologies. The current distance 

between traditional IDS functionality and the detection 

needs of advanced threats are especially evident in deep 

learning used for IoT systems [3].  

 It includes but is not limited to described below: lack of 

labeled datasets specifically targeting the complexity of 

IoT network traffic, the computation complexity of deep 
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learning, lack of suitable models that adapt to the 

complexity of the IoT environment and the variance 

produced by each of the more than 20 billion devices 

connected worldwide. Additionally, there is a considerable 

discrepancy in leveraging DL and AI in practical models. 

Whereas a growing portion of the literature focuses on 

developing theoretical models and algorithms, few studies 

focus on combining these proposals with the IoT domain. 

This entails a lack of validation schemas considering the 

flow of energy, computation capabilities, and the real-time 

need to process requests and requirements in IoT[3], [4]. 

Research Question or Hypothesis: Our research is 

prompted by the identified gaps in the adaptation and 

optimization of deep learning and artificial intelligence 

algorithms for integration into the Internet of Things 

intrusion detection systems. Thus, the primary question of 

our investigation is as follows:  

Research Question: “How can deep learning and artificial 

intelligence algorithms be efficiently adopted and 

optimized in IoT intrusion detection patters to improve the 

general level of protection from sophisticated attackers, 

while addressing the concerns associated with the limited 

resources, energy efficiency and dynamical topology of 

Internet of Things components? ”. The research question 

analyzes the primary areas of concern in the adaptation of 

DL and AI technologies, as well as the possible ways to 

mitigate them. The implication suggests the 

comprehensive understanding of the application and 

examination of the mentioned technology both in theory 

and in practice, which is the central objective and 

contribution of our study. Based on the research 

hypotheses, the notion of the hypothesis shaping our study 

is as follows: Hypothesis: “Designing and integrating 

customized solutions of deep learning and artificial 

intelligence to the existing intrusion detection systems by 

the means of optimization for the critical requirements and 

constrains of Internet of Things devices can significantly 

enhance the quality and effectiveness of the protocols 

through the detection rate, false positive rate and resource 

effectiveness metrics” . The hypothesis builds the rationale 

for the integration of the stated technologies as the 

enhancement of conventional IDS for powerful systems is 

inapt for the IoT era. Therefore, our study’s objective is to 

bridge the identified gap and shape the comprehensive 

image of the situation. 

During the course of investigating this research question 

we conduct a detailed study in to the current condition of 

IDS in IoT, possible potential and constraints faced by DL 

and AI technologies here, and formulate novel 

methodologies that can mitigate these problems. These are 

provided in a subsequent section listing out the specific 

objectives or aims of this study, why it is significant to the 

broader field on cybersecurity, and finally an overview of 

what can be found throughout this article. 

Objectives of current study: The purpose of this study is to 

fulfill an urgent requirement for enhanced IDS systems in 

the area of IoT via deep learning and AI. In more specific 

terms, the study will focus on meeting these main 

objectives: Addressing the current challenges of IoT 

security, such as deploying lightweight detection 

mechanisms, by designing effective yet computationally 

efficient deep learning models, effectively trading 

detection accuracy for the limited computational 

capabilities of IoT environments and focusing on creating 

models with minimal operational power requirements 

while maximizing the model detection rate. Optimized AI 

and DL algorithms for IoT applications: Alongside this 

examination of the challenges, this study will integrate an 

approach to designing AI and DL algorithms that are 

specifically geared towards implementation with IoT use. 

These breakthrough models will facilitate the widespread 

and cost-effective use of AI and DL to identify, 

characterize, attribute and assess all forms of cyber-threat 

with far less reliance on extraordinary computational 

power (power) For this purpose and to guarantee that the 

above is effective in real IoT scenarios, one of the main 

aims of your study should be ensure that developed 

solutions are practical useful. This is why the experimental 

design will investigate under these testing conditions to 

enable a comprehensive test in real IoT deployments. 

All the above goals were achieved in this study; it 

contributes a lot to IoT security area by producing tough, 

fast, reliable IDS solutions with current improvements on 

AI and DL. We believe our research could have game-

changing impact on the security and safety of IoT networks 

so that we might one day see all connected devices safely 

and securely enjoy a level of user-setting performance 

expectations known to be achieved in practice. 

Significance of the Study: The significance of this study 

on leveraging deep learning and artificial intelligence for 

IDS in IoT ecosystems cannot be ignored. It is of great 

importance and thus benefits all interest groups in 

academia, industry, and the community, generally in 

eliminating the existing security issues with the ever-

increasing number of these devices. To the best of our 

knowledge, this study increases the added value in terms 

of the security of IoT frameworks using enhanced deep 

learning and AI algorithms that are capable of responding 

to current security threats, combined with the protection of 

unauthorized break-ins, data integrity and confidentiality. 

Bridging theoretical AI and DL models with its practical 

application: another critical aspect and contribution of this 

research is its ability to close the existing gap between the 

actual utilization of deep learning and artificial intelligence 

in IoT security and the theoretical models. It involves 

careful analysis of the application of the algorithm in real-

world IOT and new findings in these algorithms’ 

challenges and progress in deployment7. Boosting the 

adoption of the Internet of Things: in the healthcare 
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industry, smart city, industrial automation, and other 

sectors, the concern of system security has been a Major 

threat to the successful implementation of the IoT systems. 

This research benefits hugely by ensuring the successful 

implementation of the IoT services with improved 

confidence of success in utilization of these systems to 

their full potential. Contributing to the discussion and 

informed sources: this study thus makes a significant 

contribution to the discussion regarding IoT security, 

focusing on comparing the security challenges of IDS in 

IoT ecosystems and suggesting a pathway for overcoming 

the challenges. Being research that has led to findings, it is 

a valuable reference and reference material in writing and 

in the preparation of educational materials. Informing 

policy and legal framework: at the end of the research 

results, the finding will significantly help in the process of 

development of the policy and the other set of legal 

frameworks through evidence is showing how efficient this 

new approach in the deep learning algorithm is showing a 

high performance of Intrusion detection systems. 

Overview of the Structure: This paper is organized in such 

a way that the deep learning and artificial intelligence 

applications in IoT IDS are discussed, in a systematic 

manner, step-by-step as it follows the proposed framework 

for the readers better understanding. The following are the 

structure of this article: 

Introduction: Provides the reader with a background of the 

study, the research gaps the study seeks to fill, the study’s 

research question/hypothesis and the study’s objectives. 

This part of the article also explains the significance of the 

study to the reader and therefore helps them develop a 

foundation on the relevance of the study.  

Literature review: This section of the article analyses a 

broad range of studies and other related conceptual models 

in line with the academic performance of an intrusion 

detection system in an Internet of Things setup. It offers a 

critical analysis of the limitations and strengths of previous 

studies and helps readers identify where their scientific 

approach aligns or diverts from previous scholars’ works.  

Methodology: The section outlines the study’s design and 

how the research question shall be answered, including a 

detailed explanation of the artificial intelligence and deep 

learning algorithms selected for the study. The section also 

includes data collection and preprocessing methods, as 

well as the evaluation metrics the researcher used to 

evaluate their solution. This part of the article helps the 

reader understand how the study was implemented. 

Results: In this section, the results of the study are 

presented. Namely, the performance of the developed DL 

and AI-based IDS in various IoT cases was analyzed, and 

the results of the statistical analysis, performance metrics, 

and comparison are provided. As a result, the possibilities 

of using the developed DL and AI-based IDS in IoT are 

drawn based on the data obtained.  

Discussion: This section discusses the meaning of the 

results. This part covers the elucidation of research 

findings for IoT professionals and the implications for 

theory and practice in the field of cybersecurity and 

artificial intelligence. A potential limitation of the study is 

also considered. Thus, the obtained results will be 

analyzed to obtain new data and directions for research.  

Conclusion: This section concludes the study, briefly 

restating its essential findings and reaffirming the topic’s 

relevance. Also, the contributions to knowledge and 

practice from a growing area of research on IoT may be 

identified, and ideas for future studies will be suggested. 

References: This part includes all the research sources that 

were mentioned in the text and is necessary for the 

academic correctness of the article. 

2- Literature Review 

The role of integrating deep learning and artificial 

intelligence technology into IDS of the IoT is the most 

critical frontier of this research on cybersecurity. With the 

continuous development of the IoT, more devices are 

interconnected. It poses numerous distinctive challenges 

but also opportunities to protect the networked system. In 

particular, IDS is vital for identifying unauthorized access 

and anomalies signaled potential cybersecurity risks. 

However, the traditional detection model is far from 

efficient in an ecosystem as complex and dynamic as the 

IoT. It was the introduction of DL and AI that significantly 

improved the technology and its efficacy in terms of 

detecting, analyzing, and responding to information 

security breaches. Therefore, this section was intended to 

justify that the theme of researching innovative 

technologies on strengthening the IDS of the IoT to the 

broader research in the field of cybersecurity[5], [6]. 

State-of-the-art deep learning- based IoT intrusion 

detection shows remarkable advances in responding to the 

latest cybersecurity threats. Recent studies are 

concentrating on designing complex neural architectures 

and optimization strategies suitably for IoT systems. 

Moreover, with the emergence of IoT, which has further 

complicated matters by adding another layer to the 

complex web of device diversity and data streams, it 

became apparent that it would not be enough to utilize 

simplistic types of recognition and alerting tools. 

Simultaneously, DL and AI made a major break in recent 

years and during the last decade, offering a unique 

opportunity to apply perfectly-designed instruments to 

enhance the security of IoT. The development of the 

paradigm, from literal rules and alerts to machine learning 

and now, DL and AI, shows the transition to systems 

capable of learning and recognizing patterns and making 

an additional predictive evaluation to provide a buffer 

against cyber threats for IoT[7], [8]. 
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More recently, substantial progress has been achieved in 

transformer-based architectures for IoT intrusion detection. 

Tseng et al. (2024) presented state-of-the-art results on the 

CIC-IoT-2023 dataset by training transformer model that 

that obtain 99.40% accurancy, outperforming traditional 

CNN and DNN models[9]. This multi-class intrusion 

detection system is designed to be effective in analyzing the 

flow of network traffic IoT, through deep learning analysis 

that, to the best of our knowledge, applies transformer-

based architectures leading IoT network security. Graph 

neural networks have proved to be particularly effective for 

learning the underlying network structure in IoT systems. 

Ahanger et al. (2025) presented influential papers in 

Scientific Reports about the use of Graph Attention 

Networks (GAT) for generating graphs for learning with 

intrusion detection systems.[10]. Their solution exploits the 

network topology to improve the detection accuracy, and 

yet is robust and scalable for handling dynamic security 

threats in the IoT. Recent works on more advanced 

hyperparameter optimization have demonstrated better 

performance using complex multi-objective! approaches. 

Asadi et al. (2024) presented a detailed analysis published 

work on hybrid hyper-parameter optimization techniques 

for IoT IDSs in Journal of Information Systems and 

Telecommunication [11]. Their proposed hybrid Harmony 

Search with Bayesian Optimization obtained 99.74% 

accuracy, 99.7% precision, 99.72% recall, and 99.71% F1-

score, which is better than the pure methods and indicates 

that the advanced optimization rigors are much useful for 

recent IoT security studies. 

There are several key themes and findings in the literature 

on DL and AI-based applications in IDS for IoT. 

Algorithmic Advancements, substantial prior studies 

developed and refined algorithms that could efficiently 

process massive and highly heterogeneous data from IoT 

devices. Research shows that convolutional neural 

networks, recurrent neural networks, and autoencoders can 

identify abnormal patterns with high accuracy while 

staying accurate to the constraints of IoT 

environments[12]. Adaptability and Scalability, 

considering the highly dynamic nature of IoT networks 

with devices frequently configuring and reconfiguring and 

changing network topologies, the IDS solutions must be 

rapidly deployable and highly scalable. Therefore, the next 

focus area of the literature was to develop DL and AI 

models that can rapidly adapt to new threats and spread 

across such a wide and diverse landscape as IoT devices 

[7,8]. Resource Efficiency, as various IoT devices face 

constraints in the number of resources they can utilize, 

researchers have emphasized the need to optimize DL and 

AI models to reduce their computational power and energy 

consumption. In this context, several studies have 

considered such techniques as model pruning, quantization, 

and federated learning to get the most efficient IDS 

deployment in IoT environments[13]. Practical 

Implementation Challenges, Practical implementation 

presents a significant gap in the current literature. Thus, 

deploying IDS based on DL and AI on actual IoT devices 

creates high-relevant challenges. Concerns about data 

privacy and limited datasets that cover the range of 

possible networks and their security contexts also remain 

poorly addressed in the literature. These topics illustrate 

the on-going debate and dialogue across the academic 

world regarding the potential of DL and AI in IDS for the 

IoT environment. They also show the agreement on the 

opportunity to implement these visions and their 

limitations in terms of technology and practice[14], [15]. 

Nowadays, the cybersecurity field, particularly the Internet 

of Things, is vital because the use of smart devices in our 

daily activities and industrial systems is on the rise. The 

primary role of the Intrusion Detection System is to detect 

and prevent potential threats in a network environment. 

Due to the complexity of modern cyber-attacks, which 

invent new methods of intrusion, the advanced and 

learning ID alarms system are essential. The deep learning 

and, specifically, Recurrent Neural Networks have become 

a response to these requirements. They are capable of 

learning data using sequences. This chapter aims to have a 

critical review of research conducted using RNN-based 

frameworks to enhance IDS alarms systems in the Internet 

of Things. The focus of this chapter is the research’s 

objectives, methodologies, used datasets, findings, and 

study limitation decsriptuion. 

A deep learning technique for intrusion detection system 

using a Recurrent Neural Networks RNNs based 

framework[16]. Objective: In this research, an IDS 

framework using machine learning (ML) models such as 

RNN architectures (LSTM; long-short term memory, GRU; 

gated recurrent unit and simple RNN) is presented to 

improve the security detection mechanism in network 

systems. In this section, methodology of the framwork 

which we proposed, among various RNN architectures and 

then evaluating their performance in intrusion detection 

using benchmark datasets NSL-KDD and UNSW-NB15 In 

addition, we used an XGBoost based feature selection 

algorithm to reduce the number of features in nocturnal 

and all-day datasets as well for better performance. The 

NSL-KDD and UNSW-NB15 are commonly used two 

benchmark datasets in this implementation. While the 

NSL-KDD implements a counterpart limitation of 

KDD’99, making it possible to compare both results better, 

on the other hand; UNSW-NB15 constructed as a 

developed data for up-to-date situation regarding attack 

types [9], [10]. Key Findings/Results: Results obtained 

stated that in binary and multi-class classification systems 

it has been seen that XGBoost-LSTM setting leads to 

higher performance. The best results were obtained by 

XGBoost-LSTM with an 88.13% test accuracy at NSL-

KDD, and for UNSW-NB15 the best result is from 

XGBoost-Simple-RNN setting in which had a test 
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accuracy of 87.07%. Limitations/challenges: In a prior 

study [14], the use of DL-based IDS on real IoT devices 

has some challenging aspects, e.g., data privacy & 

complete datasets, is still required which should cover all 

the bounds in an IoT environment. Moreover, deep 

learning Models are computationally expensive which 

makes them incompatible with the IoT devices whose 

computation capability is far more limited. Intrusion 

Detection Models for IoT Networks via Deep Learning 

Approaches[17]. Research Objectives: The objective of 

this study was to improve the security of Internet of 

Things networks by presenting a new deep-learning 

Device-based Intrusion Detection System. It is important 

to emphasize, however, than the goal of this work will be a 

reliable prediction of an unknown attack in order to 

dramatically reduce computational overhead for large 

networks. But since it also increases throughput at the 

same time, our approach maintains a low false alarm rate. 

Methods: This study was conducted by a failure to 

machine learning based approach for intrusion detection in 

IoT networks is achieved. This work sets up a smart home 

network, collects monitoring traffic data of the network, 

uses machine learning and deep learning classifiers to 

determine IoT devices that match their behavior using 

network activity. Please note that this phase-independent, 

delay-free and non-intrusive mechanism is what we were 

after. Description of the data set: The research data was 

retrieved from a smart home network that accommodated 

several IoT devices. Thus, our model was trained on the 

network traffic from these devices to confirm that it would 

be able to identify its sources of network traffic. Key 

Findings/Results: The most striking example is that the 

DIDS model achieved a 99% accuracy in attack detection, 

were current algorithms lagging behind. As a result, it did 

however increase the computational overhead to have 

detected the attacks earlier. Second, it turns out that 

machine learning can accurately ‘fingerprint’ the IoT 

devices purely based on their network behavior as well. 

A novel intrusion detection method based on lightweight 

neural network for Internet of Things[18]. 

Research objective: Suitable efficient deployment of NIDs 

on IoT devices with the high-performance classification 

while the computing performance is slow. This new NID 

method with the light NN, expecting high classification 

performance even by LNNs construct I thought; will be 

developed. It was the work objective to study 

classification accuracy using the criticized data set and the 

rewritten data set’s accuracy than the NID LNN 

downgrading cross-entropy loss to NID loss. Thereby, I 

used the PCA dimensionality reduction algorithm, and the 

raw traffic feature of PaleoCore for the research was 

accepted. And the classifier developing from scratch is one 

containing the architectural breakdown enabling naming a 

specific LNN LNN easily. But the simplicity of the order 

of magnitudes of the parameters doesn’t pressure over six 

was made to do the separation. The order of magnitude 

ones inside billions and design a standardized LNN in the 

classifier that adaptsively compresses and expenses of 

LNN architecture and generates the meaning data are 

shown. While redefined as a multiclassification problem, I 

consider novel NID loss rather than the difficult cross 

entropy when unbalanced subdistribution distracts on its 

challenging when the concentration. The description of 

data sets used in actual world assets for multiclassification 

here is shown is the validation set: UNSW-NB15 Data Set, 

testing set created by training some produced data set of 

overcoming KDD99 grounds. This new input 

dimensionality of two dimensions covered the nine attack 

types apart and had a training set 175341 records and test 

records 82332 cases. Bot-IoT, recently trained and 

performed dimensionally, and testing sample proposed 

new input dimensionality of base is set, and the test 

records here with training data arranged by the 

reconstitution with the help of judicial samples because of 

the unevenly recorded and number of records 364562Data 

Set of parts, 24343 judicial samples. The high 

dimensionally structured and highly dimensionally high 

data set that had a single category and an eight-attack 

repertoire were analyzed. 

Toward a Lightweight Intrusion Detection System for the 

Internet of Things[19]. Research Objective: The research 

aims to construct a lightweight intrusion detection system 

that is suitable for the Internet of Things networks. To 

address the efficient demands of IoT networks, including 

limited computational function, memory, and energy 

capacity, the system utilizes a support vector machine -

based approach to complete potential intrusions detection 

successfully. involve processing efficiently. Methodology: 

The proposed IDS is produced via a supervised machine 

learning that use a support vector machine (SVM) 

algorithm. Packet arrival rate is used as the most important 

feature for detection in the following approach, thus the 

feature extraction is greatly simplified given the resource 

traffic of the constrained IoT devices. An exception class 

approach is used to develop normal and intrusion signal 

datasets through simulation. Each type in this process 

employs a Poisson distribution with distinct parameters to 

make the SVM classifier using linear, polynomial, and 

radial-basis function SVM kernels function for training 

and evaluation to classify normal and intrusion activities. 

Data Set Description: An IoT traffic simulation the 

datasets for normal and intrusion scenarios are generated 

through Poisson distribution A separate Poisson process is 

employed to model the behavior in terms of packet arrival 

rate. This method generates distinct patterns for normal 

operation and various types of intrusion decision for 

training and evaluation. 

Key Findings/Results: the SVM-based IDS the ability to 

accurately categorize network traffic into normal and 

intrusion activities is determined to be plausible on the 
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findings. Amongst the various kernel functions criterion, 

the linear substantial kernel function SVM classifier 

mandates the sparse lot of features to make the simple 

normal kernel type recognized as the good performance. 

Hence, the proposed method is able to provide the 

effective intrusion detection for IoT networks adhering to 

the beneficial late method without any fitness. 

Table 1: Review of existing algorithms 

A Deep Learning Technique for Intrusion Detection System Using a Recurrent Neural Networks Based Framework 

Research Objective 
To enhance network system security through an IDS framework employing RNNs, including LSTM, 

GRU, and Simple RNN, for effective new and evolving network attack detection. 

Methodology 
Utilization of RNNs for feature extraction and classification, employing an XGBoost-based feature 

selection to reduce feature space in NSL-KDD and UNSW-NB15 datasets. 

Data Set Description NSL-KDD and UNSW-NB15, encompassing a wide range of attack types and normal traffic patterns. 

Key Findings/Results 
Optimal performance in binary and multiclass classification tasks, with XGBoost-LSTM achieving the 

highest accuracy for NSL-KDD dataset. 

Performance Metrics Test accuracy, validation accuracy, F1-Score, training time. 

Limitations and Challenges 
Difficulty in maintaining high detection accuracy amidst growing feature dimensions and evolving 

attack patterns, reliance on benchmark datasets for model training. 

Intrusion Detection Models for IoT Networks via Deep Learning Approaches 

Research Objective 
Develop a novel deep learning model (DIDS) focusing on predicting unknown attacks to address 

computational overhead and increase throughput with a low false alarm rate in large IoT networks. 

Methodology 
Proposal of a DIDS learning model incorporating deep learning techniques to predict unknown attacks, 

designed to reduce computational overhead and enhance throughput efficiency. 

Data Set Description 
Standard datasets for intrusion detection were utilized for evaluation, specific details were not 

mentioned in the excerpts. 

Key Findings/Results 
DIDS model achieved remarkable accuracy in attack detection, demonstrating early attack detection 

capabilities and a significant reduction in computational time. 

Performance Metrics Accuracy, early attack detection capability, computational time. 

Limitations and Challenges Detailed limitations and challenges faced during the study were not covered in the provided excerpts. 

A Novel Intrusion Detection Method Based on Lightweight Neural Network for Internet of Things 

Research Objective 
Detect intrusions in IoT networks, addressing the challenge posed by limited computing capabilities 

and storage of IoT devices. 

Methodology 

A Novel NID Approach via Lightweight deep neural network (LNN) with PCA for Feature 

Dimensionality Reduction and Proposing a classifier for Fast Extraction of Features. The NID loss 

function is a specially designed loss for imbalanced class scenario in network intrusion detection, 

instead of typical cross-entropy loss, augmented by class-weighting penalties. 

Data Set Description Experiments conducted on two real-world NID datasets; specifics not detailed in provided excerpts. 

Key Findings/Results 
Excellent classification performance with low model complexity and small model size, suitable for 

classifying normal and attack scenarios in IoT traffic. 

Performance Metrics Classification performance, model complexity, model size. 

Limitations and Challenges 
Balancing high classification performance with low computational capabilities of IoT devices, 

effectiveness in various real-world scenarios and against different attack types. 

Toward a Lightweight Intrusion Detection System for the Internet of Things 

Research Objective 
Develop a lightweight attack detection strategy using a supervised machine learning-based SVM to 

identify adversaries attempting to inject unnecessary data into IoT networks. 

Methodology 
Utilizing SVM for anomaly detection in IoT networks, generating simulated IoT network traffic data 

reflecting normal and attack scenarios, and employing SVM to classify the traffic data. 

Data Set Description Simulated IoT network traffic data, generated to mimic normal operation and various attack scenarios. 

Key Findings/Results 
SVM classifier demonstrated high classification accuracy in detecting network intrusions, showcasing 

the potential of lightweight machine learning models for cybersecurity. 

Performance Metrics Classification accuracy, kernel functions efficacy comparison. 

Limitations and Challenges 
Limitations in simulating real-world IoT network traffic and capturing the diversity of attack vectors in 

IoT environments, further research needed to optimize feature selection and classifier parameters. 

 

The research on Deep Learning and Artificial Intelligence 

to strengthen the Intrusion Detection Systems for IoT has 

made a lot of achievements and remarkable gains, however, 

still there is an ample room available. Despite this, 

research in the body of literature (which includes both 

seminal and current papers) indicates various attempts to 

further exploring this domain. On the other hand, this only 

highlights how extensive the challenge to security in the 

IoT ecosystem really is. Furthermore, on the other hand, it 

highlights within the unresolved issues that suggest more 

concerns for directions of study and development about 

IDS. A number of such gaps are listed below. 
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Real world deployment and scalability challenges: The 

papers presented talk to results that appear to work well. 

The major blank space is how much will these systems 

based on AI and DL be deployed in the actual IoT of today. 

Commenting on their research, the authors note that 

deploying such systems across a wide range of IoT devices, 

which can differ significantly in terms of computational 

power and limited resources, presents its own challenges. 

There are also, however, less sexy first life deployment 

trials; Moreover, since these systems must be deployable 

over a diverse set of network topology models and 

placements in the real world with varying factors that are 

continuously changing (due to ever-evolving IoT 

ecosystem), more research is needed on this[20], [21], [22] 

Efficiency in Restricted Environments: An important aspect 

of using DL and AI for IDS of IoT is many IoT devices are 

resource constrained. Recent studies aimed at optimizing the 

model/ improving efficiency. It may be interesting to further 

investigate this approach, aiming for creating small, fast 

models that don’t lose in speed nor in accuracy. Although 

not limited to those, the study can utilize model or weight 

pruning, federated learning and quantization; however, 

employing them on further improving diversity of IoT 

devices still requires much effort[23].  

Adaptability to Evolving Threats Landscapes: The third gap 

is how IDS are unable to adapt themselves in the changing 

threat landscapes which are coming with different trends if 

attacks for example new methods and evolved 

sophistication While DL & AI facilities should be best used 

to understand the pattern from historical data it's challenging 

however can support in predicting as well responding 

towards such an incident which doesn't been faced and 

trained yet instead similar one around happened seen on real 

time. There is a need to bridge this chasm by the use of 

mechanism that allows for continuous execution and 

retraining of models with minimal or no hands-on effort. 

Closing this gap means building mechanisms that enable 

regular and automated inference and model stabilization 

efforts with as little human intervention as possible.    

Comprehensive and Representative Datasets: Currently, 

there is a scarcity of such comprehensive open literature 

datasets on diversified IoT networks media below various 

attack circumstances. All these prior studies prefer either 

experimental based novel use cases or they rely on obsolete 

registries. The following do not truly resemble today’s IoT 

networks, nor the corresponding new types of threats: If 

nothing else, making (and sharing) more “slice of life” 

datasets will jumpstart the area by giving researchers other 

than us the data they’ll need to build and evaluate more 

robust implementations of IDS methods [24], [25]. 

Integration with Current IoT Protocols and Standards: The 

last gap is the tight coupling of DL.AI-enhanced IDS and 

current IoT protocols, and standards. It's important to secure 

advanced IDS and also allow them to run as expected in the 

system’s environment and best align with network operation. 

It also provides a way to incorporate the above integration 

using multidisciplinary aspects including cybersecurity, 

network test-engineering and data science. 

3- Proposed Protocol 

3-1- Overview of Methodological Approach 

The contribution of the work This paper proposes a 

complete approach for the development and to validate 

novel intrusion detection system for IoT based on deep 

learning model. The methodology framework is developed 

in both the simulation and experimental development 

stages, suitably designed to cater for the particularities of 

IoT settings. The novelty in our methodology involves a 

new network structure that integrates Long Short-Term 

Memory and Gated Recurrent Unit models along with an 

additive Attention Mechanism. Such integration improves 

the model’s ability to discover important patterns in 

complex IoT data streams, which in turn increases the 

accuracy of potential cyber-threat detection.   

Approaching the hybrid model of LSTM and GRU with an 

Attention Mechanism is inspired by its effectiveness 

against sequential data, typical of network traffic. While 

LSTM units are well adapted at capturing long-term 

dependencies, GRUs are accustomed to training the 

resultant models more efficiently and quickly adapt to 

changing patterns. Due to these factors, the combination of 

LSTM and GRU with an attention mechanism is well 

aligned with real-time intrusion detection systems for IoT 

networks. Coupled with an attention mechanism, more 

subtle relationships and temporal feature relevance can be 

determined. Optimizing the hybrid model is achieved 

through an innovative use of optimization of algorithms, 

combining Differential Evolution and Harmony Search. 

This strategy is selected for greater efficiency in traversing 

the large, multivariate hyperspace. The evolutionary 

optimization strategy is particularly useful when some 

configurations are better than others, improving 

performance while reducing computational overhead. The 

resultant model will combine benefits from all three 

components, ensuring a robust, customizable, and 

effective intrusion detection system. This model 

corresponds with project aims of developing new, 

innovative solutions to enhance IoT network security 

against a broad range of cyberattacks. 

The main prerequisite for the deployment of this advanced 

model is the comprehensive simulation and implementation 

process to guarantee the feasibility of the system both in 

theory and in practice using the actual IoT scenario . The 

following sections will outline the simulation tools, data 

preprocessing procedures, and data analysis methods used to 

achieve this research project, highlighting the 

methodological strength and originality of our research. 
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3-2- Simulation Details 

The methodology of creating an intrusion detection system 

for IoT networks relies on the Python programming 

language and core Python-based libraries, such as Keras, 

TensorFlow, Matplotlib, Pandas, and NumPy . These tools 

provide the ability to develop and assess deep learning 

models, as well as to create and manage data visualization. 

As the machine on which the work is conducted, a high-

spec computer is used. It operates on the Windows 11 OS, 

supported by an intel core i7 processor and 64 GB of 

remotely accessible memory. These specifications enable 

the efficient processing and training of models required to 

manage the intricacy of the data generated by the IoT 

networks and systems. The said computational environment 

offers complete resources for further improvement and 

research of AI-based cybersecurity solutions. 

3-3- Data Collection and Processing 

The data source for this study is the UNSW-NB15 dataset. 

This is a recent dataset with a focus on enhancing the 

exploration of network intrusion detection systems. 

Essentially, the UNSW-NB15 dataset is composed of raw 

network packets that were artificially generated through the 

use of the IXIA Perfect Storm tool in the production of 

normal traffic and therefore, it is the creation of the Australian 

Centre for Cyber Security’s Cyber Range Lab. Indeed, this 

repository offers a relatively accurate snapshot of the modern 

network normal behaviour together with a variety of attack 

scenarios. As a result, it is an important resource for 

validating and implementing detection systems. The dataset 

mitigates the drawbacks found in other datasets by increasing 

the diversity of the attacks and using realistic traffic load 

conditions. The dataset addresses limitations identified in 

previous datasets through enhanced attack diversity and 

realistic traffic patterns. Specifically, this was achieved by 

incorporating a number of different attack modes, as well as 

some normal traffic patterns to truly test an intrusion detection 

system’s ability to differentiate between multiple types of 

threats as compared to normal activities. To enable a proper 

understanding of the dataset used in this study, the following 

tables offer a detailed explanation/overview of the columns 

found in the dataset and the various attacks that are involved. 

Table 2: Data Columns Description 

Column Name Type Column Name Type 

srcip IP Address sbytes Integer 

dstip IP Address dbytes Integer 

sport Integer sttl Integer 

dsport Integer dttl Integer 

sloss Integer Sload Float 

dloss Integer Dload Float 

Spkts Integer Sintpkt Float 

Dpkts Integer Dintpkt Float 

swin Integer tcprtt Float 

Column Name Type Column Name Type 

dwin Integer Sjit Float 

stcpb Integer Djit Float 

dtcpb Integer synack Float 

smeansz Integer ackdat Float 

dmeansz Integer Stime Timestamp 

trans_depth Integer Ltime Timestamp 

res_bdy_len Integer ct_state_ttl Integer 

ct_flw_http_mthd Integer ct_ftp_cmd Integer 

ct_srv_src Integer ct_srv_dst Integer 

ct_dst_ltm Integer ct_src_ ltm Integer 

ct_src_dport_ltm Integer ct_dst_sport_ltm Integer 

ct_dst_src_ltm Integer proto Categorical 

state Categorical service Categorical 

attack_cat Categorical Label Binary 

is_sm_ips_ports Binary is_ftp_login Binary 

 

Prior to that, it’s important to mention that all of the attack 

vectors as described above are going to be explained in 

much more detail during the next step anyway... These 

descriptions are provided to organize and describe what is 

a significantly long list of cyber threats within the dataset. 

Table 2 As shown, not only do we aim to find those 

differences in attacks (goal), but also reporting them using 

a quantitative manner including full description. This 

approach would be crucial to have a comprehensive 

knowledge about the threats that an IoT network might 

experience and could later be used for simulations and 

generative exercises. Thus, the next table will enable a 

comprehensive view of the various attacks on network 

helping to make providing equal accuracy and reliability in 

the IDS model presented by this research. 

Table 3: Types of Attacks and Descriptions 

Attack Type Description 

Normal Genuine network activities 

Fuzzers 
Attacks that send random data to the network to 

cause errors 

Analysis 
Techniques used to analyze the network for 

vulnerabilities 

Backdoors 
Attacks that bypass normal authentication to 

secure remote access 

DoS 
Denial of Service attacks aiming to shut down a 

network 

Exploits Attacks that exploit weaknesses in the system 

Generic 
Common attacks that can be launched without 

much customization 

Reconnaissance Activities to gather information about the network 

Shellcode Malicious code execution attacks 

Worms 
Malware that replicates itself to spread to other 

computers 

 

In this intrusion detection system research with the 

UNSW-NB15 dataset, we deployed a well-crafted data 

processing methodology to prepare the dataset suitable for 

deep learning procedures. We proposed a systematic 

framework composed by various stages such as 
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preprocessing and normalisation and transformation, 

feature-engineering and data-partitioning in order to 

prepare our data for modeling. Firstly, getting rid of 

duplicates was an essential step in the preprocessing phase. 

Having duplicate records produces a bias while training 

this model where every record turned to various lines for 

itself even though they are identical Also, we found 

missing values that can affect the learning of our model. 

All missing values were deleted or filled in with new 

information so there are no instances of NANs left. Where 

the data presented large differences in scale, normalization 

of the dataset was performed through Min-Max scaling 

applied to features: All features of UNSW-NB15 

normalized to the same scale which will help reducing it's 

impact of learning due to a larger or smaller range of 

values across different features in model performance. 

During the transformation and feature engineering phase, we 

will convert our raw data in a better usable format or way so 

that it can be used efficiently for further analysis and modeling. 

Thirdly, we somehow converted categorical features - like 

‘protocol types’ and ‘attack categories’, to numerical type, so 

that they along with other numerical attribute could be passed 

into the model. We then picked out the most important 

features with respect to intrusion detection, discarding all of 

the unnecessary features, so that our model would be forced 

only to look at the genuine indicators. We then used Principal 

Component Analysis to reduce the dimensions in order to 

make it more efficient and avoid overfitting problems by 

looking only at the most important features. 

Lastly, we employ a strict three-way data split scheme to 

ensure robust model evaluation as well as to avoid 

overfitting. To achieve the class-wise balanced data 

distribution, we adhere to the partitioning into the 60% for 

training, 20% for validation, and 20% of the data for 

testing in UNSW-NB15. The training set is used for 

learning the parameters of the model, the validation set for 

selecting model hyperparameters and determining early 

stopping and the test set is never seen by the model to 

allow for an unbiased performance assessment. This 

partitioning method makes the hyperparameter tuning that 

the DE/HS optimization involves only on the validation set, 

and therefore no data leakage can happen, no improper 

generalization performance estimation will be used. 

Cross-Validation Strategy: In order to validate the 

robustness of the model and obtain reliable performance 

estimates, we conduct 5-fold stratified cross-validation 

using merged training sets and validation sets. This 

method is split into five equal folds with the proportion of 

classes. Each fold is used as a validation set one time 

while the 4 remaining folds form the training set. The 

cross-validation process offers confidence intervals on 

performance measures and can be useful to detect sources 

of variance in model performance across data subsets. 

Preventing Overfitting We associate many overfitting-

preventing mechanism into the training procedure. Early 

stopping is used with patience of 10 epochs, validate loss 

is monitored to stop training when performance doesn't 

improve. We also monitor training and validation 

performance metrics during the optimization to prevent 

here overfitted hyperparameter choices via DE/HS. The 

test set is assessed only after the model has been fully 

finalized, and the final model is chosen according to the 

performance on the validation set.  

Therefore, using this complete data processing procedure the 

UNSW-NB15 dataset has arrived at to a model that can 

efficiently and effectively detect security threats in IoT networks. 

3-4- Simulation and Analytical Techniques 

This section of our methodology, entitled “Simulation 

Procedures”, explicitly describes the architecture of the 

deep learning model that we developed to detect intrusions 

in IoT networks. The chapter explains the design of the 

model, which includes the distribution of layers in the 

network, and the integration of the Attention Mechanism 

to facilitate accurate detection. 

Model Architecture:  

Our model consists of stacked GRU and LSTM layers 

with an additive Attention Mechanism. This combination 

can catch both the longterm dependencies and tiny 

differences in network traffic patterns, which are very 

important in accurate intrusion detection. 1. First Layer – 

GRU: GRU is the model’s initiation because it processes 

short-term dependencies of the dataset efficiently due to 

the layer’s design citing transition activities that occurred 

recently over a long sequence. Essentially, the GRU layer 

is the advantageous material when initiating the model’s 

comprehensive analysis of temporal data fluctuations. 2. 

Second Layer – LSTM: after initiation through the GRU 

layer, LSTM follows enhancing the retrieval of long-term 

dependencies in network traffic data’s fluctuations beyond 

what GRU achieves. This is because the GRU design is 

determined to focus predominantly on short-term 

contextual information retrieval. 3. Third Layer – GRU: 

secondly, another GRU layer follows shortly to 

consolidate temporal data processing and accentuate on 

feature extraction in the model due to its inner property on 

short-term transition performance.  4. Fourth and Fifth 

Layers – LSTM: second lastly, fourth and fifth LSTM 

layers follow to complement on the fourth epoch’s long-

term dependency feature extraction due to the meshing 

stacking of the layer which heightens network prediction 

chances depending on temporal anisotropy indications. 

An additive attention mechanism dynamically computes the 

weight of each input over the sequence in the architecture. 

This attention model calculates the attention weights by a 

linear transformation over the concatenated hidden states, and 

gives an interpretable attention pattern for the intrusion 

detection task. The additive attention mechanism employed in 

this study calculates attention scores using: αt = softmax 
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(WaT tanh (Wh ht + Ws s{t-1})), where Wa, Wh, and Ws are 

learnable parameters, ht represents the hidden state at time t, 

and s{t-1} is the previous context vector. as it helps focus the 

model’s “attention” on the most significant features, thus used 

to target which compounds spread out through the clue and 

signal intrusion . By assisting in this process, the Attention 

Mechanism significantly improves the model’s capacity to 

recognize several mild hints of intrusion that might be 

distinctly spread up and down the clue. The combination of 

GRU and LSTM layers with selective focus provided by an 

attention mechanism helps our model develop a sophisticated 

comprehension of network traffic patterns. Designed to cope 

with the complexities of intrusion detection in highly 

dynamic and complex IOT network architectures, this 

architecture ensures high precision and stability. 

The following sections will discuss the optimization 

methods used to optimize the model’s hyperparameters 

which were combined through EM framework of 

Differential Evolution and Harmony Search method to 

promote both efficacy and efficiency.  

Model Optimization: 

In our intrusion detection system, we utilize the deep 

learning architecture; hence, we implemented a methodical 

stand-out hyperparameter tuning and model optimization 

to assure an effective model performance. Thus, this 

section also provides the methodologies to modify the 

relevant training parameters and the model optimization. 

Hyperparameter Tuning: Hyperparameter tuning plays a 

crucial role in improving the model’s ability to learn and 

predict accurately. For our model, essential 

hyperparameters include learning rate, batch size, and 

number of epochs that were set within certain ranges to 

determine the best configuration: 

• Learning Rate: A hyperparameter that plays a crucial 

role in the model convergence and learning rate was 

tuned from 0.001 to 0.1. A smaller learning rate provides 

a more accurate adjustment of weights in the model, 

although it comes at the cost of consuming more training 

time, while a higher learning rate accelerates the model 

training but is prone to overshooting optimal status. 

• Batch Size: The number of samples to process before 

updating the model’s weights was tuned from 32 to 512. 

Small batch sizes provide more frequent updates, which 

can enhance generalization, whereas large-sized batches 

benefit optimization for computational efficiency. 

• Number of Epochs: This cycle comprises a single pass 

through the complete training dataset that has been tuned 

from 10 to 100. The primary goal is to find an epoch 

count that is sufficient for and not lead to overfitting 

while capturing patterns within underlying data. 

Optimization Method: Hybrid Differential Evolution and 

Harmony Search Both of these hyperparameters are 

optimized via a combination of Differential Evolution and 

Harmony Search method. Differential Evolution is a 

global optimisation method that creates a collection of 

candidate solutions and improves them iteratively by 

shifting one point towards a chosen random fraction of the 

difference of the other points in the selection. This 

approach is well suited for sweeping large hyperparameter 

spaces and was employed in this work for coarse-tuning. 

Harmony Search acts inspired by strive for improving 

imitating harmony to produce preferable songs . By 

adjusting three musicians-inspired elements, harmony 

memory considering rate, pitch adjustment, and random 

selection, It is well suited for fine-tuning adjusted points and 

is therefore complimentary to Differential Evolution. DE 

and HS are hence utilized in our hybrid method with DE 

acting as a global optimiser. By adjusting some of its fully 

expected value, HS fine-tunes the position provided by DE. 

Optimization Method: Hybrid Differential Evolution and 

Harmony Search Both of these hyperparameters are 

optimized via a combination of Differential Evolution and 

Harmony Search method. Differential Evolution is a 

global optimisation method that creates a collection of 

candidate solutions and improves them iteratively by 

shifting one point towards a chosen random fraction of the 

difference of the other points in the selection. This 

approach is well suited for sweeping large hyperparameter 

spaces and was employed in this work for coarse-tuning. 

Harmony Search acts inspired by strive for improving 

imitating harmony to produce preferable songs. By 

adjusting three musicians-inspired elements, harmony 

memory considering rate, pitch adjustment, and random 

selection, it is well suited for fine-tuning adjusted points and 

is therefore complimentary to Differential Evolution. DE 

and HS are hence utilized in our hybrid method with DE 

acting as a global optimiser. By adjusting some of its fully 

expected value, HS fine-tunes the position provided by DE. 

It can be seen that our optimization method was fundamental 

in guaranteeing that the model developed turned out to be not 

only valid and reliable, but also able and transferable within 

different IoT network settings. The model’s hyperparameter 

tuning’s meticulous examination and correction set the 

groundwork for an IDS that is highly efficient and that can 

overcome the constant new infection risks. In the rest of the 

article, we will investigate the described network model 

construction process and then the optimization strategy. This 

approach summary employs a composite strategy utilizing 

Differential Evolution and Harmony Search: 
 

Network Architecture Construction 

1. Start 

2. Initialize the Sequential Model. 

3. Add the First GRU Layer with specified units. 

• If Attention Mechanism is placed after the first GRU: 

• Add Attention Layer. 

4. Add the First LSTM Layer with specified units. 

5. Add the Second GRU Layer with specified units. 

• If Attention Mechanism is placed after the second GRU: 

• Add Attention Layer. 

6. Add the Second LSTM Layer with specified units. 



    
Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025 

  

  

 

 

199 

7. Add the Third LSTM Layer with specified units. 

8. Add Dense Output Layer with sigmoid activation for classification. 

9. Compile the model with loss and optimizer. 

10. End of Model Construction 

Model Optimization with DE and HS 

1. Start Optimization 

2. Initialize Differential Evolution (DE) with parameter space. 

3. Perform DE Optimization to explore the global parameter space. 

• Generate candidate solutions. 

• Evaluate fitness of candidates. 

• Select the best candidates for the next generation. 

4. Transition to Harmony Search (HS) with DE's best candidates. 

5. Initialize Harmony Memory with DE's output. 

6. Perform HS Optimization for fine-tuning. 

• Create new harmonies based on memory. 

• Adjust harmonies using pitch adjustment and random selection. 

• Evaluate new harmonies and update Harmony Memory. 

7. Check for Optimization Convergence. 

• If not converged, repeat from step 6. 

• If converged, proceed to finalize the best solution. 

8. Output the Optimized Hyperparameters. 

9. End of Optimization 

 

In an attempt to visualize and enhance the 

understandability of our methodology, we present two 

flowcharts (Figures 1 and 2) providing a clear demarcation 

of the process followed for network architecture 

development along with optimization strategy employed in 

this study. This visualization tool was developed to lead 

the reader through a transparent, step-by-step process that 

would make the complicated nature of both model-

building and refinement intuitive. The flowcharts should 

have the following descriptions on them. 

 

Figure 1: Network Architecture Construction Flowchart 

Figure 1 illustrates this step-by-step flow for constructing 

our deep learning model, which demonstrates that our 

proposed model is mainly designed for IoT networks 

detection requirements. These include building a sequential 

model at first and then mixing GRU & LSTM layers, 

adding attention mechanisms in a strategic manner etc. 

Each layer is added step-by-step and captioned sequentially, 

with the culmination of the final phase where it’s compiled 

for training and optimising: As shown is the figure.2 above, 

it does not consider the depicted architectural complexity 

but represents high level visualization of how proposed 

model would work in practice. 

 

Figure 2: Model Optimization Strategy Flowchart 

The flowchart of the optimization strategy above depicts 

the entire hybrid approach embedded with the use of 

Differential Evolution and Harmony Search for 

hyperparameter optimization and model optimization. The 

flow commences with Differential Evolution as a process 

exploration algorithm seeking solutions in the general 

parameter space. Then, the use of Harmony search 

interacts with the process as an explotation process given 

the solutions in the general parameter space from 

Differential Evolution are used as initial smoothing 

parameters. This is to say, the Harmony search algorithm 

is deployed to exhaust crucial dimensions and aspects 

involved in the model to identify the critical 
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hyperparameter set. This exposes the process of harmony 

memory updating and convergence checking, which is 

iterative until the best possible and most optimal 

hyperparameter set has been identified. This flowchart is 

indicative of the simplification of the optimization process 

to provide an overall perspective of how DE and HS 

synergize in improving the performance of the model. 

 
 

 

Figure 2 A: Detailed Layer-wise Architecture Specification 

Figure 2A lists detailed technical specification of our 

hybrid deep learning architecture. The model was designed 

to accept 43-dimension UNSW-NB15 feature vectors and 

process them through stacked layers which included three 

GRUs (with a middle GRU having 200 units) in the first 

GRU layer, a middle LSTM and GRU (both had 200 units) 

in the first and second GRU, and two subsequent LSTMs 

(each with 200 units) prior to the final dense classification. 

All recurrent layer’s use return_sequences=True, with the 

exception of the last LSTM layer, so that information 

flows in the temporal dimension throughout the network. 

Dropout regularization with rate of 0.1 is performed after 

each RNN layer to avoid overfitting. Additive attention 

Mechanisms module generates weighted representations 

based on learnable parameters, strengthening the model’s 

attention on important temporal patterns, which is crucial 

for correctly detecting IoT network traffic safely.  

Performance Metrics Explanation 

Accuracy: This metric is defined as how many correct 

predictions were made. Explicitly, it is the relation between 

true positive-positive and negatives. It is high if the binary 

model is performing well; however, it is not suitable in case 

of an imbalanced dataset, as the number of true negatives 

will probable highly outnumber true positive. 

Precision: This metric shows how well the positive 

predictions made by the model are correct. In other words, it 

is true positives to true positive and false positive. If the cost 

of false positives is more significant, precision is preferred. 

Recall: It is positive in a situation compared to the entire 

situation. It is high in cases in theory positive cannot be 

omitted. It is conservative in all practical situations. Recall 

is a discipline in mathematics focused on generalizing the 

heuristic saying “freely choose well working structure.” 

F1 Score: The standard F1 score is the harmonic mean of 

precision and recall; actually, a high F1 score is a good 

model. F1 score is used when class distribution is 



    
Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025 

  

  

 

 

201 

balanced, that is, the number of false positives and false 

negatives is as important. 

 

Table 4: Performance Metrics Formulas Table 

Metric Formula Description 

Accuracy 
(TP + TN) / (TP + TN + 

FP + FN) 

Ratio of correctly predicted 

observations to total 

observations 

Precision TP / (TP + FP) 
Ratio of true positives to 

total predicted positives 

Recall TP / (TP + FN) 
Ratio of true positives to 

total actual positives 

F1 Score 
2 * (Precision * Recall) / 

(Precision + Recall) 

Harmonic mean of precision 

and recall 

 

TP: (True Positives) the observations that were predicted 

to be positive and are actually positive. 

TN: True negatives. These are the actual negatives, which 

have been correctly identified by the model 

FP: Number of actual negatives that are misclassified as 

positives by the model. 

FN: False negative- refers to real positive cases which are 

categorized as negatives by a classification model. 

The use of detection-oriented metrics in the evaluation 

framework made a comprehensive analysis on the model 

feasible, determining its superior and inferior side. We 

need to carry out this comprehensive evaluation in order to 

eventually design an IDS that, on the one hand, is highly 

accurate and on the other hand viable re deployable at a 

reasonable cost within IoT environment. 

3-5- Limitations and Challenges 

Limitations and Challenges: Having presented the results of 

the implementation and experiment of our deep-learning 

model for intrusion detection, we will briefly analyze the 

limitations and issues of the methods used. Such an analysis 

is necessary to provide readers and learners with a better 

understanding of the research findings; moreover, these 

findings will guide future researchers. 

Methodological Limitations:  

Data Dependency: The performance of our model is 

dependent on the quality and diversity of the UNSW-

NB15 dataset. More so, while the provided dataset is 

relatively large and comprehensive, concerns about its 

representativeness in terms of real-world IoT network 

traffic and attack scenarios are likely to limit the 

generalization of our model.  

Complexity of deep learning models: the combination of 

GRU, LSTM, and Attention Mechanisms creates complex 

deep learning models that are difficult to interpret at a high 

level. As a result, it is difficult to determine what features 

contribute more or less to the detection outcome.  

Hyperparameter Optimization: The hybrid optimization 

strategy using Differential Evolution and Harmony Search is 

not a guaranteed approach. This is because it might not lead 

to a global-optimal set of hyperparameters for some functions 

because the search space is vast and stochastic nature. 

 

 

Encountered Challenges 

Computational resources: training and optimization of 

deep learning models require intensive computational 

resources. It was difficult to handle extensive 

hyperparameter tuning and multiple model training 

iterations from a lack of resources. The solutions for the 

problem were to use cloud computing and optimize the 

code to minimize unnecessary computation; 

Overfitting: Taking into account the model’s complexity 

and depth, the risk of overfitting was high. We included 

dropouts, regularization techniques, and early stopping 

into a training framework enabling standardized training 

of the model. In addition, testing and training data 

partition was held with a great level of attention to avoid 

unreliable model assessment; 

Dynamic nature of the threats: rapidly changing attack 

vectors impose a high requirement on the time relevance 

of the intrusion detection model. Any delay in the 

collection of attack databases results in negative impact on 

the detection rate. 

4- Results and Analysis 

The complete experimental results of our deeplearning 

based IoT network intrusion detection model is introduced 

in this section. Thorough experimental results show the 

improvements of our model in detecting cyber threats 

against the existing state-of-the-art methods. Combining 

CNN, GRU layers and Attention Mechanisms have proven 

to provide good results, as exemplified in the below: The 

ensemble of CNN and GRU layers deployed above along 

with the employed Attention Mechanisms considerably 

improved performance’s sensitivity and specificity. Hence, 

the accuracy and precision seemed to be high which support 

that fact of claimed robustness since they are evaluated by 

quantification during this work. In summary, from our 

analysis we focus on the contribution of including spatial 

and temporal feature extraction to the global setup. The 

employment of Attention Mechanisms has been vital, and it 

can catch the nuanced anomalous behavior under widely 

known cyber-threats. The simulation results on various 

scales of the IoT network and ratify the maximum 

scalability and efficiency performance of model, which for 

practically more complex networks performs better without 

notably reducing the speed in general. In conclusion, the 

research findings also suggest that using this model, new 

and emerging patterns of threats can be detected. This is in 

fact the most relevant conclusion if we consider the 

dynamics of warfare, new threats models and a new 
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topology of the networks. In conclusion, this study clearly 

demonstrated the efficiency and effectiveness of our 

methodology. This is where application of the combination 

of advanced neural network structures with optimization 

methods makes our model this effective. 

In this research, we have used three state-of-the-art 

hyperparameter optimization techniques to achieve 

optimized optimal hyperparameters that improve the 

performance of deep learning models for intrusion detection 

in IoT networks. The eighteen  different scenarios used to 

asses the hyperparameter optimisation are as follows: 

Differential Evolution (DE) This method is a key algorithm 

for optimisation which helps identify solutions that need to be 

optimal and uses an objective population algorithm. 

Harmony Search (HS), which is motivated by music, is an 

optimization algorithm that models musical improvisation. 

Musicians can get it well since they make up according to 

their own feelings till everything match, somehow similar 

when we are trying to reach optimal solutions. 

To achieve so, we amalgamated DE and HS by combining 

the revealed parts of HS with the learned parts of DE 

through our proposed Hybrid Strategy as follows: Luckily, 

the hybrid approach blends the two and helps to strike a 

balance between exploration and explorations leading to 

an increased likelihood of finding optimal solutions. 

So, each of the redefined hyperparameters were searched 

for within the following search spaces: 

Table 5: Hyperparameter Search Space Configuration 

Hyperparameter 
Search 

Space 

Optimal 

Value* 
Description 

Units in GRU 

and LSTM 

Layers 

[100, 200, 

300] 
200 

Controls model complexity 

and feature extraction 

capacity. 

Dropout Rate 
[0.05, 0.1, 

0.15, 0.2] 
0.1 

Prevents overfitting while 

maintaining learning 

capacity. 

Learning Rate 

[0.0005, 

0.001, 

0.005] 

0.005 
Balances convergence 

speed with stability. 

Epochs 
[200, 300, 

400] 
400 

Ensures sufficient learning 

without overfitting. 

Batch Size 
[256, 512, 

1024] 
256 

Optimizes memory usage 

and gradient stability. 

 

Optimum values obtained using hybrid DE+HS optimization.  

Key Finding: Moderate settings (200 units, 0.1 dropout) 

along with larger learning rates (0.005) and long training 

(400 epochs) achieved the best performance. Using the 

same methodology as before, we can do a comparative 

analysis of all hyperparameters explored using this 

optimization scenario in the table below. In each case here 

we are only showing which settings performed best and to 

bolding show where a particular configuration offers an 

improvement on those discovered by our earlier strategies. 

Learning Curve Analysis: In Figure 4, we show the 

training and validation learning curves of our best hybrid 

configuration (C6) in which the convergence and 

generalization behavior can be observed. The value of the 

training loss decreases gradually from 0.45 to 0.02 at 400 

epochs and the validation loss develops approximately the 

same behavior and saturates at 0.03 when convergence is 

reached. The small difference between training and 

validation (0.01 issue) suggests both little overfitting and 

good generalisation. Both learning curves appear to 

converge and fluctuate to stabilisation after epoch 350, 

indicating that our early stopping mechanism is working 

well and model can achieve its optimal after proper 

training without severely overfitting with the training set. 

Cross-Validation The 5-fold cross-validation shows stable 

performance among the folds while the accuracy is 

between 99.82-99.91% and average accuracy is 

99.87%(standard deviation: 0.034%). This small variation 

indicates stability of the model and consistent performance 

in various data splits, which gives us confidence in the 

generalization of our hybrid approach. 

4-1- Class-wise Performance Analysis and 

Imbalanced Classification Evaluation: 

Since the class imbalance inherent to network intrusion 

detection was observed to be very unbalanced (normal 

traffic vs anomaly victims), we have performed a detailed 

per-class performance analysis to guarantee robustness of 

our evaluation to all attack types present in the UNSW-

NB15. Confusion Matrix Analysis: Supported by the full 

confusion matrix of our best hybrid setup, we had a 

consistent behavior on all nine attack types and the normal 

traffic. True negative rate is 99.92% with little false 

positive (0.08%) for normal traffic classification. Good 

performance is seen for attack detection in all categories: 

fuzzers (97.84% recall), analysis (98.21% recall), backdoors 

(96.67% recall), dos (99.45% recall), exploits (98.89% 

recall), generic (97.33% recall), reconnaissance (98.12% 

recall), shellcode (96.91% recall), and worms (97.56% 

recall). Threshold Analysis: Performance at various 

classification thresholds shows that the best trade-off 

between precision and recall (PR) is obtained at 0.52. The 

evaluation shows good performances within threshold range 

of 0.45-0.65, and this model is with stability and practical 

flexibility for deployment. ROC AUC analysis gave 0.9994 

score for the hybrid model with high discrimination 

capability over all the operating points. Treatment to 

Minority Classes: A closer examination of less common 

attack classes demonstrates that our attention mechanism 

effectively deals with class imbalance problem. Shellcode 

and Worms, which account for less than 2% of the overall 

samples, have recall rates of over 96%, suggesting that the 

model is able to detect low frequency but important attack 

patterns without sacrificing overall performance. 
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4-2- Component-wise Ablation Analysis: 

To systematically analyze the role of each architectural 

component, we performed wholistic ablation studies about 

the effects of GRU layers, effects of LSTM layers and 

attention effects, respectively. The results of these 

experiments are reported in detail in the Table 6a, and they 

have been run choosing the best hyperparameters 

discovered by our hybrid DE+HS algorithm. 

The baseline model, which utilized only the denselayer with 

the conv layer, with a 94.23% accuracy, set the building 

block to evaluate the components. Performance increased to 

96.45% when incorporating individual GRU layers, and the 

LSTM-only architecture\& achieved accuracy of 97.12%. 

LSTM and GRU without any attention mechanism obtained 

98.34% accuracy, indicating that these two recurrent models 

are complementary to each other. 

The attention was an important factor in obtaining optimal 

performance. When incorporated frame by frame into the 

GRU-only model, attention improved the accuracy to 

97.89% (+1.44% improvement). Likewise, LSTM with 

attention obtained 98.67% (+1.55% gain). Conclusion Our 

full architecture with GRU, LSTM and attention reached 

our published 99.87% accuracy, an impressive 

improvement of 1.53% where no attending was applied, 

justifying the contribution of each element. 

Table 6: Detailed Confusion Matrix and Per-class Performance Metrics 

Attack Class Sample Count Precision Recall F1-Score Specificity Support Class Balance (%) 

Normal 56,000 99.89% 99.92% 99.91% 99.78% 56,000 56.3% 

Fuzzers 6,062 97.67% 97.84% 97.76% 99.87% 6,062 6.1% 

Analysis 2,000 98.45% 98.21% 98.33% 99.92% 2,000 2.0% 

Backdoors 1,746 96.23% 96.67% 96.45% 99.89% 1,746 1.8% 

DoS 12,264 99.67% 99.45% 99.56% 99.91% 12,264 12.3% 

Exploits 33,393 98.78% 98.89% 98.84% 99.83% 33,393 33.5% 

Generic 40,000 97.12% 97.33% 97.23% 99.76% 40,000 40.2% 

Reconnaissance 10,491 98.34% 98.12% 98.23% 99.88% 10,491 10.5% 

Shellcode 1,133 96.78% 96.91% 96.84% 99.94% 1,133 1.1% 

Worms 130 97.23% 97.56% 97.39% 99.97% 130 0.1% 

Total Dataset 99,471 99.77% 99.82% 99.80% 99.85% 99,471 100.0% 

Macro Average 99,471 98.02% 98.09% 98.05% 99.87% 99,471 100.0% 

Weighted Average 99,471 99.77% 99.82% 99.80% 99.85% 99,471 100.0% 

 

The detailed per-class performance study is applicable due 

to the inherent class-imbalanced nature of network 

intrusion detection, where normal traffic heavily and 

outnumber attack traffic. Table 1 shows the confusion 

matrix in detail for our best hybrid setup which maintains 

good performance among all ten categories normal, and 

nine attack types shown in the UNSW-NB15 dataset. The 

normal traffic classification achieved a great performance 

with 99.92% recall and 99.89% precision, it occupies 56.3% 

of the total dataset with 56,000 samples. The quantitative 

analysis shows that there is very low level false positive at 

an optimal operating threshold with 0.89% false positive 

rate. The performance of the attack detection is impressive 

for all classification types, focusing on the model’s 

potential to deal effectively with minority classes. The 

attention mechanism seems to be vital for coping class 

imbalance problem, and performs well on rare attack types. 

Worms are detected 97.56% with 0.1% of samples, 130 of 

them, and 97.23% to be specific. Similarly, Shellcode 

attacks account for 1.1% of samples with 1,133 

occurrences and display 96.91% recall, 96.78% precision. 

These findings confirm that the model can achieve high 

detection rates of crucial-scarse attack patterns without 

degrading the overall system performance. The weighted 

average metrics perfectly match the previously reported 

overall system performance with 99.77% precision, 99.82% 

recall and 99.80% F1-score. The macro average precision 

and recall of 98.02% and 98.09% exhibit balanced 

performance of different classes between classes, 

regardless of sample distribution, which confirms the 

completeness performance of our hybrid deep learning 

approach for the IoT network security applications. 

Table 7: Classification Threshold Analysis and Operating Point Optimization 

Threshold Precision Recall F1-Score False Positive Rate True Negative Rate Balanced Accuracy Attack Detection Rate 

0.30 98.45% 99.94% 99.19% 2.34% 97.66% 98.80% 94.2% 

0.40 99.12% 99.89% 99.50% 1.67% 98.33% 99.11% 96.7% 

0.45 99.34% 99.85% 99.60% 1.23% 98.77% 99.31% 97.8% 

0.50 99.65% 99.84% 99.75% 0.95% 99.05% 99.45% 98.4% 

0.52 99.77% 99.82% 99.80% 0.89% 99.11% 99.47% 98.7% 

0.55 99.82% 99.79% 99.81% 0.76% 99.24% 99.52% 98.9% 

0.60 99.89% 99.67% 99.78% 0.67% 99.33% 99.50% 99.1% 
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0.70 99.94% 99.23% 99.58% 0.34% 99.66% 99.45% 98.8% 

0.80 99.97% 98.45% 99.21% 0.12% 99.88% 99.17% 97.2% 

 

The threshold analysis defines best parameters that 

describe the operational optimal setting of the classifier for 

pragmatic deployment by presenting performance of the 

classifier under nine threshold values at intervals of 0.10 

within the range of 0.30 to 0.80. Such a holistic 

assessment guarantees strong performance selection, with 

a trade-off between precision and recall needs and low 

false positive rates, which is critical for IoT networking 

contexts. The best threshold is determined to be 0.52, 

which provided the exact performance figures already 

presented throughout the study: the precision of 99.77%, 

recall of 99.82% and F1-Score of 99.80%. This threshold 

also keeps a very low false positive rate of 0.89% 

combined with true negative rate of 99.11% so that normal 

network services will be hardly disturbed. The balanced 

accuracy of 99.47% and attack detection rate of 98.7% 

justify the good performance of the threshold in 

identifying all threats. Performance over the range of 

thresholds from 0.45 to 0.60 exhibits very stable behavior, 

with only a 0.5% change in accuracy. This stability 

suggests that model’s robust behavior, also allowing for 

deployment options for various operational conditions. 

Lower thresholds, e.g., 0.30 achieve higher recall with 

99.94% but with higher false positive of 2.34% which will 

be impractical for IoT constrained devices. 

Higher thresholds such as 0.70 and 0.80 achieve precision 

rates well above 99.94% but impact recall performance, 

which can cause missing important attack samples. The 

systematic threshold evaluation confirms that our choice 

(0.52) of the operating point offers satisfactory tradeoff 

between detection sensitivity and operation convenience, 

and serves as a reliable choice for real-world IoT network 

security deployment in the future. 

4-3- Optimization Strategy Comparison: 

An extensive comparison of our hybrid DE+HS algorithm 

with the standard classical optimization algorithms is 

shown in Table 6b. Grid search optimization provided a 

further increase to 97.45% of accuracy, at the cost of 72 

hours of computational time. Random search rose to 98.12% 

with 24 hour run time. Bayesian optimization achieved 

98.89\% accuracy in 18 hours. Single DE optimization 

obtained 99.65% in 12 hours, while single HS obtained 

99.80% in 8 hours. In our optimized DE+HS hybrid 

method, we obtained even better accuracy 99.87% in 10 

hours, which indicates the performance superiority and 

computation efficiency. The improvement of 0.07% over 

HS alone and 0.22% over DE alone demonstrates that 

global exploration and local exploitation strategies are 

mutually beneficial. 

Table 8a: Component-wise Ablation Study Results. 

Architecture Configuration Accuracy Precision Recall F1 Score Performance Gain 

Baseline (Dense only) 94.23% 93.45% 93.78% 93.61% - (Baseline) 

GRU only 96.45% 95.89% 96.12% 95.98% +2.22% 

LSTM only 97.12% 96.67% 96.89% 96.78% +2.89% 

GRU + LSTM (No Attention) 98.34% 97.89% 98.12% 98.01% +4.11% 

GRU + Attention 97.89% 97.34% 97.67% 97.51% +3.66% 

LSTM + Attention 98.67% 98.23% 98.45% 98.34% +4.44% 

Complete Architecture 99.87% 99.77% 99.82% 99.80% +5.64% 

 

Key Finding: Every component of the model contributes to 

some extent in the overall performance, in particular, the 

attention mechanism yields an average improvement of 

1.53% and the concatenated recurrent networks are 

necessary for capturing time-pattern information. 

Table 8b: Optimization Strategy Performance Comparison. 

Optimization Method Accuracy Precision Recall F1 Score Time (Hours) Efficiency Score* 

Grid Search 97.45% 96.89% 97.12% 97.01% 72 1.35 

Random Search 98.12% 97.67% 97.89% 97.78% 24 4.09 

Bayesian Optimization 98.89% 98.45% 98.67% 98.56% 18 5.49 

Differential Evolution 99.65% 99.35% 99.45% 99.40% 12 8.30 

Harmony Search 99.80% 99.50% 99.60% 99.55% 8 12.48 

Hybrid DE+HS 99.87% 99.77% 99.82% 99.80% 10 9.99 
*Efficiency Score = (Accuracy × 100) / Time Hours 

 

Performance Summary: Hybrid method provides best 

accuracy-time tradeoff with 0.07% performance gain over 

best individual method and affordable computation 

demands. 
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Figure 3: Performance Metrics Across Configurations 

In this work, through a performance assessment of the IDS 

model developed for IoT network on various parameters, 

we have shown that optimizing different strategies help us 

to find best suitable configuration in case of deep learning-

based approach. This analysis was very important for 

detecting the right balance of accuracy, precision, recall 

and F1 score. In order to provide proper predictions, we 

need good reliability and acceptable practical efficiency in 

real life settings. 

Key Findings: Differential evolution: among all 

optimization performed problems, DE was the only one 

capable of exploring such a large parameter space 

effectively, and thereby reveal configurations that indeed 

led to substantial performance improvements. "Given the 

results of configurations above, the optimal configuration 

demonstrated accuracy of 99.65%, precision at 99.35% 

and F1 score of 99.40%." These results summarize the 

ability of DE to explore and exploit a complex 

hyperparameter space efficiently. 

Harmony Search (HS): HS4 intensified the query 

refinement in local space which results in a higher model 

precision and recall. The best setting achieved 99.80% 

accuracy with a precision of around 99.50%, an F1 score 

of about 99.55%. This is clear evidence that HS tuned the 

parameters optimally as he usually does to maximize 

efficiencyfulness 

Hybrid method: Used DE and HS in a combination of 

global search with local search capabilities, this 

undoubtedly provided excellent configuration. The latter 

not only preserved the explorative characteristics of DE 

but also exploited the precision improvement feature of 

HS. 100.As a result of optimallye used hybrid 

configuration, the model was able to produce very good 

values on all metrics, specifically an exceptional accuracy 
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of 99.87%, precision ration at 99.77% and an F1 score 

reaching also high value being equal to 99.80%. 

The above results thereby validate our claim, that 

incorporating sophisticated neural network design 

paradigms with the right optimization approach 

dramatically increases IDS performance concerning 

identification of imminent cyber threats in IoT settings. 

The dynamic of both the global expedition as well as 

regional exploitation is important to fulfill high 

performance metrics in all desired field of categories. 

 

Figure 4: Training and Validation Learning Curves for Optimal 

Configuration (C6). 

Figure4 depicts the convergence characteristic of our 

hybridDE+HSoptimized model during 400epochle training. 

Left panel illustrates loss convergence, with training loss 

decreases from 0.45 down to 0.02 and validation loss falls 

from 0.48 down to 0.03. The right panel is the accuracy 

evolution graph, the accuracy of training data increased 

from 60% to 99.9% and the accuracy of testing data up to 

99.87%. The small gap (0.01 in loss, 0.03% in accuracy) 

between the curves of training and validation produces 

evidence of protection of overfitting and generalization 

capability of the network. Convergence also becomes stable 

after epoch 350, justifying the early stopping in testing and 

suggesting the thrive of the hybrid optimization method. 

Table 9: Summary Table of Optimal Configurations for Each Strategy. 

Strategy Best Config Accuracy Precision Recall F1 Score Key Advantage 

Differential Evolution D6 99.65% 99.35% 99.45% 99.40% Global exploration capability 

Harmony Search H6 99.80% 99.50% 99.60% 99.55% Local fine-tuning precision 

Hybrid DE+HS C6 99.87% 99.77% 99.82% 99.80% Balanced exploration-exploitation 

 

Performance Gain The 2-stage optimisation yielded 0.07% 

gain in accuracy over HS alone and 0.22% over DE alone, 

manifesting synergistic effects from combining global and 

local optimisation. 
 

 

Figure 5: Component Contribution Analysis 

Figure 5 is to give a totality picture of the contributions of 

architectural component on system-level performance. 

Results The left panel of the Fig.1 presents accuracy 

evolution of different configurations, including the 

incremental improvements from the baseline dense 

architecture (94.23%) to the complete hybrid system 

(99.87%). The results are quantified in the right panel, in 

which the two components i.e., individual GRU and 

LSTM modules contribute 2.22% and 2.89% 

improvements, respectively, and the collective is 4.11% 

enhancement. The attention mechanism contributes a 

significant performance gain, with an average increase of 

1.53% over settings. The use of the full architecture leads 

to an optimal 5.64% gain in total performance, confirming 

the need and synergy of each component in the proposed 

hybrid deep learning framework. 
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Figure 6: ROC and Precision-Recall Curves for Optimal Configuration 

Classifier performance on T-test value can be visually seen 

on ROC (Fig.6 left panel) and Precision-Recall curves 

(Fig.6 right panel) at different operating threshold. The 

ROC analysis reveals excellent performance with AUC = 

0.9994 for our hybrid approach while it is superior to the 

DE-only (AUC = 0.9987) and HS-only (AUC = 0.9991) 

configurations. The Precision-Recall curves show that our 

hybrid approach is effective when dealing with class 

imbalance, as our method achieves AP = 0.9989, vastly 

surpassing the results of individual optimization 

techniques. The curves show a stable high precision at all 

recall levels, which confirms the robustness of our method 

for minority attack class detection. 

 

Figure 7: Hyperparameter Optimization Convergence Dynamics 

Figure 7 Convergence of various optimization techniques 

for 400 iterations. The left panel shows the behaviour of 

Differential Evolution where a wide initial exploration is 

performed followed by a fine search, with typical jitters 

around 99.65%. The middle panel shows the Harmony 

Search dynamics with quick initial development and 

accurate local improvement toward 99.80% of accuracy in 

a faster fashion with less oscillation after iteration 50. 

Three panels were considered, and the right one shows our 

hybrid approach (DE exploration during the 1- 200 

iterations, appliance of HS exploration during the 201- 400 

iterations). This methodology harnesses the merits of these 

two methods; the wide parameter space search from the 

DE and the fine local optimization from the HS. The clean 

transition at iteration 200 also indicates the orderly 

handover mechanism of the optimization stages, and we 

manage to outperform the single measures at 99.87% with 

computational efficiency. 

In summary, the above table aims to demonstrate different 

optimization strategies leading to best performing 

configurations respectively while enhancing the true 

positive rate and total performance of our intrusion system. 

This comprehensive analysis and comparison offer in-

depth understanding of the ways different optimization 

approaches can be well-suited to complex systems such as 

IDSs for IoT, carving a path that promises robustness and 

adaptability against modern-day cyberchallenge. 

5- Discussion  

It becomes necessary for us to compare our methodology 

with the rest of the existing work while moving forward, 

improving capability of intrusion detection systems in 

Internet of Things (IoT) networks so that we can reflect 

upon the level that how much we have improved it. The 

comparative framework of this analysis is designed to 
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compare the performance, and technological characteristics 

of our newly developed models with four foundational 

articles. DateField All of these studies offer fresh and 

innovative perspectives to gain solutions for the issues of 

cybersecurity in IoT. Throughout the following sections, 

we will review all analyses performed in a comparative 

table containing the main performance metrics—accuracy, 

precision, recall and F1 score as well as any relevant 

characteristics of each analyzed research. By taking this 

comparative approach we have demonstrated the strength 

of our methods in direct comparison between certain 

metrics, and it also sheds light on important characteristics 

as well as strategic advantages for each model. We should 

see the above (the differences and similarities) that we 

bring to light in our research as an opportunity instead of a 

motive for dismay, allowing us to understand where we 

contribute and how to build upon it. 

Table 10: Comprehensive Performance Comparison with State-of-the-Art Methods 

Study & Year Accuracy Precision Recall F1 Score Key Innovation Computational Efficiency 

Our Hybrid DE+HS 99.87% 99.84% 99.85% 99.85% Dual-optimization strategy Optimized for IoT 

Our DE Only 99.65% 99.35% 99.45% 99.40% Global parameter exploration High exploration capability 

Our HS Only 99.80% 99.50% 99.60% 99.55% Local fine-tuning precision Fast convergence 

Lightweight SVM (2019) 92.00% 89.00% 91.00% 90.00% Resource-efficient design Very low computational cost 

Lightweight NN (2021) 98.94% N/A N/A 98.93% Minimal resource demands Extremely lightweight 

RNN Framework (2023) 94.11% N/A 85.42% 90.00% Sequential pattern recognition Moderate efficiency 

DIDS Model (2023) 97.50% 93.00% 95.00% 94.00% Unknown attack prediction Enhanced throughput 

 

Our hybrid scheme outperforms in terms of all performance 

metrics, yet benefits from computational efficiency that 

makes it appropriate for deployment over IoT. The 0.07% 

advantage over the best single optimizer solutions prove that 

the synergy of exploration and exploitation strategies of the 

HTA is the source of the TA-edge. 

From this overview we have summarized the key 

performance measures and salient features that sets apart 

one approach from another: 

Performance Metrices: Our hybrid approach has shown better 

performance on existing works with around 99.87% accuracy 

Moreover, precision and recall rates are also high enough to 

provide a reliable means of detection against intrusion. which 

is a significant improvement compared to those reference 

papers, where the accuracies were between 92%-98.94%. 

Optimization Techniques: The model uniquely combines 

Differential Evolution (DE) and Harmony Search (HS) to 

offer a balanced paradigm of global and local optimizers. 

Therefore, this hybrid configuration provides an effective 

avenue to explore a wide range of hyperparameters space 

while adequately fine-tuning and also is vital in preserving 

dynamic network performance. 

IoT Applicability: in contrast to the 2019 study that focuses 

on lightweight intrusion detection (a good fit for IoT 

constrained devices), our strong model takes into account a 

constraint of computational efficiency. It is, moreover, 

designed to be adaptive to different network conditions 

without requiring too much computational resources that 

would not make it suitable for IoT environments. 

Advanced Neural Architectures: Our approach is grounded 

in advanced neural network architectures which help 

increase its ability to effectively deal with complex, high-

dimensional data. This is in stark contrast with both the 

above 2019 scenario which provided a more simplistic 

model, or even the latest also simple yet single use-case 

only light Neural network approach of year 2021 study. 

Utilization of Features and Feature Selection: Moreover, our 

method achieves in the optimal utilization and selection of 

features from HP optimization algorithms. A principled 

stance that ultimately facilitates richer analysis and goes well 

beyond previous work where studies often carry out their 

analysis based on limited or less refined feature sets. To sum 

up, we implement a comprehensive and significantly accurate 

intrusion detection model that not only recovers from 

exception accuracy of existing models but also 

accommodates the innovative optimization techniques which 

facilitate its feasibility in complex as well as resource-

constrained environments (like IoT). This places our model as 

a stronger alternative than other options that are available to 

companies looking for reliable cybersecurity solutions. 

6- Conclusion and Future Prospect 

In our research, we have developed and successfully validated 

a novel cutting-edge intrusion detection system specifically 

suitable for the IoT networks dynamically complex 

environments. In this work, we propose a novel methodological 

framework using complicated LSTM and GRU models 

incorporated with AM to be used, inspired by [50], together 

such that we achieved optimal hybrid model designed 

specifically through the merging of DE and HS approaches. 

Comprehensive evaluation of the efficacy in comparison 

to both traditional and state-of-the-art methods revealed 

our proposed system outperforming on all major 

performance metrics such as accuracy, precision, recall 

and f1-score. The more we can allow our model to be 

adaptive and responsive to emerging threat patterns, while 

keeping their base detection capacity high, the more robust 

tool they present for securing IoT infrastructures. 

Future Prospects: Therefore, the future of these intrusion 

detection systems in IoT environments is promising, yet quite 
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challenging. At the same time, all those scenarios change at a 

rapid pace due to innovation in cyber threats, which requires 

carrying out the evolution and constant updating of the 

intrusion detection technologies. Our study therefore opens 

up a number of important future research activities: 

1. Integration of Newer Technologies: As machine learning 

and artificial intelligence continue to develop, novel 

opportunities arise for ways to enrich the detection algorithms, 

which are among the key strengths. Novel architectures of 

neural networks or next-generation artificial intelligence 

models further provide impetus for optimization in 

architecture, with an improved efficiency–accuracy trade-off. 

2. Advanced Real-Time Processing: The IoT devices 

generate vast amounts of real-time data. It is quite important 

for our model to be able to process live data sets with an 

advanced approach—better techniques in handling the data 

and a continuously real-time analysis that would forge a 

better response and enhance threat mitigation capability. 

3. Cross-Domain Applicability: The generalization of our 

model could be across the various domains of Industrial IoT, 

Smart Cities, Health, etc. for providing holistic security 

solutions. Every domain presents a totally different set of 

diverse threats and different features of data; hence, the 

need comes for optimal adaptation of the model. 

4. Advances in Hyperparameter Optimization Techniques: 

Although the hybrid proposed strategy was found to be 

effective, there is some scope for improvement. Advanced 

optimization algorithms can be studied for further 

enhancement of performance and efficiency of our model. 

5. Comprehensive Cybersecurity Frameworks: Embedding 

our intrusion detection system in comprehensive 

cybersecurity frameworks can offer more complete 

defense mechanisms against cyber threats. It is through 

working closely with these industry stakeholders that we 

will develop these kinds of integrated solutions. 

In a nutshell, our research extends the state of the art in the 

field of intrusion detection on IoT networks and opens the 

door to various further investigation and development 

possibilities. All of this, to be at odds with the changes 

taking place nowadays in the cyber threat landscape 

through innovation and adaption, will ensure we have 

state-of-the-art measures to keep the systems' integrity and 

workings protected all over the world. 
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Abstract  
Cloud data centers (CDCs) have witnessed significant growth to meet the increasing demands of modern applications. 

However, this expansion has raised concerns regarding the environmental impact, energy requirements, and electricity costs 

associated with data centers. The network infrastructure, serving as the communication backbone of these data centers, plays 

a crucial role in their scalability, performance, cost, and, most importantly, energy consumption. This review provides 

meaningful perspectives and valuable insights into the state-of-the-art research regarding the problem of virtual machine 

placement (VMP), focusing on the network-aware energy efficiency aspects of data centers. It provides an overview of VM 

placement and presents a comprehensive survey of prominent VM placement algorithms from the existing literature. 

Additionally, a thematic taxonomy of network-aware algorithms is introduced, highlighting the key energy consumption 

metrics and presenting a new classification of VMP algorithms that considers datacenter network (DCN) topology, traffic 

patterns, communication patterns, and energy reduction strategies. Besides addressing pertinent research questions in this 

domain, this review summarizes the findings and suggests potential avenues for future research, guiding researchers in 

designing and implementing more effective and efficient network-aware VM placement algorithms that optimize energy 

consumption, improve network performance, and minimize migration costs. 

 

 

 

Keywords: Cloud computing; VM placement; network-aware; Energy-efficient; Network architecture. 
 

1- Introduction 

Cloud computing is an internet-based technology that 

provides services without the need for physical 

infrastructure ownership. The cloud computing model is 

responsible for managing tens of data centers that manage 

computing applications and data storage. Cloud providers 

offer three service models: Infrastructure as a Service (IaaS), 

Platform as a Service (PaaS), and Software as a Service 

(SaaS), with deployment models including public, private, 

community, and hybrid [1]. Virtualization is the key factor 

in cloud computing. It improves resource efficiency and 

reduces costs. The high energy consumption in data centers 

is a significant issue, especially with cooling equipment that 

consumes 80% of available energy [2].  

In the cloud environment, virtual machine (VM) traffic can 

account for 50%-80% of total data center network traffic [3], 

motivating network-aware placement to minimize cross-

rack hops and reduce energy consumption. In this field, 

most research focuses on optimizing resource utilization 

and power consumption to address cost-related challenges. 

Proper planning of the network architecture is very 

important as the number of VMs continues to rise and data 

centers and communication networks continue to expand. 

As cloud applications handle more data, inter-VM network 

bandwidth increases due to the high demand for bandwidth 

that heavily depends on network resources. This presents a 

challenge for cloud environments to strike a balance 

between energy efficiency and performance. Conserving 

energy through reducing network equipment could lead to a 

violation of service level agreements (SLAs) and degrade 

performance [4]. 

Why Network-Aware VM Placement Matters: 

Despite growing efforts to optimize server energy use, the 

network infrastructure —comprising switches, routers, and 

links— remains a major yet often under-optimized 

contributor to overall energy consumption. What makes 

network-aware VM placement particularly compelling is its 
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dual impact: it not only reduces energy usage by limiting 

inter-rack communication and enabling low-power network 

states but also improves performance by lowering latency 

and congestion. These benefits become increasingly 

relevant as VM-to-VM communication dominates traffic 

patterns in modern data centers. As such, placement 

strategies must now evolve to consider network topology 

and traffic locality as primary optimization dimensions, not 

secondary concerns. 

This paper explores several research questions related to 

network-aware VM placement in cloud data centers (CDCs). 

It begins by analyzing the key factors previously examined 

in this domain, such as initial VM placement and potential 

migrations, and their impact on network performance. The 

study then identifies the most effective metrics for 

evaluating the success of energy-efficient, network-aware 

VM placement algorithms, considering both resource 

utilization and network performance. Additionally, it 

investigates how the network topology within a data center 

affects overall power consumption and whether enhancing 

network power efficiency can influence the costs associated 

with VM migration. 

This paper makes the following contributions to the field of 

energy‐efficient, network‐aware VM placement in CDCs: 

• Taxonomy of Methodologies 
We propose a novel taxonomy that systematically classifies 
existing network‐aware VM placement approaches, 
highlighting each approach’s underlying energy‐efficiency 
mechanisms. 

• Categorization of Existing Work 

We analyze and categorize state‐of‐the‐art algorithms based 
on key metrics —such as topology awareness, traffic 
patterns, and consolidation techniques— and evaluate their 
impact on overall energy consumption. 

• Identification of Challenges 
We pinpoint critical gaps in current research, most notably 
the lack of integration between VM placement strategies and 
dynamic network energy-saving techniques . 

• Proposed Solutions 

We suggest actionable solutions to address these challenges, 
including cross‐layer optimization frameworks and 
topology‐aware VM consolidation heuristics that co‐locate 
high‐traffic VMs to minimize network usage. 

• Future Research Directions 

We outline open problems and emerging trends; such as AI‐
driven placement and edge‐cloud coordination; to guide 
future work in this area. 

• Practical Resource for Researchers 

We provide a structured reference for practitioners, showing 
how to balance network performance and power savings 
when designing new VM placement algorithms. 

The remainder of this paper is organized as follows. Section 

2 reviews existing surveys on network-aware VM 

placement. Section 3 presents an analysis of VM placement 

(VMP) algorithms. Section 4 introduces our taxonomy of 

network-aware, energy-efficient approaches. Section 5 

discusses the limitations of today’s research. Finally, 

Section 6 concludes with key takeaways and outlines 

precise future research directions aimed at helping both 

researchers and practitioners design VM placement 

strategies that minimize power usage without 

compromising network performance. 

2- Landscape of Existing VMP Surveys 

2-1- Overview of Prior Surveys Focus Areas 

Several survey articles have previously explored VMP in 

cloud computing, addressing critical challenges in areas 

such as minimizing energy consumption, optimizing traffic 

routing, and ensuring resource allocation efficiency. These 

efforts span a wide range of algorithmic strategies, 

including heuristic algorithms, meta-heuristic optimization, 

dynamic workload balancing, and energy-aware 

scheduling. While individually rich in contributions, many 

of these surveys tend to focus on isolated dimensions of the 

VMP problem, often treating energy-efficiency and 

network-awareness as distinct objectives rather 

interdependent system constraints. 

 

Although prior surveys cover individual hardware 

mechanisms—Dynamic Voltage and Frequency Scaling 

(DVFS) and Adaptive Link Rate (ALR) —or network-

aware placement separately, no integrative framework 

treats these energy-saving techniques and network-sensitive 

parameters (traffic patterns, communication behavior, 

Datacenter Network (DCN) topology) as co-dependent. 

• DVFS dynamically lowers a processor’s supply 
voltage and clock frequency during light workloads to 
reduce power consumption.  

• ALR reduces the data-link speed (or puts links into 
low-power idle modes) on underutilized network ports, 
saving significant switch and NIC energy but introducing 
variable latency when ramping back to full rate. 

This deficiency limits the applicability of existing 

classifications in real-world CDCs where network usage 

and energy dynamics are deeply intertwined. Therefore, this 

review aims to bridge that gap by delivering a unified 

analytical lens that evaluates VMP strategies at the 

intersection of network topology, traffic behavior, and 

energy optimization—providing researchers and 

practitioners with a holistic foundation for future 

algorithmic developments. 
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2-2- Features and Gaps  

Table 1 presents a multi-dimensional mapping of prior 

VMP surveys across several core features, highlighting 

areas of emphasis and omission in relation to network-

awareness, energy-efficiency, and VM placement logic. 

 
Table 1. Comparison of Existing Surveys on Network-Aware VM Placement Across Key Dimensions 

Ref Year Placeme

nt & 

Migratio

n 

Traffic-

Eng. 

DCN 

Topology 

Inter-VM/ 

VM→Storage 

Comm. 

Pattern 

Energy-

Saving 

Hardware-

Based 

Traffic-

Based 

Thermal 

Mgmt. 

Perf. 

Impact 

App 

Focus 

[5] 2013 ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ 

[6] 2014 ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 

[7] 2015 ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ 

[8] 2014 ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 

[9] 2014 ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ 

[10] 2015 ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ 

[11] 2015 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

[12] 2016 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

[13] 2020 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

[14] 2020 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ 

[15] 2021 ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ 

[16] 2023 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

[17] 2024 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ 

[18] 2024 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

Our 

Work 

2025 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

To further contextualize the strengths and omissions across 

surveys, Table 2 summarizes the primary focus of each 

reference and the most prominent gaps with respect to 

network-awareness and energy optimization. 

 
Table 2. Most Prominent Gaps Across Reviewed Surveys. 

Ref Year & Venue Primary Focus Most Prominent Gaps (in Network‐Aware Context) 

[5] 2013, Cluster Computing ALR and link‐layer energy techniques No VM placement or topology‐aware placement; lacks 

traffic pattern integration 

[6] 2014, ACM Computing Surveys High-level energy‐efficiency (DVFS, link 

sleep) 

Algorithmic VM placement details missing; no explicit 

DCN topology analysis 

[7] 2015, FGCS Network-aware VM placement & 

migration 

No link‐layer ALR/DVFS inclusion; limited thermal 

considerations 

[8] 2014, Computer Communications DCN architectures & energy-aware 
routing 

No VM consolidation or ALR integration; lacks detailed 
performance vs. energy metrics 

[9] 2014, FGCS Green DCN architectures taxonomy Hardware-level focus; lacks VM-level dynamics or 

traffic/thermal overlays 

[10] 2015, JNCA Live VM migration & server 

consolidation frameworks 

Limited network awareness (focuses on migration 

traffic); does not tie placement to topology or ALR 

[11] 2015, IEEE CCGrid General VM placement taxonomy Does not explicitly cover network-energy techniques 

(ALR) or topology variations 

[12] 2016, JNCA Algorithm catalog (ILP, heuristics, 
metaheuristics) 

Lacks network‐energy integration; does not address 
dynamic traffic patterns 

[13] 2020, JSC Multi-objective VM placement Does not integrate ALR or DCN topology; limited 

discussion of per-flow traffic metrics 

[14] 2020, Kybernetes Classification of VMP mechanisms in 
cloud 

No explicit focus on link-layer energy or inter-VM traffic 
topology 

[15] 2021, Computer Science Review Multi-level consolidation (VM, container, 

etc.) 

No focus on ALR or DCN topology; limited to 

consolidation trends 

[16] 2023, The Journal of Computational 
Science and Engineering 

Review of 7 energy-efficient VM 
placement strategies 

General efficiency metrics; lacks deep integration of 
DCN traffic patterns or communication metrics 

[17] 2024, Frontiers in Computer Science ML-based VM scheduling techniques Does not classify topologies or link-level policies; lacks 

VM clustering detail 

[18] 2024, Telecommunication Systems Phased VMC lifecycle review (PM→VM 
selection→placement) 

Does not integrate link‐layer energy or topology; focuses 
on VM phases without network-energy objectives 

— 2025, TBD (Our Work) Unified network-aware VMP taxonomy Fills all gaps by integrating ALR, topology, traffic 

patterns, and energy/thermal considerations 
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While Table 1 and Table 2  provide a 

comparative overview of survey scopes, a deeper analysis 

of each work reveals further  insights into thematic priorities 

and overlooked dimensions. As summarized in Table 2, the 

majority of prior surveys fail to integrate link-layer energy 

mechanisms, DCN topology constraints, and traffic-aware 

placement into a unified classification framework. This 

motivates the need for a closer, qualitative critique of each 

referenced study—highlighting what each survey addresses 

and, more importantly, how our work advances beyond 

them with a network-aware energy-efficient focus. 

2-3- Critical Analysis 

This subsection presents an evaluation of each major survey 

study on VMP published from 2013 through 2024, with a 

focus on their contributions to energy-efficient and 

network-aware strategies. For each referenced work ([5]- 

[18]), we describe the main idea of the survey, identify its 

strengths, and highlight gaps related to the intersection of 

communication patterns, topology constraints, and power 

efficiency. Such analysis has two goals: first, to document 

the advancement of the domain in the past ten years, and 

second, to show how most of these surveys fail to integrate 

all these aspects into a single framework.  This subsection 

also serves to demonstrate how our proposed taxonomy 

explicitly addresses these multi-layered challenges by 

integrating network topology, traffic-awareness, and 

energy-aware mechanisms under a unified VM placement 

perspective. These observations establish the rationale for 

our integrated taxonomy, as elaborated in the following 

sections. 

The survey [5] offer one of the foundational treatments of 

green networking by categorizing ALR techniques - 

dividing link-sleep policies (immediate vs. delayed wake) 

and link-rate scaling schemes- and by evaluating the IEEE 

802.3az standard’s potential to save nearly 0.9 TWh 

annually in large US data centers. Their strength lies in 

rigorously detailing how ALR can dynamically reduce link-

layer power, from NICs up to aggregation switches. 

However, because their focus remains at the hardware and 

firmware level, they do not address how VM placement or 

migration strategies might leverage fluctuating link speeds 

or ALR states to optimize overall data center energy. Our 

survey fills this gap by explicitly integrating ALR 

considerations into the network-aware VM placement 

taxonomy,  demonstrating how VM co-location based on 

communication affinity can complement hardware-level 

ALR to maximize energy savings. 

The authors of [6] present a broad, multi‐layer survey of 

energy‐efficiency techniques in large‐scale distributed 

systems, covering hardware‐level approaches (DVFS, 

power modeling), server‐level optimizations (VM 

consolidation, dynamic provisioning), and network-layer 

tactics (ALR, link‐sleep, topology reconfiguration). Their 

work’s strength is in demonstrating that up to 30–40% of a 

data center’s energy can be consumed by its networking 

infrastructure, thus motivating holistic solutions, but lacks 

a taxonomy specific to VM placement. Our work fills this 

void by extending network-layer concerns into VM 

placement contexts, thereby illustrating how topology- and 

traffic-aware placement strategies interact with server and 

link energy dynamics. 

The authors of [7] present a specialized taxonomy of 

network-aware VM placement and migration algorithms, 

classifying approaches based on problem formulation (ILP 

vs. heuristics), traffic awareness (static vs. dynamic), and 

objectives (minimizing inter-VM traffic, avoiding 

congestion, balancing network load) . They survey methods 

that co-locate high-traffic VM pairs -reducing inter-rack 

hop counts by roughly 30%. Although they excel in 

highlighting how inter-VM communication patterns drive 

placement, they do not incorporate link-layer ALR or DVFS 

as explicit dimensions in their classification, nor do they 

quantify the impact of particular DCN topologies on overall 

energy consumption. Our survey extends their work by 

embedding these network-aware placement algorithms 

within a broader framework, explicitly incorporating DCN 

structure, traffic distribution patterns, and link utilization 

characteristics into placement decision-making. 

Authors in [8] provides a focused survey on architectures 

and energy efficiency in data center networks. It covers 

DCN topologies (FatTree, VL2) and green techniques like 

link adaptation and component shutdown. However, it lacks 

granularity in VM-level policies. Our review complements 

this by showing how such architectural designs can be better 

utilized when paired with VM placement that respects 

traffic distribution and energy states, offering specific 

placement criteria that leverage topology-induced 

communication cost differences. 

The authors in [9] conducted a comprehensive survey on 

Green Data Center Networks (DCNs), focusing on energy-

efficient architectures (electrical, optical, hybrid), traffic 

management, and performance monitoring. While their 

work extensively covers network-level energy optimization 

techniques like ALR and topology-aware resource 

consolidation, it does not systematically integrate VM 

placement strategies with network energy efficiency. This 

separation weakens the applicability of their insights for 

practical scheduling decisions. This work integrates their 

hardware-level insights into VM placement taxonomy, 

connecting traffic profiles and server locality to DCN 

energy states. 

The authors of [10] deliver a deep examination of live VM 

migration and server consolidation frameworks, 

categorizing bandwidth-optimization techniques (block-

level and file-level deduplication, delta compression, 

dynamic rate limiting), storage-checkpoint approaches, and 

consolidation triggers (CPU/memory thresholds vs. 

predictive models). Their strength is in quantifying 
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migration downtime, total transfer time, and migration 

energy overhead across dozens of tools (e.g., Xen pre-copy, 

KVM post-copy, RDMA-accelerated). They also survey 

DVFS-enabled consolidation policies that reduce CPU 

power during migration windows. However, they do not 

incorporate network-awareness beyond minimizing 

migration traffic; specifically, they do not explore how VM 

selection and placement decisions could optimize for inter-

VM communication patterns. In contrast, our survey 

extends their consolidation framework by explicitly 

modeling migration and placement objectives that minimize 

both compute and network power.  

The work in [11] propose a five-axis taxonomy for VM 

placement —spanning optimization objectives (power, 

performance, network, reliability), workload models (batch, 

enterprise, web, HPC), constraints (QoS, SLA, affinity), 

problem formulations (ILP, CP, heuristics, metaheuristics), 

and placement modes (static vs. dynamic). They provided 

researchers with an early, systematic way to navigate the 

VM placement literature. Nonetheless, their taxonomy does 

not explicitly integrate network-layer energy techniques 

such as ALR or discuss how specific DCN topologies shape 

algorithmic design. Our work builds on their multi-

dimensional approach by DCN topology —thus mapping 

each placement algorithm onto a richer, network-aware 

energy context, and explicitly correlating traffic patterns 

with link-power-saving opportunities. 

Survey [12] compile an extensive algorithm-centric 

overview of VM placement techniques, grouping them into 

exact ILP/MIP formulations, multi-objective nonlinear 

programming, bin-packing heuristics (e.g., First-Fit 

Decreasing, Best-Fit Decreasing), coalition- and graph-

theory methods (e.g., Hungarian algorithm), and 

evolutionary metaheuristics (GA, PSO, ACO, SA, BBO) . 

They evaluate each category in terms of scalability, solution 

quality, and runtime, concluding that metaheuristics 

predominate for large data centers. However, their survey 

omits any discussion of network-aware energy techniques 

or DCN topology. In our work, we situate each algorithm 

class within a unified, network-aware framework that 

specifies how each network metric studied influence 

performance and energy outcomes, thereby providing 

practical guidance on selecting placement strategies based 

on the communication structure of the workload. 

In their study [13], the authors deliver a comprehensive 

multi-objective taxonomy for IaaS VM placement, 

distinguishing between single-objective (power only) and 

multi-objective (power and network, power and QoS) 

methods, and between operation modes (offline vs. online), 

while also noting emerging challenges such as AI/ML-

based placement and edge-cloud integration. However, they 

do not unify ALR or DCN topology into their taxonomy. 

Our survey builds upon their multi-objective perspective by 

adding a network-energy dimension, including 

communication-aware cost functions and DCN-aware co-

location policies. 

The survey [14] provides a comprehensive overview of 

VMP mechanisms in cloud environments by systematically 

categorizing approaches into static and schemes. Their 

strength lies in rigorously detailing the mapping algorithms, 

selection criteria, and resource-utilization impacts across 40 

carefully filtered studies. However, because their focus 

remains at the process level (static vs. dynamic) and general 

algorithmic families, they do not analyze how network-

aware strategies, thermal considerations, or renewable-

energy profiles influence VMP decisions. Our survey fills 

this gap by explicitly integrating these concerns, by 

enabling sustainability-oriented VM allocation guided by 

real-world infrastructure constraints. 

The work described in [15] resent a comprehensive survey 

of data center consolidation in cloud computing systems, 

with a significant portion dedicated to VM-level 

consolidation techniques —examining threshold-based host 

selection, VM selection heuristics, and consolidation-

driven energy models for CPU and memory utilization. 

Their strength lies in synthesizing a wide range of VM 

consolidation algorithms—ranging from simple first-fit and 

best-fit heuristics to more advanced ILP and metaheuristic 

formulations—and in highlighting how VM consolidation 

can reduce the number of active hosts and, consequently, 

overall energy consumption. However, although they touch 

on VM migration overhead, they do not incorporate 

network energy considerations nor analyze how specific 

data center topologies influence consolidation decisions. 

Our survey extends their VM-level focus by embedding 

each consolidation algorithm within a network-aware 

framework, explicitly showing how inter-VM traffic 

patterns interact with placement heuristics to maximize 

combined compute and network energy savings, resulting 

in more holistic and topology-sensitive consolidation 

strategies.  

The authors of [16] present a concise survey of seven 

energy‐efficient VM‐placement algorithms in cloud data 

centers, covering load‐balancing heuristics, metaheuristic 

methods, queuing‐based models, simulation‐driven 

approaches, static placement schemes, hybrid strategies, 

and predictive control techniques. Their work’s strength lies 

in clearly summarizing each algorithm’s core mechanism 

and practical applicability, but it lacks a systematic 

taxonomy and quantitative comparison—particularly 

omitting network‐layer energy management. Our survey 

fills this void by introducing a comprehensive, multi‐

dimensional taxonomy and detailed comparison tables that 

explicitly integrate network‐ and thermal‐aware dimensions 

into VM placement strategies, bridging infrastructure 

constraints with algorithm design. 

The authors of [17] conduct a systematic literature review 

(SLR) of VM‐scheduling studies, categorizing them into 

three principal methodologies —traditional, heuristic, and 
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meta-heuristic— and rigorously charting their problem 

formulations, performance metrics, and simulation 

environments. Their strength lies in applying a clear SLR 

protocol to distill trends and challenges across a broad 

corpus. However, because their taxonomy is organized 

solely around algorithmic families and general scheduling 

parameters, it omits network‐aware energy management 

considerations. Our survey fills this void by introducing 

dedicated network- and thermal-awareness in the VM-

placement classification, highlighting the impact of link-

power state models and topology-aware routing in 

placement evaluation. 
Authors of [18] offer a systematic overview of VM 

Consolidation (VMC) by describing the three fundamental 

phases -(1) Physical Machine (PM) detection, (2) VM 

selection, and (3) VM placement- and classifying works 

according to their problem formulation (ILP, heuristic, 

metaheuristic), constraint sets (SLA, affinity, resource 

capacities), and objective functions (power minimization, 

network traffic reduction, cost, SLA violation) . Their major 

contribution is the clear, phase-by-phase breakdown of 

VMC, which helps researchers identify algorithmic gaps in 

each subproblem. Still, although they recognize 

“minimizing network traffic” as one possible objective, 

they do not assess the role of DCN topology. In contrast, 

our survey embeds topology-aware metrics directly into the 

VMP decision model—linking traffic routing patterns, 

bandwidth bottlenecks, and link power profiles with 

placement granularity. 

2-4- Motivation Toward a Network-Energy-

Aware VMP Taxonomy 

Building on the limitations identified, we now motivate the 

need for a more unified taxonomy that explicitly links 

energy and network metrics in VM placement. 

This paper addresses these gaps by: 

• Providing an integrated taxonomy covering both 
network and energy optimization. 

• Categorizing and analyzing methods across heuristic, 
meta-heuristic, ML, and hybrid strategies. 

• Highlighting topological and communication-aware 
metrics used in real deployments. 

• Incorporating recent advancements (2022–2025) 
including RL-based, and graph-theory-informed VMP 
strategies. 

In summary, the existing body of survey work demonstrates 

valuable insights into VM placement challenges, yet lacks 

a unified treatment that integrates network topology, 

communication behavior, and energy efficiency within a 

cohesive evaluation framework. These gaps underscore the 

importance of establishing a systematic classification of 

VMP strategies, not only to contextualize existing methods 

but also to lay the groundwork for deeper, network-aware 

taxonomic analysis. 

In the following section, we present a general classification 

of VM placement approaches, categorizing them by 

strategic objectives, optimization techniques, infrastructure 

considerations, and workload profiles — all of which form 

the foundation for the specialized taxonomy introduced in 

Section 4. 

Early research prioritized server-side optimization because 

DCNs were heavily overprovisioned and per-flow traffic 

metrics were not readily exposed to hypervisors. Moreover, 

combining server and network objectives created complex 

multi-objective problems, and only with the advent of SDN-

based telemetry [7] did network-aware placement become 

both feasible and attractive. 

2-5- Bibliometric Overview 

To assess the scholarly rigor of our survey corpus, we first 

defined precise selection criteria—keywords related to 

virtual machine placement, inclusion of peer-reviewed 

articles from reputable publishers, and exclusion of non-

technical reports or non-English sources. We then executed 

systematic searches across Scopus and Web of Science 

using Boolean combinations of “virtual machine 

placement,” “cloud data center,” and “energy efficiency,” 

restricting results to publications between 2009 and 2025. 

After de-duplication and application of our 

inclusion/exclusion rules, 80 references remained for  

analysis. Table 3 summarizes the distribution of these works 

by their SCImago Journal Rank quartile and lists the 

corresponding reference numbers. Table 4 shows the 

temporal breakdown of the references into 2009–2018, 

2019–2021, and ≥ 2022 periods. Together, these tables 

provide a clear picture of both the scholarly rigor and the 

evolution of the field over time. 

Table 3. Distribution of survey references by SCImago journal rank 

quartile. 

Quartile Count References 

Q1 21 [6], [8], [9], [10], [12], [22], [26], [33], [37], 

[38], [44], [49], [52], [54], [60], [62], [69], 

[72], [73], [78], [85] 

Q2 17 [5], [13], [15], [17], [21], [24], [30], [31], 

[39], [40], [45], [50], [63], [66], [76], [79], 

[83] 

Q3 8 [14], [18], [35], [36], [47], [57], [70], [74] 

Q4 5 [2], [23], [34], [53], [80] 

N/A 34 [1], [3], [4], [7], [11], [16], [19], [20], [25], 

[27], [28], [29], [32], [41], [42], [43], [46], 

[48], [51], [55], [56], [58], [59], [61], [64], 
[65], [67], [68], [71], [75], [77], [81], [82], 

[84] 

 All Quartiles are taken from the latest SCImago data 

(2024). 

Conference proceedings, book chapters, standards, 

preprints, and other non-journal venues are marked N/A. 
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Table 4. Distribution of survey references by publication period 

(2009–2018, 2019–2021, ≥ 2022). 

Date 

Range 

Count Reference Numbers 

2009–
2018 

38 [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], 
[12], [25], [27], [32], [42], [53], [54], [55], 

[56], [58], [59], [60], [62], [64], [65], [66], 

[67], [68], [70], [71], [72], [73], [74], [75], 
[77], [78], [80] 

2019–

2021 

21 [13], [14], [15], [26], [29], [31], [34], [36], 

[37], [40], [41], [43], [46], [47], [49], [50], 

[51], [57], [69], [76], [85] 

2022 and 

after 

26 [16], [17], [18], [19], [20], [21], [22], [23], 

[24], [28], [30], [33], [35], [38], [39], [44], 

[45], [48], [52], [61], [63], [79], [81], [82], 
[83], [84] 

3- VM Placement Classification 

This section reviews VM-level placement techniques in 

IaaS clouds. While container orchestration (e.g. 

Kubernetes, Docker Swarm) and serverless paradigms are 

reshaping resource management, they lie outside our VM-

centric focus. For multi-level consolidation spanning VMs 

and containers, we refer readers to [15]. 

To establish a foundation for network-aware taxonomic 

refinement, we first present a generalized classification of 

VMP strategies. This section categorizes the existing 

approaches through four essential questions as shown in 

Fig.1—Why place?(Objectives), How to place?(Methods), 

Where to place?(Constraints), and What is being 

placed?(Workload)—each representing a pillar of modern 

VMP design. It is important to note that many studies do not 

fit in a single category. Instead, authors often formulate 

their placement strategies using a combination of 

objectives, methods, and constraints, leading to intentional 

overlap across these classification boundaries. This 

multidimensional design reflects the complex, real-world 

trade-offs that cloud service providers must manage. 

3-1- Placement Objectives & Constraints (Why 

Place?) 

A- Energy Efficiency 

Energy efficiency is a foundational objective in VM 

placement, targeting both server-side and network-side 

power reductions. At the server level, strategies such as 

consolidation and intelligent VM distribution aim to reduce 

the number of active physical PMs. On the network side, 

minimizing inter-VM communication distance—by placing 

frequently interacting VMs closer within the topology—

reduces switch and link utilization. 

The Energy Efficient VM Placement (EE-VMP) model 

proposed in [19] demonstrated remarkable improvements, 

reducing power consumption by up to 56.89% and the 

number of active servers by 37%, while enhancing resource 

utilization by over 64%. These results underscore the 

potential of topology-aware consolidation combined with 

server optimization. However, the algorithm depends on 

accurate traffic matrices, which are rarely available in real 

time. 

Similarly, an Active Energy-Efficient Placement method 

[20] achieved average energy reductions of 21.2% 

compared to the First Fit baseline. This highlights the 

efficacy of lightweight heuristic decision-making when 

real-time adaptability is needed, particularly in large-scale 

public clouds. However, its simplicity ignores inter-VM 

traffic patterns, potentially increasing cross-rack 

communication. Thus, Active Placement is attractive for 

compute-heavy, low-communication workloads but falls 

short when inter-VM latency and bandwidth must also be 

managed. 

For dynamic workloads, the MOEA/D-based placement 

method proposed by [21] provides a more nuanced multi-

objective balance. It simultaneously minimizes energy 

usage and overload risks, ensuring QoS compliance while 

maintaining performance efficiency under load. This 

approach is especially valuable in heterogeneous cloud 

environments with fluctuating demand, although it comes 

at the cost of higher computational complexity. That said, it 

adds significant computational cost. Choosing MOEA/D is 

advisable when offline tuning is acceptable and runtime 

overhead is secondary to multi-objective precision; 

otherwise, one should reject it in favor of faster 

approximation methods. 

In [22], authors propose an algorithm designed to jointly 

minimize the energy consumption of both servers and 

network devices. The algorithm incorporates traffic 

awareness by co-locating highly interactive VMs and 

selecting physical paths with minimal energy costs. Their 

results demonstrated 11.4% reduction in total energy 

Fig. 1. VM Placement Classification 
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consumption, up to 22.3% reduction in network power 

usage, and significant improvement in VM-to-VM 

communication efficiency. This method shows how 

intelligent mapping of traffic-heavy VMs to proximity-

aware PMs can lower the utilization of aggregation and core 

switches, reducing link activation and routing overhead, yet 

the solution assumes that accurate traffic matrices are 

available prior to placement—a condition not always 

feasible in real-time cloud workloads. 

B- QoS/SLA Compliance  

Guaranteeing Quality of Service (QoS) and minimizing 

Service Level Agreement (SLA) violations are crucial 

objectives in VM placement. Overlooking these 

considerations can result in degraded user experience, 

financial penalties, and reduced provider reputation—

especially in multi-tenant cloud infrastructures operating 

under tight availability thresholds. 

The work in [23]  introduced a utilization-aware VM 

placement policy that anticipates workload demands and 

avoids host overloading. By forecasting CPU trends and 

limiting consolidation aggressiveness, the method 

minimizes SLA violation time per active host while 

maintaining consolidation efficiency. However, reliance on 

CPU-only forecasting neglects network congestion effects 

during live migrations, potentially shifting bottlenecks to 

oversubscribed links. Moreover, the threshold-based 

decision logic may misfire under sudden workload spikes, 

degrading performance.  

In [24], the authors proposed an Energy and QoS-aware VM 

placement algorithm (EQVMP) tailored for IaaS cloud 

environments. Their work integrates host energy modeling 

with service availability constraints, using a hybrid 

scheduling policy to minimize SLA violations. 

Experimental results show that EQVMP achieves lower 

energy consumption compared to baseline algorithms like 

RR and FF, while improving response time and reducing 

SLA violations, particularly under high-demand scenarios. 

Nevertheless, EQVMP’s energy model abstracts away fine-

grained network costs, and its rule-based availability checks 

introduce additional scheduling latency.  

In a broader context, In [25], authors developed a multi-

domain SLA management model incorporating a Generic 

SLA Manager (GSLAM) linked with OpenStack. Their 

approach models SLA violations and penalties across the 

IaaS, PaaS, and SaaS layers. The AV/AVL algorithms they 

introduce maintain availability above 99.99% and reduce 

penalty propagation across domains by controlling live 

migration overhead and optimizing host selection. While 

this multi-layer perspective improves service-level 

economics, the framework’s orchestration complexity and 

cross-layer coordination overhead pose significant 

scalability challenges.  

C- Cost Optimization  

Cost-efficient VM placement remains a critical challenge in 

cloud infrastructures, especially in geographically 

distributed data centers where energy prices, carbon taxes, 

and renewable availability vary significantly. The work in 

[26] proposed a renewable- and carbon-aware VM 

allocation model that minimizes electricity costs and CO₂ 

emissions by dynamically placing VMs across data centers 

based on green energy availability, carbon intensity, and 

electricity prices. Their system integrates DVFS techniques 

and dynamic workload balancing, optimizing both cooling 

and server power usage. This work implicitly touches on 

network-related cost considerations by analyzing the carbon 

footprint and latency constraints tied to inter-data center 

VM placement and container communication, making it 

relevant to network-aware resource allocation. However, 

the method presumes reliable, low-latency energy pricing 

and renewable forecasts, which may not be universally 

available; it also overlooks performance impacts of inter-

site VM migrations, risking degraded QoS for latency-

sensitive workloads.  

Similarly, in [27] authors designed a power and cost-aware 

placement strategy using a fuzzy decision model that 

simultaneously considers power consumption, electricity 

costs, and resource utilization. Their strategy yields 

measurable cost benefits under stable network conditions 

but omits dynamic bandwidth pricing and incurs significant 

overhead from fuzzy parameter tuning. 

D- Load Balancing  

Effective load balancing in virtual machine placement 

ensures even distribution of tasks across physical resources, 

which reduces processing delays, prevents host 

overloading, and maintains optimal system throughput. 

Load imbalance can lead to resource contention, degraded 

performance, or energy inefficiencies, particularly in high-

density cloud environments. 

In [28], a hybrid metaheuristic approach combining Ant 

Colony Optimization (ACO), Particle Swarm Optimization 

(PSO), and Artificial Bee Colony (ABC) is introduced to 

improve load distribution. This tri-hybrid method leverages 

the strengths of each algorithm: ACO's path-finding 

accuracy, PSO's global exploration, and ABC's exploitation 

of good solutions. The algorithm dynamically reallocates 

workloads among VMs based on current utilization, 

minimizing makespan and improving response time. 

Simulation using CloudAnalyst showed that the hybrid 

strategy significantly reduced average response time and 

execution time, outperforming classical load balancing 

algorithms like DLMA and IDLBA. Despite these gains, the 

combined algorithm entails high computational complexity, 

complex parameter calibration, and limited scalability 

under dynamic workloads. 
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Authors of [29] proposed the Min-Max Exclusive VM 

Placement (MMEVMP) strategy designed for scientific 

data environments, where workloads are data-intensive and 

disk I/O becomes a performance bottleneck. Unlike 

conventional CPU-centric methods, MMEVMP considers 

both disk bandwidth and CPU utilization to minimize SLA 

violations and reduce system operating costs. The algorithm 

dynamically avoids hosts likely to face disk saturation by 

analyzing historical usage patterns and applying adaptive 

time-based thresholds. Their experiments using a 

lightweight CloudSim version showed that MMEVMP 

achieved lower SLA violation rates while keeping energy 

consumption within acceptable bounds. However, the 

approach depends on accurate historical I/O profiling and 

neglects real-time network traffic patterns, potentially 

shifting bottlenecks to the network layer. 

 

3-2- Optimization Models (How to place?) 

Optimization approaches to VMP can be categorized into 

distinct yet overlapping models, each with advantages tied 

to performance, scalability, and adaptability to multi-

objective goals. These include mathematical models, 

heuristic methods, metaheuristics, and learning-based 

approaches. 

A- Mathematical Optimization  

The work [30] presents a Multi-Objective Integer Linear 

Programming (MOILP) model for optimal VM placement, 

addressing resource utilization in CDCs. Although MOILP 

offers a rigorous mathematical framework for balancing 

conflicting objectives, its computational complexity grows 

exponentially with problem size. When applied to scenarios 

involving thousands of VMs and PMs, this leads to long 

solution times and excessive resource demands—rendering 

MOILP impractical for real-time or highly dynamic cloud 

environments. Even with enhancements like Tabu Search 

acceleration, solver runtimes extend beyond acceptable 

limits for dynamic cloud environments.  

This paper [31] introduces mixed‐integer programming 

(MIP) models for virtual machine placement that embed 

disk anti‐colocation constraints—ensuring no physical disk 

hosts more than one virtual disk from the same VM—to 

optimize resource allocation in datacenters. MIP 

formulation may involve trillions of variables and/or 

constraints for large datacenter and therefore can’t solve 

VMP optimally within acceptable time. 

 

Optimization-based VM placement approaches offer 

mathematically rigorous formulations that guarantee 

optimality under well-defined constraints. These methods 

are especially suitable for precision-critical environments 

where deterministic outcomes  are essential. Their ability to 

handle multiple objectives simultaneously (e.g., minimizing 

energy while balancing load and respecting hardware 

constraints) is a significant strength not easily replicated by 

heuristics or learning-based methods. 

However, the computational cost of solving such models 

grows exponentially with problem size, making them 

impractical for large-scale cloud infrastructures [32]. 

Incorporating network-related constraints—such as inter-

VM bandwidth demands, link capacities, or communication 

topologies—further increases the complexity. Even when 

advanced solvers or acceleration techniques  are used, real-

time placement decisions remain out of reach for anything 

beyond small- to medium-scale scenarios. 

These approaches are also highly sensitive to changes in 

input parameters or constraints. A minor modification in 

workload demand or infrastructure policy may require full 

model regeneration and resolution, limiting their 

responsiveness to dynamic or elastic cloud environments. 

Furthermore, despite their theoretical strength in modeling 

energy consumption or network utilization, embedding 

such metrics into optimization formulations significantly 

delays solver convergence. 

In terms of scalability, scenarios with fewer than 500 VMs 

are well-suited to these methods. On the other hand, large-

scale, dynamic, or latency-sensitive platforms—such as 

public clouds or edge computing environments—are poorly 

matched due to the models' inability to respond within strict 

time constraints. 

This type of optimization is best suited for offline placement 

in private clouds with stable demand, small-scale 

deployments where optimality justifies runtime, and 

regulated environments requiring strict constraint handling 

(e.g., security or compliance-based placement). But they 

perform worse with rapidly scaling public clouds, edge 

scenarios with latency bounds, and dynamic workloads 

requiring frequent re-optimization. 

B- Heuristics 

Heuristic methods are variants of bin-packing and greedy 

placement. They offer rapid, scalable approximations for 

the VM placement problem. Use simple, rule-based 

strategies (e.g. First-Fit, Best‐Fit Decreasing [33])). These 

algorithms sort VMs by one or more dimensions (such as 

CPU demand or traffic volume) and assign each VM to the 

“best” host in linear or near-linear time. 

GMPR [34] is a greedy placement algorithm that first ranks 

PMs by power efficiency to minimize the number of active 

hosts, then sequentially reduces resource imbalance and 

slack. In simulations on synthetic workloads and Amazon 

EC2 traces, GMPR achieves average savings of 1.91% in 

energy consumption and 16.18% in resource wastage versus 

state-of-the-art methods yet overlooks bandwidth costs. 

Hybrid Best-Fit (HBF) [35] extends the classic Best-Fit 

heuristic by running three VM-ordering schemes (original, 

ascending size, descending size) and selecting the allocation 

with the lowest total energy. HBF consistently outperforms 
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both Best-Fit and Best-Fit Decreasing with minimal 

additional computation, but without addressing network 

proximity. 

Heuristic-based VM placement approaches are widely used 

for their speed, simplicity, and scalability, making them 

particularly effective in large-scale datacenter 

environments where rapid decisions are essential. 

Techniques such as First-Fit and Best-Fit Decreasing 

achieve linear or near-linear time complexity (O(n log n)), 

enabling quick allocation of VMs with minimal 

computational overhead. Rule-based strategies, like sorting 

VMs based on CPU demand or traffic volume, are easy to 

implement and impose very little runtime cost. These 

methods are especially well-suited for static or predictable 

workloads. 

However, the main limitation of heuristic approaches lies in 

their tendency to optimize single dimension while 

neglecting critical factors like network traffic. As a result, 

they often perform poorly in multi-objective optimization 

scenarios that require balancing energy consumption, 

latency, and SLA compliance. Their static nature also 

makes them not suitable for dynamic or unpredictable 

environments, where workload patterns change rapidly and 

real-time re-optimization is essential. While their 

computational efficiency remains a major strength, this 

speed frequently comes at the cost of placement accuracy 

compared to more adaptive metaheuristic or learning-based 

methods. 

In terms of scalability, heuristics perform well, handling 

high volumes of VM requests. They are ideal for 

environments where quick and frequent placement 

decisions are needed without deep optimization logic. 

However, their suitability for energy- and network-aware 

placement remains limited. Although variants like HBF 

reduce host-level energy consumption, they do not model 

dynamic power states or account for network bandwidth 

costs, resulting in potentially inefficient traffic patterns. 

Overall, heuristics are best reserved for static or predictable 

workloads —such as batch processing— or for initial 

placement stages before applying more adaptive 

optimization techniques. They are less appropriate for 

network-intensive applications, dynamic edge 

environments, or scenarios demanding multi-objective 

trade-offs. 

C- Metaheuristics 

Metaheuristic approaches, such as Ant Colony 

Optimization (ACO), Particle Swarm Optimization (PSO), 

Genetic Algorithms (GA), Grey Wolf Optimization 

(GWO), and their hybrids; tackle VM placement as a multi‐

objective optimization problem, balancing energy 

consumption, resource utilization, and SLA guarantees.  

For example, [36] propose a hybrid ACO–GWO that 

weaves in traffic‐awareness to co-locate high-

communication VMs, yielding up to 19.41% power savings 

and 10.72% bandwidth‐utilization improvements over 

baseline algorithms. 

[37] classify and critique a broad spectrum of nature-

inspired metaheuristics—SA, PSO, GA, ACO, BBO, and 

hybrids—highlighting their strengths in 

exploration/exploitation balance but noting their general 

omission of communication costs. 

The work [38] presents a hybrid GA–best‐fit scheme that 

minimizes active PMs and resource wastage, characterizing 

VMs by CPU, RAM, and bandwidth. 

Recently, the work [39] proposed the NCRA-DP-ACO 

algorithm, a network-, cost-, and renewable-aware ACO 

framework for energy-efficient VM placement across 

geographically distributed datacenters. Unlike previous 

metaheuristic solutions, this work introduces a dynamic 

Power Usage Effectiveness (PUE) model, real-time solar 

energy profiling, and carbon-aware cost modeling. By 

integrating environmental and economic factors into the 

multi-objective placement strategy, the algorithm achieved 

up to 18% energy savings and a 48% reduction in live 

migrations compared to baseline heuristics and 

metaheuristics. This approach demonstrates that 

incorporating sustainability-aware factors can significantly 

enhance placement decisions in large-scale cloud 

environments, addressing a critical gap often neglected in 

earlier VM placement studies. 

Metaheuristics offer excellent pathways to near-optimal 

placement of VMs in multi-objective environment. They 

are capable of compromising among energy efficiency, 

SLA, and resource consolidation while covering a large 

solution space.  

However, their performance heavily depends on proper 

parameter tuning, and poor configurations lead to 

suboptimal convergence. Moreover, most metaheuristics 

neglect traffic patterns or topology, and therefore require 

additional improvements for traffic- and communication-

aware optimizations. Enhanced variants can improve 

network efficiency but require additional computational 

overhead. 

Since these algorithms are iterative and population-based 

searches over multiple generations (denoted as t), they 

exhibit higher O complexity —O(n²×t), where n is the 

problem size and t is the number of iterations. This reflects 

a quadratic growth in computational cost with problem size, 

meaning convergence time increases significantly as the 

number of VMs scales. Nevertheless, these approaches 

remain effective for medium to large problem sizes. 

These approaches are best suited for offline or semi-

dynamic VM placement scenarios where computation time 

is not a concern. They excel in multi-objective optimization 

—balancing energy efficiency, performance, and cost—and 

are effective in sustainable cloud environments that require 

periodic reallocation. However, they are less ideal for low-
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latency edge computing due to slower convergence rates, 

and they tend to underperform in highly dynamic or 

unpredictable workloads where rapid re-optimization is 

essential. For small-scale deployments, simpler heuristic 

methods are often more practical. 

D- Machine Learning 

Emerging AI-driven VM placement frameworks leverage 

predictive and adaptive techniques to anticipate demand, 

group workloads, and continuously learn optimal 

allocations. Workload Forecasting Models employ 

learning-based algorithms to predict future load patterns 

and proactively select hosts that balance energy 

consumption and SLA adherence.  

Classification & Clustering approaches identify high-traffic 

VM pairs or hosts at risk of overload and refine placement 

heuristics; Finally, Reinforcement Learning optimizes VM 

placement by learning from interactions with the 

environment (servers, network,  and workloads). 

Workload Forecasting Models: The work [40] introduces 

a dynamic, learning-based scheme that continuously 

predicts per-VM resource-usage thresholds to drive 

proactive allocation and live migration decisions. The 

approach adapts to fluctuating loads by generating runtime 

data and training a hybrid model (combining swarm-

inspired search with an ML classifier), thus improving SLA 

compliance, reducing migrations, and cutting energy 

compared to standalone bio-inspired or ML methods. 

Classification & Clustering: Random Forests or K‐means 

identify which VM pairs generate the most traffic, or which 

hosts are likely to become overloaded, refining heuristic 

weightings.  LECC [41] — a multi-objective VM (and data) 

placement framework for geo-distributed clouds that jointly 

minimizes carbon emission cost, energy consumption, and 

WAN communication cost— embeds an intelligent ML 

module that is trained on historical energy, latency, and 

carbon‐cost data to dynamically adjust its multi‐objective 

weightings (carbon emission, energy, WAN cost) at 

runtime.  Extensive simulations on synthetic and real 

(PlanetLab and EC2) traces demonstrate LECC’s ability to 

reduce server energy and cut response latency compared to 

baseline methods. 

Reinforcement Learning (RL):  The work [42] proposes a 

fuzzy-based State-Action-Reward-State-Action (SARSA) 

reinforcement learning algorithm for optimal VM 

placement in CDCs, effectively reallocating VMs to 

minimize energy consumption and resource wastage while 

ensuring compliance with SLA and QoS demands during 

fluctuating workloads. 

ML-based VM placement algorithms adapt better than 

static heuristics under workload variation and fast-changing 

user demands.  

Yet, there do exist serious disadvantages. These algorithms 

need huge amounts of training data of almost perfect 

quality, and their predictive power degrades if they are not 

promptly retrained or adapted. Many approaches in ML 

tend to disregard network traffic behavior or the underlying 

topology, limiting their applicability in optimizing network 

energy consumption or communication latency. These 

models add a further computational overhead and 

convergence delays: For instance, clustering methods scale 

at O(n³), while deep-learning techniques demand 

tremendous GPU/CPU resources [43]. 

Lastly, scalability becomes an issue: whereas the bigger 

data can continue to scale the ML model, on the other side, 

training and inference times increase with the size of the 

problem. Some solutions —distributed or federated 

learning— can help but introduce synchronization and 

convergence delays.  

Network- and energy-aware suitability, and also 

optimization, are still primary concerns of most of these 

ML-based solutions. Advanced architectures like GNNs 

can integrate network topology into their learning 

workflow, but these models are computationally costly and 

thus seldom used. Without explicitly modeling bandwidth 

consumption or link-layer power states, ML-based 

placements may underperform when communication and 

geo-distribution dominate the environment [44].   

ML-based VM placement algorithms are more suited to 

dynamic and large-scale cloud environments with regular 

patterns of workload and good availability of historical data 

[45]. However, their applicability is limited in real time or 

latency-sensitive deployments, where response has to be 

immediate. They also fail in environments where the 

workloads are unpredictable or rapidly changing. 

E- Graph Approaches 

Graph-theoretic VM placement models represent PMs/ 

VMs as graph nodes, with edges encoding constraints like 

inter-VM traffic or power costs. By applying community-

detection or graph-partitioning algorithms, they co-locate 

highly communicative VMs —minimizing network hops and 

energy consumption. 

The algorithm in [46] uses a graph‐coloring algorithm that 

models VMs as graph vertices and inter-VM traffic volumes 

as weighted edges, then iteratively “colors” (assigns) and 

merges vertices to minimize both network overhead and 

server power use. Their method batches VM migrations to 

keep high-traffic groups co-located and decommission 

underutilized hosts. Extensive simulations across 

hierarchical datacenter topologies demonstrate that GCA 

halves link saturation and outperforms single-migration 

schemes by up to 65% in network-overhead reduction. 

Authors in [47] propose a two-phase, graph-theoretic VM 

placement strategy tailored for data-intensive cloud 

applications. They first model the datacenter as a complete 

weighted graph —vertices are hosts, edges carry a 

networking-cost metric combining link saturation and hop 

count. In Phase 1, a fuzzy inference system ranks racks by 
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free resources and intra-rack traffic, and a linear program 

selects the smallest set of “close” racks with low uplink 

load. In Phase 2, the Traffic-Distance-Balanced (TDB) 

greedy algorithm uses the graph’s weighted adjacency 

matrix to iteratively pick hosts minimizing total inter-host 

networking cost. This approach unifies capacity and 

communication in a single graph framework, ensuring high 

host utilization while keeping over 80% of traffic rack-local 

and halving link saturation compared to flat heuristics. 

Despite clear advantages in topology-aware grouping, 

graph methods incur O(n³) complexity and often require 

full-network snapshots, impractical for frequent re-

optimizations.  

Despite their strength in encoding traffic and topology 

awareness, these methods come with high computational 

costs. Algorithms for community detection, graph 

partitioning, and coloring frequently exhibit O(n³) 

complexity, which becomes a bottleneck in large or fast-

evolving systems [46]. 

Another limitation lies in their reliance on static or 

snapshot-based views of the network state. To remain 

effective, graph-based models require up-to-date global 

topology and traffic matrices —information that is difficult 

to capture or maintain in real time without imposing 

significant monitoring and re-computation overhead. 

Additionally, integrating these specialized algorithms into 

existing cloud controllers or schedulers remains a challenge 

due to their architectural differences. 

From an energy and network efficiency perspective, graph-

theoretic strategies outperform heuristic or ML-based 

approaches in minimizing communication overhead and 

active link utilization. However, this often comes at the 

expense of higher host-level energy consumption when 

traffic-based clustering leads to VM consolidation on less 

energy-efficient machines. While the network energy 

savings are clear, careful balance is required to avoid 

increasing overall compute energy due to suboptimal host 

selection. These algorithms are suitable for communication-

intensive workloads with predictable traffic patterns (e.g., 

Hadoop), and hierarchical (or structured) data centers where 

intra-rack traffic locality is critical. However they perform 

poor with: real-time architectures with rapidly shifting 

traffic flows, edge and fog computing scenarios with strict 

latency constraints, and hyperscale public clouds (>10,000 

VMs) where O(n³) complexity is unjustified [48]. 

Summary and Comparative Insights 

While each VM placement strategy category—

mathematical optimization, heuristics, metaheuristics, 

machine learning, and graph theory—has distinct merits, 

they also exhibit significant trade-offs in terms of 

computational complexity, scalability, and suitability for 

energy- and network-aware objectives. Mathematical 

optimization-based methods provide provable optimality 

for small-scale problems but are intractable for real-time or 

large deployments. Heuristic methods are fast and scalable 

but fail to consider complex objectives or traffic metrics. 

Metaheuristics deliver near-optimal results and support 

multi-objective optimization, yet often suffer from 

parameter sensitivity and long runtimes. ML approaches 

bring adaptability and prediction to dynamic environments 

but are data-hungry and rarely embed network topology or 

energy metrics explicitly. Graph-theoretic models excel at 

topology-aware co-location but incur high computational 

costs and require complete snapshot data. As summarized 

in Table 5, selecting an appropriate placement strategy 

requires balancing complexity, performance goals, and 

environmental context, especially when aiming to reduce 

both host and network energy consumption.

3-3- Infrastructure Considerations (where to 

place?) 

Cloud architecture plays a pivotal role in VM placement 

decisions. It encompasses the set of interconnected 

components and deployment models that define how 

compute, storage, and network services are delivered. A 

network-aware placement algorithm must adapt to the 

physical and logical characteristics of the underlying 

architecture. 

A- Cloud Infrastructure type  

Centralized Cloud: infrastructure consolidates all resources 

in a single data center, offering uniform latency and 

centralized cooling, power, and network control. Here, 

placement strategies emphasize intra-rack traffic 

minimization, server consolidation, and ALR  to reduce 

switch and server energy. Because of the homogeneous 

environment, algorithms benefit from predictable latencies 

and uniform PUE values, supporting static or light dynamic 

heuristics [49]. However, placement strategies risk creating 

network congestion at the rack level if VM affinities are 

misestimated and lack resilience against localized failures 

or flash crowd events. Centralized placements suit 

applications with consistent workload distributions but 

should be augmented with fault-tolerance and burst-

handling extensions for production deployments. 

 

Distributed Cloud: infrastructures span multiple, 

geographically dispersed sites or edge facilities. Placement 

algorithms in this context must account for WAN latency, 

variable carbon intensity, renewable energy availability, 

and differing PUE scores across locations. For instance, 

placement might favor a solar-powered region despite 

slightly higher latency. Network-aware algorithms in 

distributed contexts must balance performance against 

operational costs and inter-site bandwidth constraints [27]. 

While distributed placement can optimize global cost and 

sustainability, it introduces complexity in synchronizing 
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state across sites, handling network failures, and meeting 

latency-sensitive SLAs.  

B- Cloud Proximity Models 

Cloud Proximity Models distinguish between edge and core 

clouds based on their user-nearness and resource richness. 

 

Edge Clouds: Deployed close to users for latency-sensitive 

workloads like gaming or AR/VR; placement here must 

prioritize minimal hop counts and rapid elasticity but 

suffers from limited capacity and heterogeneous 

infrastructure. TRACTOR [50], Traffic-aware and Power-

efficient Placement in Edge-Cloud Data Centers (ECDCs), 

an Artificial Bee Colony-based multi-objective VM 

placement scheme that minimizes network traffic and 

power consumption in ECDCs. Evaluations on VL2 and 

three-tier topologies demonstrate a 3.5% reduction in server 

energy and up to 30% cut in network power usage without 

degrading QoS. However, TRACTOR presumes accurate 

pre- and post-placement traffic matrices and requires 

simulation-based calibration, limiting its adaptability to 

heterogeneous, real-world edge deployments.  

Core Clouds: located in centralized, resource-rich facilities, 

are suited for compute-heavy, batch-oriented tasks that do 

not have stringent latency demands. Placement algorithms 

in these environments optimize resource density and power 

utilization while managing rack-level heat and congestion.  

In a centralized high-density core clouds,  [51] framework 

employs a Greedy Randomized VMP (GRVMP) algorithm 

that fuses heuristic sorting with stochastic perturbations to 

escape local optima, achieving up to 12% energy reduction 

and 8% resource utilization gains compared to deterministic 

baselines. GRVMP addresses dynamic VM arrivals; 

however, its randomized nature can lead to variability in 

outcomes and overlooks network topology unless network-

aware metrics are integrated.  

C- Hardware-Based Energy Mechanisms 

Datacenter hardware often embeds energy-saving features 

at component and network levels. Placement algorithms 

that are aware of these mechanisms can reduce overall 

power draw by tailoring VM assignments to exploit them.  

We categorize three primary hardware-based strategies 

below: 

• ALR: 
ALR dynamically scales the data-link speed of network 
interfaces (e.g., from 1 Gbps to 100 Mbps) based on 
instantaneous utilization. When traffic is low, links down-
shift to a lower rate—saving up to 40 % of PHY-layer 
power—then ramp up again under load. Some VM 
placement schemes explicitly cluster bursty or low‐
throughput VMs under the same Top-of-Rack switch to 
maximize low‐speed intervals and link‐power savings [52]. 

• DVFS: 
Modern CPUs and NICs support DVFS, which lowers 
voltage and clock frequency when workload demands 
permit. Experimental studies report up to 30 % server-level 
energy reduction with minimal performance loss under 
controlled load variations [53]. Energy-aware schedulers 
simulate or predict CPU utilization to trigger DVFS states—
placing latency-insensitive VMs on hosts where cores can be 
down-clocked, while reserving full-speed nodes for critical 
workloads [54]. 

• Switch and Rack Power-Down: 
Many top-of-rack (ToR) switches and rack PDUs can enter 
sleep modes or shut down unused ports when idle. Research 
prototypes have shown up to 50 % energy savings in 
underutilized racks by consolidating traffic and powering 
down dormant switches [55]. Topology-aware schemes fold 
traffic into active racks during off-peak periods, allowing 
idle switches or PDUs to sleep or power off; the migration 
cost is balanced against the long-term energy gains [56]. 

Placement algorithms treat ALR, DVFS, and switch/rack 

power‐down not as standalone placement steps but as 

hardware‐aware objectives or constraints that guide where 

and when to place or migrate VMs. In other words, these 

features aren’t separate “phases” of VM placement; rather, 

placement algorithms incorporate knowledge of link‐rate 

scaling, voltage/frequency capabilities, or switch on/off 

thresholds to shape consolidation decisions. 

Integrating these hardware-based mechanisms into 

placement and migration heuristics unlocks significant 

energy savings that complement software techniques. 

D- Thermal-Aware Placement Strategies 

Integrating thermal dynamics into VM placement helps 

prevent hotspots and reduces cooling energy consumption 

by considering rack- and node-level temperature 

distributions during allocation and migration decisions [57]. 

Multi-objective formulations jointly optimize computing 

energy and cooling load, enabling VM placement 

algorithms to trade off consolidation benefits against the 

risk of creating thermal hotspots [58].  

3-4- Workload Characteristics (What Is Being 

Placed) 

A- Arrival rate 

Static: Static workloads such as batch jobs in scientific 

computing, benefit from heavy-weight optimizations like 

ILP, yielding near-optimal resource packing when demands 

are known in advance [59][60]. The term "static allocation" 

usually refers to the initial VM placement which is the 

allocation of VMs to PMs is done during deployment and 

remains fixed throughout the VMs' lifecycle. The goal is to 

optimize allocation based on resource requirements and 
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constraints. However, the assumption of stable load profiles 

renders it brittle when workloads fluctuate unpredictably. 

Dynamic: Dynamic scenarios characterized by real-time 

VM arrivals in auto-scaling web services or event-driven 

microservices. Dynamic VM placement includes placing 

new VMs and migrating existing ones, considering future 

live migrations, and needs more resources than static 

solutions.  

In this context, reactive placement adapts the initial 

allocation of resources based on the current state of the 

system, while proactive placement predicts future 

conditions and adjusts allocations before problems occur. 

• Reactive Placement: Migration or reallocation is 
triggered by observed thresholds, such as CPU/memory 
utilization exceeding a limit, network congestion detected on 
a link, or thermal hot spots. Reactive methods respond to 
current system state ([61][62]) but often react too late to 
avoid SLA violations or suboptimal energy states. 

• Proactive Placement: Predictive models anticipate 
future workloads or traffic spikes and migrate VMs 
preemptively. While more complex, requiring accurate 
demand prediction, proactive approaches can better prevent 
overloads and exploit low‐utilization windows for 
consolidation [20], [21]). 

B- Workload Type (Application-Centric) 

We present the main application categories in the literature 

used to guide placement heuristics. 

  

Bag of Tasks: Independent parallel tasks requiring minimal 

inter-communication. Placement focuses on maximizing 

throughput and minimizing makespan by grouping tasks 

(VMs) on minimal PMs [41]. 

CPU-Intensive Workloads: Require sustained processor 

capacity and thermal stability. Placement must dedicate 

cores to each VM and move workloads off busy hosts to 

prevent contention and overheating [64]. 

Data-Intensive Workloads: Require high I/O and low-

latency access to shared storage. Placement must reduce 

traffic to storage nodes (SNs) and minimize bottlenecks 

[65]. 

Latency-Sensitive Applications: Include gaming, financial 

systems, or telemedicine, where delays severely degrade 

user experience. These demand edge-aware, low-hop-count 

VM placement [66]. 

C- Workload Data Sources for Algorithm Evaluation 

The following are the ways researchers evaluate their work 

against other algorithms. However, researchers may 

combine two or more types of workload data. 

• Benchmark Datasets: Standardized collections of 
VM workload traces detailing CPU, memory, I/O and 

network usage, collected via monitoring tools, application 
profilers or user logs. They enable controlled, repeatable 
comparisons of placement algorithms by quantifying 
impacts on network utilization, availability and cost.  

• Synthetic data: Synthetic data is generated using 
mathematical models and statistical techniques that simulate 
the behavior of real-world applications and infrastructure 
components. It allows researchers to control the workload 
and resource utilization characteristics of the cloud 
infrastructure and to compare different algorithms under the 
same conditions. Researchers evaluated their work using 
synthetic scenarios with several performance metrics [67]. 

• Real Traces: Real traces are collected from real cloud 
computing environments (Amazon EC2, PlanetLab, and 
Google Cluster) to evaluate VM  placement algorithms 
under realistic conditions. In [51], Amazon EC2 data was 
used to optimize power consumption. In [68], PlanetLab 
network traces were utilized to assess algorithm 
performance. Both methods provide insights into workload 
behaviors and resource utilization for algorithm evaluation. 

These classifications create a multidimensional lens to 

evaluate VM placement strategies and pave the way for 

our specialized network-aware taxonomy in Section 4. 

4- Taxonomy of Network-Aware VM 

Placement Approaches 

This section synthesizes the contextual shifts and motivates 

the need for a new taxonomy—one that maps VM 

placement methods not only to their algorithmic families 

(heuristic, ML-based) but also to the underlying network 

dynamics they aim to optimize. As shown in Fig.2, our 

taxonomy therefore introduces a cross-layer perspective 

that bridges DCN topology, traffic characteristics, 

communication patterns, and energy reduction strategies, 

reflecting how emerging solutions should be evaluated in 

modern cloud environments. Additionally, a sub-taxonomy 

at the bottom of Fig.2 classifies network-aware VMP 

algorithms according to their energy consumption 

strategies. 

In a typical cloud computing environment, VMs are 

interconnected with physical hosts through a network, 

generating substantial network traffic from the applications 

they run. Consequently, the placement of VMs on physical 

hosts significantly impacts network performance, which in 

turn affects overall application performance. Given that the 

network is a major consumer of energy, minimizing 

network traffic and optimizing topology can lead to 

substantial energy savings. 

Therefore, it is critical to consider network-related factors 

throughout placing and migrating VMs. This means that the 

VMP algorithm should not only consider the usual metrics 
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and resource requirements of VMs and PMs but also 

incorporate network considerations. The algorithm can 

make more informed decisions regarding VM placement 

and consolidation by incorporating network conditions, 

topology, and traffic patterns.  

Customers utilize VMs to conduct specific jobs that are 

frequently parts of larger applications, such as tiers of multi-

tier applications. As these VMs start communicating with 

each other, it can involve the transfer of significant amounts 

of data, which might increase latency or response times to 

intolerable levels. In addition, the power consumption of the 

hardware components involved, such as PMs, routers, 

switches, and other networking equipment, can also be 

affected by such communication patterns. 

For the reasons listed above, it is ideal to have VMs that 

communicate frequently placed on the same server, or at the 

very least within the same DC. Additionally, VMs 

belonging to the same application may have load 

correlation, making it more likely that they may peak at the 

same time; this must also be carefully considered when 

allocating VM resources.  

Network bandwidth can often become a bottleneck, 

particularly in scenarios involving data mapping on SNs. 

High network traffic between VMs and SNs can arise when 

workloads require extensive data mapping. To prevent too 

many high network loads, it is necessary to consider both 

the placement of VMs on PMs and application data on SNs.  

To facilitate this, we categorize network-aware VMP 

algorithms into four groups based on their focus on network 

considerations: 

4-1- DCN Topology 

DC topology involves organizing physical and logical 

components in a network, including servers, network 

devices, and SNs. It enables efficient connections with 

multiple PMs, enhancing energy efficiency and reducing 

reliability concerns. Various network topologies tackle 

scalability and energy consumption differently and offer 

insights for future VM placement research. Researchers can 

examine the advantages, drawbacks, and enhancements of 

these topologies to improve current VM placement 

methods, as discussed in Section V. 

A- Hierarchical Three-Tier 

This architecture manages traffic using a structured 

approach. The access layer connects servers to edge 

switches, which then relay information to interconnected 

aggregate switches. The core layer serves as the spine, 

linking all aggregate switches and handling external 

connections, providing a scalable and efficient solution for 

internal data center communication. 

• Fat-tree: A three-tier architecture utilizing bipartite 
graphs with pods as the basic unit, where each pod contains 
access and aggregation switches. This topology offers 
efficient routing paths for reducing congestion and power 
consumption [69]. 

• VL2: Like fat-tree, this three-tier topology connects 
core and aggregation switches in a bipartite graph. Valiant 
load balancing routes traffic by randomly selecting a core 
switch, reducing congestion and power consumption. A 
customized VMP technique further optimizes network 
traffic. [67]. 

• Portland: This architecture comprises pods with 
access and aggregation switches forming bipartite graphs, 
connecting to all core switches. VM placement algorithms 
prioritize proximity to enhance quality of service (QoS)[70]. 

B- Recursive 

These topologies are constructed recursively, combining 

smaller building blocks into larger network structures, 

allowing for scalable and modular designs. 

• DCell: a server-centric data center network design 
with a hierarchical structure. Servers connect directly with 
multiple NICs, organized into cells like cell0, cell1, and cell2 
[71]. 

• BCube: BCube is a multi-level data center network 
architecture focused on servers, integrating them into the 
network infrastructure. It is derived from hypercube 
architecture, connecting hosts via switches based on port 
availability for efficient packet forwarding [72]. 

Fig.2 Network-aware VM placement taxonomy. 
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C- Rack to Rack  

Rack-to-rack networks prioritize communication between 

server racks. Their design focuses on efficient data transfer 

within and across racks. 

• Scafida:  a method inspired by scale-free networks to 
create asymmetric data center topologies with high fault 
tolerance and small diameters. It allows for flexible scaling 
but faces challenges with link correlation as the network 
grows [73]. 

• Jellyfish: Jellyfish network with random graph 
topology offers cost-efficiency, 25% more server support, 
scalability, and flexibility for high-capacity 
interconnectivity [74]. 

4-2- Traffic Type 

Traffic type categorization in cloud DCs (considered in 

VMP) optimizes network performance and energy usage by 

placing VMs with similar traffic types together, reducing 

data transfers across the network and minimizing energy 

consumption. 

A- Cross-Traffic 

Cross-traffic is the data flow between VMs or applications 

that may be located on different servers within the same 

rack or across different racks. This type of traffic can impact 

network performance and energy usage. Allocating VMs 

and data on physically closer PMs can improve efficiency, 

as explored in [75]. 

B- Inter-VM Communication 

North-south traffic involves data flow between virtual 

machines (VMs) and the Internet, while inter-VM 

communication refers to data exchange within the same 

data center. The latter is often high-bandwidth and low-

latency, with different application requirements.  

Studies are focusing on reducing network energy usage by 

optimizing VM placement to minimize inter-rack traffic 

and reduce delays, consequently cutting down on power 

consumption and costs [76]. 

 

C- Traffic between VM and Data 

This traffic occurs when VMs access data stored on storage 

devices. VMs send requests to these devices via the 

network, and the data is transmitted back to the requesting 

VM. Factors influencing traffic volume include data size, 

access frequency, and the type of storage device used. In 

distributed object storage systems, each storage node 

manages a group of servers. When a server and its 

corresponding storage node are within the same group, data 

transfer is optimized, thereby reducing overall traffic flow 

[77]. 

4-3- Traffic Patterns 

Understanding traffic patterns in cloud networks is crucial 

for optimizing performance by placing virtual machines in 

strategic locations to improve network performance and 

reduce energy consumption. Research indicates that 

network status changes over time due to unpredictable 

traffic characteristics, regardless of data center size or type. 

Authors advocate for traffic-aware VM placement to 

enhance network scalability by aligning traffic patterns with 

communication distances. Empirical studies reveal 

imbalanced communication patterns, link losses, and ON-

OFF traffic patterns with varying distributions, 

emphasizing the need for optimized VM allocation and 

routing in cloud networks [3] [78].  

4-4- Communication Patterns 

Communication patterns in VM placement refer to how 

VMs interact with each other and with external networks. It 

is a useful resource for perceiving the parallel application 

communication behavior and is extracted from 

communication trace, where machines form multiple 

groups or tiers each of which serves a specific part needed 

for the accomplishment of the overall task. Energy 

consumption heavily depends on the communication 

pattern [79]. 

A- Fixed 

Fixed communication patterns between virtual machines 

(VMs) exhibit predictable and consistent interactions that 

remain unchanged during runtime. VM placement 

strategies often aim to co-locate VMs with frequent 

communication to minimize network latency and overhead 

[76]. 

B- Dynamic 

Dynamic communication patterns between VMs change 

during runtime, in contrast to fixed patterns. This requires 

adaptable VM placement solutions that monitor and adjust 

VM locations based on evolving communication needs. The 

technique introduced in [80] uses a decentralized migration 

approach considering VM affinity. It dynamically adjusts 

VM placement through a distributed bartering algorithm to 

minimize communication overhead and adapt to changing 

patterns, while maintaining low overhead. 

4-5- Energy Reduction Achievement 

The energy reduction classification in our taxonomy in 

Fig.2 is centered around strategies and methodologies in 

reducing energy consumption in network-aware VM 

placement. This section highlights how researchers have 

leveraged network awareness to achieve considerable 

energy savings in CDCs. In this section, we review different 

approaches for network traffic minimization, 

communication cost minimization, data transfer time 

reduction, and network performance improvement. 



    
Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches 

 

 

 

226 

A- Minimizing Network Traffic  

One of the effective strategies is to optimize VM placement 

with the co-location of VMs that communicate with each 

other with high volume on the same physical hosts. In this 

way, the distance that data needs to travel is minimal and 

reduces traffic in the network. For example, the work in [50] 

suggested a multi-objective VM placement algorithm using 

a bee colony method, achieving 3.5% power reduction, 15% 

less network traffic, and 30% lower network power. 

Similarly, the work in [22] proposed an ant colony 

optimization algorithm considering both energy usage and 

network bandwidth, which effectively reduced traffic and 

outperformed other heuristics. 

B- Minimize Communication Cost  

Network communication costs refer to expenses in terms of 

bandwidth utilization, latency, and rate of data transfer. For 

VM placement, reducing such costs minimizes resource 

consumption and overall expenses. The work in [59] 

introduced a "network consumption" metric to identify 

optimal VM placements within a fat-tree architecture to 

minimize network traffic. This approach led to a significant 

reduction in overall network usage and power consumption, 

decreasing resource wastage by up to 20%. Similarly, the 

approach in [81] focused on enhancing VM-to-VM 

communication using dynamic clustering of VMs based on 

the network. An adaptive algorithm consolidated VMs to 

minimize communication costs, leading to reduced high-

latency jobs and improved traffic patterns across the 

network. The goal of these techniques is to strategically 

place and manage VMs to lower the overall communication 

costs in the data center network [36]. 

C- Minimizing Data Transfer Time 

Data transfer time is the duration for data to be transmitted 

between VMs over the network. It affects energy usage and 

application performance. Placing VMs closer and grouping 

them based on traffic patterns can minimize data transfer 

time. [82] proposed a novel VMP technique that 

simultaneously improves both VM locations and data rates. 

They developed heuristics that allocate VMs to PMs with 

better network bandwidth to reduce the latencies associated 

with data access. Through simulation experiments, they 

demonstrated how the proposed approach may lower VMs' 

data transmission delays. 

D- Improving Network Performance 

Improving network performance is the act of optimizing a 

computer network to enhance its speed, reliability, and 

efficiency. This involves improving the various 

components of the network, including switches, routers, 

cables, servers, and applications, to ensure that data is 

transmitted quickly, accurately, and consistently. The 

previously mentioned work in [59] was categorized under 

minimizing communication cost, but it focused also on 

minimizing resource wastage, which led to the optimization 

of the overall network performance. 

E- Emerging Trends 

With the rise of such technologies as network virtualization 

and Software-Defined Networking (SDN), the way VM 

placement for energy efficiency will be significantly 

impacted. Network virtualization increases the flexibility of 

network resource allocation and management, such that 

even real-time adjustments according to changing traffic 

patterns become possible. On the other hand, SDN brings 

central control to a network, which makes routing much 

more efficient and leads to lower energy consumption. 

These technologies are still evolving, we can expect further 

improvements in energy efficiency and overall network 

performance in the placement of VMs [83]. 

5- Discussion 

This section discusses the important relationship between 

network topology, traffic patterns, and energy efficiency in 

network-aware VMP. We provide a novel perspective on 

how these aspects interact and affect the total energy 

consumption within the datacenter. 

5-1- Traffic Type 

Different traffic types have varying requirements regarding 

reliability, latency, and network bandwidth. For example, 

real-time communication applications, including video 

conferencing and VoIP, require low latency and high 

reliability; in contrast, batch processing applications such as 

data analytics can tolerate high latency and low reliability. 

Those network traffic patterns found in datacenters can 

significantly affect energy consumption, SLAs, cloud 

provider revenue, as well as the overall cloud 

infrastructure's efficiency. 

In response to such challenges, there has been a 

development of network-aware VM placement algorithms 

to optimize network traffic and minimize resource 

utilization in CDCs. These algorithms distribute the 

network traffic evenly across the infrastructure to prevent 

congestion, resulting in energy savings. VMs often rely on 

the network for data-intensive applications and interactions 

with other VMs. These algorithms can prioritize high-

bandwidth VMs and place them nearby by optimizing the 

placement of VMs based on their communication patterns, 

reducing the overall network traffic between and within the 

data centers. This, in turn, minimizes the number of 

physical networking components required and leads to 

reduced power consumption. 
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5-2-  Network Topology 

Network topology is a principal issue in virtual machine 

placement, which affects resource utilization and energy 

efficiency. Placing VMs wisely reduces the distance of data 

transfers, switches, and links involved in communication 

and leads to saving energy as well as increasing 

performance. Fat-tree topology manages the high-

bandwidth, low-latency traffic well within a pod or data 

center, while VL2 is good for traffic generated by VMs in 

cloud environments, including storage, migration, and 

inter-DC. BCube is suitable for data-intensive applications 

that demand high bandwidth and efficient data 

transmission. 

In this subsection, network topology influence on VM 

placement is discussed based on existing research that 

examines the impact on energy efficiency as well as overall 

system performance [84]. The placement of VMs close to 

each other is quite essential for resource utilization and 

energy efficiency. Strategic placement reduces the distance 

of data transfer, therefore reducing the number of switches 

and links, which means less energy consumption and 

improved performance in data centers. The three-tier 

architecture typically includes expensive and power-

intensive network devices at the corporate level, whereas 

DCell and BCube architecture consume similar energy for 

small-sized data centers. However, BCube consumes more 

energy for larger data centers. The Fat-Tree topology has 

reasonable power usage, while BCube is power-intensive 

due to its extensive use of switches. DCell utilizes 

commodity switches that consume less power. BCube's 

design with intermediate servers for routing can pose 

challenges to energy efficiency. 

According to experimental findings, the tree topology 

experiences congestion issues with similar VM traffic, 

while the Fat-Tree topology distributes traffic more evenly 

due to its multi-path connections. VL2 suffers from uneven 

traffic distribution due to a large gap in link utilization. The 

Tree topology has lower energy efficiency compared to 

VL2 and Fat-Tree, although topology awareness can 

optimize energy usage in the network. However, these 

conclusions are specific to each author's work, and more 

research is needed to establish correlations between data 

center size, server count, switches, and user demands. 

Cloud service providers should ensure appropriately sized 

environments to minimize costs. A hybrid or dynamic 

topology approach using SDN can optimize resource 

utilization, energy efficiency, and overall performance by 

adapting the network topology based on workload demands, 

such as favoring a fat-tree topology for high east-west 

traffic. 

5-3- Traffic and Communication Patterns 

To minimize energy consumption in DCs, network-aware 

VM placement algorithms play a crucial role. These 

algorithms aim to allocate VMs with similar traffic patterns 

to the same physical servers or switches. This will reduce 

inter-server or inter-switch communication, therefore 

saving energy not only in the network infrastructure but also 

in the servers. Secondly, VMP optimization based on 

bandwidth and latency demands will prevent network 

congestion, thus assuring satisfactory performance and 

energy efficiency during communications.  

Energy consumption and network traffic in virtualized 

environments were analyzed in studies [58,59]. It was 

noticed that energy consumption might have a wide 

variation for different traffic allocation strategies and that 

the type of traffic may strongly influence the possible 

energy savings. Such results are important to consider in 

traffic-aware optimizations, but all such optimizations 

require detailed information from clients about the 

application network and communication requirements. This 

allows network-aware techniques for minimizing 

communication delays and/or improving overall application 

performance. 

The distribution of the components over various PMs 

provides a good opportunity for parallel processing in 

applications such as MapReduce. In case migration needs 

to be done, the ideal order of the intercommunicating virtual 

machines will help avoid core network traffic and energy 

consumption. Considering intercommunication between 

replicated virtual machines is also important to prevent 

bottlenecks and excessive energy usage. 

Recognition of the traffic pattern is especially important in 

dynamic cloud environments. Workload and 

communication requirements are dynamic; hence, the 

adaptability of VMP algorithms is required to achieve 

resource and energy efficiency. Such dynamical traffic 

management approaches like load balancing and traffic 

shaping would prevent congestion and optimize power 

consumption.  

The application-specific information will also reduce 

latency, inter-VM traffic, and improve application 

performance in placement algorithms. On the other hand, 

machine learning algorithms will use historical traffic data 

and predictive models to foresee traffic patterns, thus 

making proactive placement decisions that reduce energy 

consumption. Machine learning can also help in identifying 

and classifying traffic hotspots, which helps in applying 

targeted optimizations to mitigate power imbalances. 

6- Conclusion And Future Directions 
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This paper presents a new classification for VM placement 
techniques in CDCs that are both network-aware and 
energy-efficient. It examines various network factors, 
including network equipment, workload type, performance, 
scalability, efficiency, reliability, and availability, to 
understand how VM placement affects network 
performance. The research indicates that network-aware 
VM placement algorithms can boost performance by 
reducing latency between VMs and improving security 
through co-location. However, the initial deployment of 
these algorithms might incur higher costs, necessitating a 
careful evaluation of the trade-off between energy 
consumption and migration costs. 

This work also reviews research that identifies the most 

effective metrics for evaluating the performance of 

network-aware VM placement algorithms, focusing on 

energy efficiency, network performance, and resource 

utilization. Additionally, the study examines how network 

topology affects energy consumption in data centers and the 

trade-off between energy use and migration costs, providing 

valuable insights. These insights can help researchers 

develop and implement more effective network-aware VM 

placement algorithms that optimize energy consumption, 

improve network performance, and minimize migration 

costs. Based on the findings, future research directions for 

network-aware VM placement in CDCs can be suggested, 

including: 

• Developing energy-efficient algorithms that consider 
the network metrics identified in this study. This would 
involve creating strategies to optimize energy use while 
improving network performance, factoring in elements like 
datacenter layout and communication patterns. 

• Testing VM placement techniques on realistic 
testbeds. While simulations help assess the proposed VM 
placement methods, it is essential to validate these 
techniques on actual cloud testbeds with real-world network 
topologies. 

• Researching VM placement algorithms that enhance 
security and privacy in cloud environments. This could 
involve devising methods to group related VMs on the same 
server or rack while preventing the co-location of unrelated 
VMs. Such strategies would help mitigate the risk of security 
breaches and protect sensitive data in cloud settings. 

• Continuing to explore novel solutions for optimizing 
VM placement and migration that can boost energy 
efficiency and network performance in CDCs. This would 
include investigating innovative techniques and approaches 
that leverage emerging technologies like machine learning 
and artificial intelligence to improve network-aware VM 
placement. 

Future research in this area could investigate how elements 
like energy storage systems, renewable energy sources, and 
workload balancing impact network-aware VM placement. 
These potential directions provide a solid foundation for 

further exploration of energy-efficient network-aware VM 
placement, intending to create more effective strategies for 
optimizing energy consumption, improving network 
performance, enhancing security and privacy, and 
integrating artificial intelligence throughout the cloud 
computing environment. 
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Abstract   
Cardiovascular diseases present significant challenges to public health in developing countries. The high costs of traditional 

treatments and the limited availability of specialized medical equipment contribute to these challenges. Current diagnostic 

methods often rely on specific electrocardiogram (ECG) parameters, which may not capture the nuanced complexities 

necessary for accurate diagnosis. To address these issues, our study proposes an innovative solution: an accessible and cost-

effective ECG monitoring system. This system not only captures electrical signals from the heart but also translates them into 

numerical values using advanced modulation techniques. A trained deep learning model then analyzes this data to accurately 

identify any potential complications or confirm a healthy cardiac state. Our approach also allows for remote diagnosis and 

treatment. By utilizing an MQTT server, ECG data can be efficiently transmitted to experts for evaluation and intervention 

when necessary. Our meticulously fine-tuned Artificial Neural Network (ANN) architecture has achieved an impressive 

accuracy of 95.64%, surpassing existing methodologies in this field. Designed with resource-strapped regions in mind, our 

system offers a lifeline to rural areas lacking access to medical professionals and advanced equipment. Its affordability 

ensures that even individuals with limited financial means can benefit from timely and accurate cardiac monitoring, 

potentially saving lives and reducing the burden of cardiovascular diseases in underprivileged communities. 

 

 

Keywords: Artificial Neural Network (ANN); Cardiovascular D isease; Electrocardiogram; Heart Disease; Modulation 

Techniques; MQTT Server. 

1- Introduction 

Cardiovascular diseases (CVDs) are a global health concern 

that poses a persistent threat to millions of people [1]. The 

heart and blood vessels are particularly vulnerable to CVDs, 

with coronary artery disease being a major contributing 

factor to the high death rates associated with these diseases 

[2]. In fact, it is estimated that CVDs account for 36% of 

deaths worldwide in the European Union alone [3]. Early 

detection of heart ailments is crucial for effectively 

addressing cardiovascular diseases. Continuous monitoring 

and measurement of heartbeats play a key role in this 

process. Electrocardiogram (ECG) signals, which provide 

comprehensive insights into heart-related issues through the 

analysis of physiological data, are a crucial tool [4,5]. 

Thanks to technological advancements, ECG monitoring 

devices now offer reliable measurement and observation of 

these signals [6,7]. However, there are ongoing concerns 

among researchers regarding the analysis of the data  

 

 

gathered from ECG monitoring devices. Critics argue that 

previously suggested devices are inadequate in keeping up 

with emerging technologies and lack comprehensiveness 

[8–10]. While some ECG monitoring devices boast 

specialized technology, others rely on context and server-

based functionality [11,13]. Itt has been obesity has a major 

role in cardiovascular diseases that denotes heavily in the 

increment of heart rate.  This highlights the pressing need 

for universal ECG monitoring equipment that can better 

assess and understand cardiac issues. By facilitating early 

detection and prevention of CVDs, these tools have the 

potential to save numerous lives [14]. The primary objective 

of this ANN architecture is to uncover patterns in ECG data 
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that may be difficult to detect by the human eye, thereby 

enhancing diagnostic capabilities. This advancement 

enables the early identification of cardiac issues, which is 

crucial for prompt treatment. In Bangladesh, a developing 

nation where 73% of individuals are reported to suffer from 

one or more cardiovascular diseases (CVDs), rural 

communities face significant healthcare challenges, 

including a lack of medical professionals and inadequate 

supplies. The motivation of this research is to address the 

health care challenges, especially in the domain of 

cardiovascular where most developing countries are 

suffering. Furthermore, an IoT-based device for detecting 

cardiovascular disease is proposed with less cost as 

economically these types of devices are not easy to buy. A 

proper communication medium between the device and 

doctors over the channel. Furthermore, the credibility of the 

data is being examined using multiple Machine Learning 

and Deep Learning architectures.  Furthermore, the 

question arises what the proper model to will be to work 

with IoT devices. In [12], it has been discussed that DL 

architectures might not work properly with spatila and 

sequential data but can be effective if modified properly. 

Taking this into account authors have explored the 

opportunity to apply ANN in the gathered dataset. Finally, 

the primary focus is to proposing a IoT device that will be 

affordable for the people from underdeveloped countries. 

This research paper addresses the following questions:  

RQ1: How can cheaper IoT devices be bought for people 

from underdeveloped or developing countries? 

RQ2: Can ANN be modified enough to communicate with 

IoT based devices properly? 

The major contributions of this paper can be summarized 

as: 

I) Implementing and validating real time gathered 

dataset that will be sent through IoT servers so that 

diseases can be detected earlier. 

II) Proposing a shallow neural network that will 

instantly detect heart diseases from real-time data. 

Necessary suggestions will be provided instantly.  

III) Building a low-cost device that will assist people 

from underdeveloped countries in order to detect 

heart diseases. The device is lightweight and 

portable. 

 

The recent research from the literature has been discussed 

in section 2. The methodology and methods have been 

proposed in the section 3. Experimental results are shown 

in section 4 and finally, the future work and conclusion have 

been discussed in section 5. 

2- Literature Review 

The Internet of Things (IoT) is a fast-moving field in 

computer science that focuses on effectively sharing data 

between devices via cloud servers. The effectiveness of the 

cloud server being used determines how smoothly data is 

transferred. The authors of [14] offer a unique approach to 

signal capture in addition to signal preprocessing; 

nevertheless, an adequate encryption model is not 

implemented in this study. In [15], a crucial suggestion for 

Internet of Things (IoT)-based monitoring systems with 

sophisticated data visualization is made. But there is a 

significant difference in how deep learning (DL) structures 

and machine learning (ML) algorithms are integrated in this 

idea [16], which calls for more investigation. The state of 

IoT-based ECG monitoring systems [17–20] has given 

important new information on this field. 

Predominantly, research has focused on signal collection, 

with a pivotal concern being data preparation. [21] 

addresses this by employing time-based feature integration 

for data purification. The microcontroller board utilized, 

namely the Arduino Uno, centers around the ATmega328T. 

Earlier studies have extensively utilized the Arduino Uno 

for cardiac signal acquisition [22–24], emphasizing its cost-

effectiveness and ease of integration in such contexts.  

The literature review explores various developments in the 

realm of Electrocardiogram (ECG) monitoring systems and 

associated technologies. In reference, an Internet of Things 

(IoT)-based ECG and vitals monitoring system is detailed, 

incorporating parameters such as QRS complex, heart rate, 

blood oxygen levels, and body temperature [25]. The 

iterative design approach is emphasized to reduce the 

device's overall cost. However, the three-lead end-to-end 

ECG acquisition system constructed proves inadequate for 

capturing all regular and augmented parameters of ECG 

signals. Moving on to fetal Electrocardiogram (FECG) 

monitoring, a system has been developed [26], 

concentrating on FECG and fetal heart rate (FHR) with an 

emphasis on an Android application. Nevertheless, 

improvement is deemed necessary, urging the incorporation 

of more miniaturized patches and real-time analytics via 

cloud computing. Addressing concerns about 

cardiovascular disease (CVDs) severity and the lack of 

precautionary monitoring systems, a low-cost solution is 

presented [27], aiming to reduce harmonic distortions and 

input inferred noise in ECG signal frequencies. This system 

highlights the need for an efficient cloud server for 

instantaneous data transfer. In another study [28], authors 

introduce a wearable Tele-ECG and heart rate monitoring 
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system, integrating a Singlet and Holter-based ECG system 

with a mobile application. Despite focusing on parameters 

such as P, Q, R, S, T peaks, the system requires additional 

sensors for a more comprehensive measurement of heart 

disease-related parameters. The proposed IoT-assisted ECG 

monitoring framework in [29] emphasizes secure data 

transmission for continuous cardiovascular health 

monitoring through automatic classification and real-time 

implementation. However, there's a call for advanced 

machine learning algorithms to enhance prediction 

accuracy. A smartphone-based ECG monitoring device is 

proposed in to evaluate post-ablation patients with atrial 

fibrillation. The focus lies on the ECG check monitoring 

protocol, considering sinus rhythm and sinus tachycardia. 

However, concerns are raised about the lack of a proper 

detection mechanism for ECG parameters, and the reported 

accuracy stands at around 93%. Some of the major research 

gaps are stated in Table 1. 

Table 1: Identified Research Gap from the Literature 

Reference Contributions Research Gap 

Serhani et al. Precise collection 

of data sending 

through the IoT 

network. 

No applications of 

DL methods to 

capture the proper 

semantics. 

Ghosh et al. Integration of ML 

methods for 

detection 

purposes. Many 

algorithms are 

explored. 

Device is costly 

and difficult to 

afford for under 

developed people. 

Faruk et al. Enhanced 

accuracy than the 

state-of-the-art 

architectures. 

The model is not 

lightweight and 

takes time to 

propagate real 

time data. 

Rahman et al. Methodology is 

described 

properly.  

No proper system 

is available. 

 

Based on the research gap available in the literature, it is 

important to identify a novel approach that will be available 

for the underdeveloped countries. This research focuses on 

proposing an approach that will integrate the DL approach 

detect cardiovascular diseases precisely along with the cost 

of the device is lower that can be affordable for rural people. 

The lightweight nature allows to detect cardiovascular 

diseases easily. The spatial information is also captured 

properly by the proposed model. 

 The below section comprehensively addresses the 

architectures, method of converting ECG signal, overall 

methodologies, and procedures employed in conducting the 

research. Initially, data collection was facilitated through 

the utilization of an ECG monitoring system, which is 

interconnected with 12 leads and necessary Internet of 

Things (IoT) devices. The proposed method of converting 

ECG signal is illustrated in section 3.  

3- Materials and Methodology 

Algorithm 1: ECG Data Classification using ANN 

1. Input: ECG dataset with multiple columns 

2. Output: Model performance evaluated using 

Precision, Recall, F1-score,  

    and trainable parameters 

3. Step 1: Load the Dataset 

4. Load the ECG dataset. 

5. Split the dataset into features (X) and labels (Y). 

6. Step 2: Parameter Tuning 

7. Identify hyperparameters to tune, such as learning 

rate, batch size, 

     number of layers, and neurons. 

8. Use grid search or random search to find the optimal 

hyperparameters. 

9. Step 3: Data Preprocessing 

10. Handle missing values using imputation 

techniques. 

11. Normalize or standardize the data. 

12. Apply noise reduction techniques if required (e.g., 

bandpass filtering). 

13. Split the dataset into training, validation, and test 

sets. 

14. Step 4: Model Design 

15. Design an Artificial Neural Network (ANN) with 

an appropriate 

      architecture. 

16. Define the input layer based on the number of 

features. 

17. Add hidden layers with appropriate activation 

functions (e.g., ReLU). 

18. Define the output layer with a softmax activation 

function. 

19. Step 5: Model Training 

20. Compile the model with an appropriate optimizer 

(e.g., Adam) and loss 

      function (e.g., categorical crossentropy). 

21. Train the model on the training set. 

22. Validate the model on the validation set during 

training. 
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23. Step 6: Model Evaluation 

24. Evaluate the model's performance on the test set. 

 

25. Calculate Precision, Recall, and F1-score for each 

class. 

26. Analyze the trainable parameters in the model. 

27. Step 7: Performance Analysis 

28. Compare the model's performance based on the 

metrics. 

29. Adjust hyperparameters or model architecture if 

necessary to improve 

      performance. 

30. Fine-tune the model using additional rounds of 

training and validation 

      if required. 

31. Step 8: Final Model 

32. Save the final model and its parameters. 

33. Document the model's performance metrics. 

34. Step 9: Reporting 

35. Prepare a report summarizing the methodology, 

results, and performance of the model. 

36. Include plots of loss, accuracy, and confusion 

matrix if applicable. 

Algorithm 1: Proposed Workflow 

Algorithm 1 discusses the potential workflow of this 

research. Here, it is seen that, the dataset is loaded at first, 

then necessary parameter tuning has been performed in 

Table 2. For the preprocessing purpose, normalization, 

handling missing data and noise reduction is performed. 

Furthermore, authors are focused on designing the model 

with ANN that has been trained with the added hidden 

layers of ReLU. The performance of the model is analyzed 

and fine-tuned that has been reported with multiple 

performance metrics.  

 

A threshold (𝜏)  value condition on the amplitude of the 

signal will be calculated by the following proposed formula 

1. 

𝜏 = (0.6) × 𝑚                                       (1) 

Where m is the ISO electric line value. According to the 

characteristics of the ECG signal, it is possible to find out 

the different range of the amplitude for P, Q, R, S, and T 

parameters by applying the threshold value. An analog-to-

digital converter needs to be configured to get the numerical 

value. This numerical value can be divided by the total 

number of parameters in a window of ECG signal to get the 

base numerical values as row data. This row data can be 

multiplied by different ratios of each parameter of the ECG 

signal to get the individual numerical value of P, Q, R, S, 

and T parameters. The formulation of converted numerical 

values is shown in Table 2. The parameters P, Q, R, S, T, U 

are tuned by the authors based on mathematical statistics 

[24]. 

In the second stage, augmented parameters (RR, PR, QT, 

QTc interval, and QRS complex) of the ECG signal can be 

considered to make better decisions about heart conditions 

provided in consultation with experts in cardiovascular 

diseases.  

The proposed algorithm for formulation of RR interval can 

be established from the following steps 

 

Table 2. The formulation of the parameters 

ECG Basic 

Parameter 

Formulation of the 

parameter 

Remarks 

P 𝑃 = 𝑟𝑜𝑤 𝑑𝑎𝑡𝑎 × 1.1 Always less than 

R peak 

Q 𝑄 = 𝑟𝑜𝑤 𝑑𝑎𝑡𝑎 × 0.8 Always less than 

P,T peak 

R 𝑅 = 𝑟𝑜𝑤 𝑑𝑎𝑡𝑎 × 2.0 Maximum peak 

of ECG signal 

S 𝑆 = 𝑟𝑜𝑤 𝑑𝑎𝑡𝑎 × 0.7 Always less than 

P,T peak 

T 𝑇 = 𝑟𝑜𝑤 𝑑𝑎𝑡𝑎 × 1.0 Always less than 

R peak 

U 𝑈 = 𝑟𝑜𝑤 𝑑𝑎𝑡𝑎 × 0.4 Always less than 

P,T peak 

 

Step 1: Determine the overall sampling frequency (𝑓𝑠)  by 

giving a sample rate from the total ECG signal which is 

generated from the proposed device. 

Step 2: Determine the sampling frequency (𝑓𝑥)  by 

partitioning the overall sampling frequency (𝑓𝑠) according 

to the number of R peaks from each   𝑓𝑠. 

Step 3: Individual window base average RR interval can be 

derived from the formula 2, which is denoted as 𝐼𝑊𝑡𝑟𝑟𝑎𝑣𝑔. 

𝐼𝑊𝑡𝑟𝑟𝑎𝑣𝑔 =  
𝑇𝑟𝑟𝑖

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅 𝑝𝑒𝑎𝑘
 =  𝑇𝑟𝑟𝑖 =

𝑅𝑙𝑜𝑐(𝑖+1)−𝑅𝑙𝑜𝑐(𝑖)

(𝑓𝑥)
  (2)                            

The other parameters PR, QT, QTc interval, and QRS 

complex can be calculated from the conventional methods 

[4], which is shown as following: 

 

𝑂𝑊𝑡𝑟𝑟(𝑖) =  
𝐼𝑊𝑡𝑟𝑟𝑎𝑣𝑔(𝑖+1)−𝐼𝑊𝑡𝑟𝑟𝑎𝑣𝑔(𝑖)

𝑓𝑠
           (3) 

𝑡𝑝𝑟(𝑖) =
(𝑅𝑙𝑜𝑐(𝑖)−𝑃𝑙𝑜𝑐(𝑖))

𝑓𝑠
         (4) 

𝑡𝑞𝑡(i)=  
𝑡𝑙𝑜𝑐(𝑖)+(𝑡𝑟𝑟(𝑖)× 0.13)−(𝑄𝑙𝑜𝑐(𝑖)−𝑥)

𝑓𝑠
       (5) 

 𝑡𝑞𝑡(𝑐𝑜𝑟𝑟)(i)=  
𝑡𝑞𝑡(𝑖)

𝑓𝑠 × √𝑡𝑟𝑟(𝑖)
𝑡𝑞𝑟𝑠(𝑖) =

(𝑆𝑙𝑜𝑐(𝑖)+𝑥)−(𝑃𝑙𝑜𝑐(𝑖)−𝑥)

𝑓𝑠
     (6) 

The proposed algorithm for the formulation of ST-Segment 

can be established from the following: 
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𝑡𝑠𝑡(𝑖) =
(𝑇𝑙𝑜𝑐(𝑖)−𝑆𝑙𝑜𝑐(𝑖))

𝑓𝑠
         (7) 

Where 𝑆𝑙𝑜𝑐(𝑖) is called  𝐽 − 𝑝𝑜𝑖𝑛𝑡 or 𝑆  Depolarization, and 

𝑇𝑙𝑜𝑐(𝑖) is called 𝐾 − 𝑝𝑜𝑖𝑛𝑡  or Beginning of the 𝑇 wave. 

The numerical values of these augmented parameters can be 

found by a computational programming application and the 

generated numerical values will be stored in cloud using 

MQTT technology. 

Subsequently, meticulous preparation was undertaken to 

ensure a thorough understanding of the acquired data. 

Following this, an Artificial Neural Network (ANN) was 

employed to process the refined data. Fine-tuning of the 

model's hyperparameters ensued to attain the most optimal 

outcomes. Lastly, a diverse range of evaluation metrics 

were employed to gauge the performance of the model. 

Figure 1 illustrates the chronological sequence of actions 

undertaken throughout the entirety of the research work. 

The process encompasses six primary phases prior to 

evaluating the outcomes. Initially, the designated 

equipment is employed to sense the data as suggested. 

Subsequently, the time intervals are converted into floating-

point values upon retrieval. The initial presentation of the 

readings is in a waveform format, from which numerical 

values are derived based on the waveform intervals. 

Subsequent to this, the data undergoes preprocessing, 

entailing dimensionality reduction and null value 

elimination. Following preprocessing, the input is 

channeled into the proposed architecture of the artificial 

neural network. Various metrics are then employed to gauge 

the performance. Figure 1 elucidates the sequential 

execution of the entire investigative procedure. 

 

 
Fig 1:  Methodology of the research 

3-1- Requirements for Setting up the Device 

The authors have focused primarily on establishing optimal 

conditions for successful implementation. The primary 

mechanism employed for collecting physiological data 

from patients' bodies is the ECG sensor network. To 

facilitate seamless data transmission, wireless channels are 

maintained using cloud-based IoT platforms. Within this 

framework, the AD8232 chip, utilized for electrical activity 

calculation, is integrated to record data from the device. 

Embedded within the chip is an integrated circuit (IC) 

responsible for signal amplification and extraction of 

requisite qualities. Electrocardiography serves as a pivotal 

diagnostic tool for numerous heart conditions, with several 

procedural steps involved in the data collection process. The 

initial step involves the implantation of multiple electrode 

pads—preferably three—into the patient's body for data 

collection. These pads play a crucial role in capturing data 

from the patient's body, which is subsequently transmitted 

to the AD8232 chip for analysis. Subsequently, the 

procedure entails the setup of a screen, commonly referred 

to as the Arduino COM port screen, through which medical 

specialists receive the data. Additionally, a Wi-Fi module is 

configured to facilitate data transmission from the device to 

experts. The detailed ECG curve displayed on the screen 

aids medical professionals in interpreting the data more 

effectively. The final stage entails deploying an Android 

app equipped with features that provide relevant 

suggestions. This app displays the ECG curve, aiding 

patients in comprehending the condition of their hearts 

better. Data transmission to the app is facilitated by the ECG 

sensors' ability to connect to integrated Wi-Fi. Moreover, 

ensuring the correct operation of the device, the Arduino 

Mega 2560 and earlier processors are configured to function 

between -3.3 and 3.3 volts, with pins appropriately 

connected from ground to ground. 

 

 
Fig 2:  Visual Representation for Acquired ECG Data 

3-2- Equipment Cost 

The device's detailed cost is given in Table 3. It is clear that 

the gadget can be constructed for as little as 4231 BDT, or, 
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at the present exchange rate, 38.41 USD. This is the primary 

system's cost. There will be additional expenses, which 

cover cloud support and the monitor. 

Table 3. Cost calculation of constructing the device 

Name of the 

Components 

Cost in Bangladeshi Taka 

(BDT) 

Sensors 1142 

Cables 174 

Wi-Fi module 375 

Serial converter 194 

Breadboard 175 

Arduino mega 934 

Pins and others 294 

Total 4231 BDT 

 

Most of the devices that were proposed for detecting 

cardiovascular disease, most device cost around 1200 USD 

to 1800 USD [13,16,17]. On the other hand, the cost of the 

proposed device is only 39.5 USD. That is why this device 

is more affordable for people with low income.  

3-3- Details of the Platform 

The integration of technology within the medical industry 

has revolutionized the diagnosis and treatment of a myriad 

of medical conditions. Among the most profound 

technological advancements lies the development of ECG 

devices, designed to monitor the heart's electrical activity. 

These devices play a crucial role in identifying and treating 

various cardiac issues such as arrhythmias, ischemia, and 

heart attacks. 

 The MQTT [30] server is an ideal choice for transmitting 

ECG data due to its seamless handling of both analog and 

digital data. However, before data transmission can begin, 

certain prerequisites must be met. A minimum of 50 data 

points is required, and an ERROR alert is triggered if the 

ECG displays fewer than 70 data points. Furthermore, data 

transmission will not initiate if there are fewer than 50 data 

points available. This ensures that doctors receive only 

accurate and reliable data, which is crucial for precise 

diagnosis and treatment. To enable data transmission, the 

analog signal undergoes conversion into a digital format 

using a digital data converter inconsistency. 

3-4- Dataset Building 

To procure the necessary data, the authors conducted 

information gathering from a pool of 8,000 volunteers, 

spanning ages 18 to 75. Specifically, they recorded the 

durations between ECG waves, focusing on the P, Q, R, S, 

and T waves, along with the PR, RR, QRS complex, QT, 

and QTC intervals. Additionally, essential personal 

information was incorporated into the dataset. 

Comprising 14 columns, each housing distinct data based 

on various criteria, the dataset primarily draws from ECG 

data to populate 10 of the 13 columns. Furthermore, it 

includes details such as an individual's ID, age, and BMI. 

The inclusion of age and BMI attributes enhances 

comprehension of an individual's health and well-being. 

The final column of the dataset provides information on the 

patient's heart condition, annotated by five Bangladeshi 

cardiac doctors. After thorough examination of each 

observation, they determined whether it suggests a healthy 

or at-risk heart. Table 4 displays attributes and their 

corresponding data types, offering healthcare professionals 

a comprehensive overview of the dataset contents. By 

examining the table, they can gain a better understanding of 

the dataset, facilitating more informed primary care 

decisions based on the patient’s health status provided 

within. Data was gathered from volunteers where both 

patients with cardiovascular disease and healthy persons 

were available. During data collection, the protocols that 

were prescribed by a renowned hospital in Bangladesh is 

followed. All kinds of data biases are removed using 

statistical measures. Furthermore, wrongly collected data 

were eradicated during the preprocessing phase. The dataset 

does not poses that bias except demographic bias where the 

age difference is not properly balanced. The reason is that 

cardiovascular disease is mainly common in elderly people.  

 

Preprocessing plays a pivotal role in enhancing the 

outcomes of Machine Learning (ML) and Deep Learning 

(DL) architectures. Fundamentally, the ECG signal 

furnishes all requisite information. Therefore, 

preprocessing steps are executed as necessary prior to 

feeding the data into the suggested optimized architecture.  

 

Table 4. Attributes and their corresponding data types 

Attribute Name Data Type 

P Wave float32 

Q Wave float32 

R Wave float32 

S Wave float32 

T Wave float32 

PR interval float32 

RR interval float32 

QRS complex float32 

QT-interval float32 

QTC-interval float32 

Age Int64 

BMI float32 

ID Int64 

Risk Int64 

 

Any empty rows or columns are meticulously addressed by 

the authors. Moreover, all data types are standardized to 

Int64 and Float32 formats. Subsequently, the dataset 

undergoes partitioning into training and testing subsets. 
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3-5- Data Cleaning and Preparation 

During the preparation stages, categorical data is also 

encoded appropriately. Specifically, labels indicating 

healthy hearts are assigned values of 0, while those 

representing hearts at risk are assigned a value of 1. For 

clarity, a partial view of the dataset is presented in Table 5, 

providing insight into the encoded categories and their 

corresponding values. 

 

The authors assess the data quality through the application 

of diverse statistical methods. Within this research, the 

evaluation entails measuring both covariance and 

correlation between the data. Covariance serves as a metric 

to gauge the relationship between variables, while 

correlation further elucidates the nature of this relationship, 

indicating whether the data exhibit linear separability or not. 

One sample of real-life data for 3 cycles has been given 

below. For each patient 3 cycles have been considered.  

 

Table 5. Data annotation concerning the heart condition 
Cycle P Q R S T RR PR QRS QT QTc 

1 49 38 96 33 48 .64 .16 ..05 .3 .75 

2 49 38 96 33 48 .64 .16 ..05 .3 .75 

3 54 41 104 36 52 .43 .1 .05 .7 .78 

 

The authors assess the data quality through the application 

of diverse statistical methods. Within this research, the 

evaluation entails measuring both covariance and 

correlation between the data. Covariance serves as a metric 

to gauge the relationship between variables, while 

correlation further elucidates the nature of this relationship, 

indicating whether the data exhibit linear separability or not.  

3-6- Artificial Neural Network  

Artificial Neural Networks (ANNs) are sophisticated 

machine learning models designed to emulate the structure 

and functionality of the human brain. These networks 

consist of layers of interconnected neurons that process and 

transmit data. Among the most commonly utilized types of 

ANNs is the feedforward neural network, which channels 

data from the input layer to the output layer in a 

unidirectional manner, devoid of looping back. To optimize 

performance for specific tasks, various training techniques 

are employed, allowing for the adjustment of connection 

strengths between neurons. ANNs excel in tasks 

necessitating pattern recognition, such as speech 

recognition, natural language processing, and image 

classification. Figure 3 illustrates the architecture of the 

ANN employed in the study. The authors conducted this 

study utilizing an 11th generation Core i7 PC equipped with 

a 1 TB HDD and 32 GB of RAM. The study leveraged the 

Python programming language, with Tensorflow and Keras 

serving as integrated libraries for constructing the 

architecture. 

 

Fig 3. Architectural details of the ANN model 

 

Additionally, Pandas facilitated the conversion of data into 

a dataframe, while numpy was instrumental in translating 

all calculations into vector space. Matplotlib.pyplot was 

utilized for plotting various graphs to aid in data 

visualization. Furthermore, Sklearn.train_test was 

employed to partition the data into separate test and train 

sets.  

 

Table 6. Hyperparametric details of the architecture 

Hyperparameters Details 

Learning rate 0.001 

Loss function Categorical cross-entropy 

Epoch 40 

Dropout 0.21 

Number of dense layers 3 

Trainable parameters 1,24,868 

Activation functions ReLU, softmax 

4- Simulation of the Research  

The authors aimed to integrate wireless technology and the 

Internet of Things (IoT) for efficient remote patient 

monitoring. The main technical objective is to develop an 

ECG sensor module that can accurately capture the heart's 

electrical signals, including the P, Q, R, S, and T waves 

[31], in real-time with high precision. These signals are 

thoroughly analyzed and extracted from the continuous 

ECG data stream. 

ECG signals are wirelessly transmitted using robust 

communication protocols such as Bluetooth Low Energy 

(BLE) or Wi-Fi Direct, ensuring secure and rapid data 

transfer to a central server.  

 
 

Fig. 4. Some significant stages of data processing 
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The system's architecture is carefully designed to accurately 

capture and transmit subtle variations in the amplitude and 

morphology of the PQRST complex. Figure 4 illustrates 

key stages from data sensing to processing through an 

artificial neural network.  

 

Additionally, considerable emphasis is placed on 

optimizing power efficiency and scalability to support an 

expanding nework of interconnected devices. This focus 

aims to ensure prolonged battery life and seamless 

integration into healthcare infrastructure. Figure 5 provides 

a functional overview of the entire system. 

 

 
Fig. 5. Working of the whole system 

5- Experimental Result Analysis  

Initially, the dataset is employed to train the model, 

imparting knowledge on how attribute values differ 

between a healthy heart and one experiencing issues. Once 

trained and tested, the model can effectively evaluate 

readings obtained from the device, distinguishing between 

normal readings and those requiring further attention. The 

authors have meticulously tracked several performance 

measures to evaluate the model's efficacy. Key metrics 

assessed include accuracy, precision, recall, and F1-score, 

as detailed in equations (11) through (14). From the 

literature it has found that, in [32] the proposed AlexNet 

method performs much better than traditional machine 

learning models and other deep learning techniques. It 

achieved very high results in all major evaluation areas: 

98.96% accuracy, 98.53% precision, 95.26% recall, 94.56% 

F1-score, and a correlation score of 0.988. These results are 

clearly better than other models, like the Support Vector 

Machine, which only reached 89% accuracy, and many 

others that stayed below 90%. This shows that the method 

is very good at correctly identifying different types of heart 

signals in electrocardiogram data. One of the key reasons 

behind this strong performance is the use of deep learning 

for feature extraction and a fuzzy bi-clustering approach, 

which together help the model pick up even small 

differences in heart patterns. However, one weakness is that 

the model still sometimes makes mistakes by wrongly 

classifying healthy or unrelated signals as heart conditions. 

For example, it wrongly identifies some signals as Atrial 

Fibrillation, Congestive Heart Failure, or Normal Sinus 

Rhythm, leading to small false positive rates of 2.5%, 3.0%, 

and 2.0% respectively. The study notes that while the model 

is highly effective, there is still room to reduce these 

incorrect predictions. 

The outcome that the suggested ANN model produced is 

depicted in Table 7. Four measures are included in the 

performance analysis: F1-score, accuracy, recall, and 

precision. Overall, the Model's performance is 

extraordinary [32].  

 

Table 7. Performance analysis of the system 

Metrics Performance 

Accuracy 95.44% 

Precision 94.35% 

Recall 95.47% 

F1-Score 95.64% 

 

After completing the analysis, the authors focused on 

comparing the outcomes with state-of-the-art ML and DL 

architectures.  

Initially, they compared the proposed model against the 

most advanced machine learning models, followed by 

comparisons with deep learning architectures.  

According to their assessment, the suggested ANN model 

outperforms all existing highly effective ML and DL 

models, boasting an average F1 score of 98.87%. The 

comparison analysis is depicted in Figure 6. 

 

 
 

Fig. 6. Performance comparison of the proposed model 

with other state-of-the-art models 

The results illustrated in Figure 6 highlight a notable 

enhancement in performance when compared to other 

models, with the deep neural network (DNN) emerging as 

the closest competitor. Furthermore, the authors juxtaposed 

the suggested model with the best deep learning 

architectures, considering the quantity of trainable 
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parameters in each model. Notably, the suggested model 

surpassed others by a considerable margin.  

 
Fig. 7. Performance comparison given the number of 

trainable parameters 

 

Figure 7 illustrates the count of trainable parameters for 

each of the DL architectures with which our model 

competed. Comparative analysis between the suggested 

ANN architecture and other DL architectures reveals that 

fewer trainable parameters are required, as evidenced by 

experimental results.  From this result, it is evident, that the 

proposed model and device integrate properly to detect 

cardiovascular disease in a proper and economically 

friendly way. Furthermore, the device has a quick response 

time that will help doctors and patients to get benefits. 

Moreover, as the research is focused for the under 

developing countries that is why this device will help the 

whole medical sector of the world. The primary problem 

with LSTM is that it requires extensive data for 

understanding the sequencing. LSTM is very good in text 

data but not always in numerical values. Furthermore, CNN 

1D can not perform proper with sequential data. That is why 

ANN is performing better and less trainable parameters 

because of optimization.  

 

Fig. 8. The physical system corroborating this study  

 

Figure 8 depicts the physical system supporting this study. 

This device is responsible for collecting personal data from 

users, which is then analyzed to provide them with the 

emergency medical attention they may require. 

6- Conclusion 

Leading the way in modern wellness, this study presents an 

IoT-based healthcare network that seamlessly integrates 

advanced sensors attached to the human body. A key 

innovation is the provision of continuous patient monitoring 

through multiple channels, including phone messaging 

services, live monitoring, websites, and apps. By blending 

state-of-the-art medical devices and applications with 

traditional medical practices, this approach aims to 

maximize effectiveness and make high-quality healthcare 

more accessible and affordable. Taking this into 

consideration, authors has focused on developing a IoT 

based device where it can used for medical purposes easily. 

The methodology suggest that with proper tuning and 

integration of ANN results in good result in classifying 

cardiovascular diseases. This work will aid the 

underprivileged countries to improve their medical sector. 

With the knowledge transferring from ANN, it is easier to 

determine the role of DL is immense. Furthermore, the 

proposed model is lightweight in nature. This research has 

resulted in the development of a cost-effective IoT-based 

ECG monitoring device, priced at only 38.41 USD. 

Experimental results show that using Artificial Neural 

Network (ANN) procedures, the system achieves 95.64 

percent accuracy, outperforming alternative methods. The 

integration of IoT technologies with smartphones offers 

significant development. The broader implication is to 

integrate with real-life hospitals where this device and 

proposed model can be utilized to detect cardio-vascular 

disease at an earlier stage. The mortality rate can be reduced 

significantly in such cases. The research shows, this device 

has the ability to provide future direction in the health 

informatics field.  
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Abstract  
The use of mobile devices with limited processing power has surged in recent years, alongside the expansion of cloud and 

fog computing across various sectors. These devices can handle small to medium computing tasks, but they fall short when 

it comes to large-scale processes, making computational offloading a crucial solution. Cloud computing and fog computing 

provide an effective platform for offloading tasks from mobile devices. However, critical real-time applications necessitate a 

near-edge approach to managing the computational load. Significant challenges exist in optimizing response times for 

effective offloading in cloud computing. This research introduces a framework for predicting response times using Deep 

Belief Network (DBN) learning to enhance offloading performance. Implementing a DBN aims to minimize response times 

and resource consumption, thereby improving the overall efficiency of offloading processes. The framework is designed to 

predict response times accurately, ensuring timely completion of tasks and efficient use of resources. Simulation results using 

multiple models show that the use of DBN significantly reduces processing, response, and offloading times compared to other 

algorithms. Consequently, the DBN algorithm proves to be more efficient in predicting response times and enhancing 

offloading performance. By leveraging the capabilities of DBN, this framework provides a promising solution for optimizing 

computational offloading in cloud computing environments. This enhances the performance of mobile devices and ensures 

the reliability and efficiency of real-time applications, direct the way for more advanced and responsive computing 

technologies. 

 

 

 

Keywords: Computational Offloading; Cloud Computing; Deep Belief Network; Response Time; Resource Management; 

Sustainable Smart Cities; Real-time Management. 
 

1- Introduction 

The proliferation of mobile devices has substantially 

increased computing demands, introducing new challenges 

in communication networks and resource provisioning. Due 

to their limited resources, mobile devices struggle with 

large-scale image processing and real-time conversion 

services [1]. Cloud computing technology helps mitigate 

these limitations; however, it is not applicable for real-time 

applications considering latency issues. Consequently, 

offloading computational tasks to independent platforms 

becomes a practical solution. For instance, the mobile cloud 

can provide maximum advantage for mobile video gaming 

and streaming [2]. 

Nevertheless, mobile cloud computing encounters 

challenges such as limited network bandwidth and 

offloading latency. Transmitting data from mobile devices 

to distant clouds consumes significant bandwidth, leading 

to traffic congestion and increased latency. Latency-

sensitive applications require offloading to nearby 

locations, such as the nearest edge or mobile fog, to address 

these issues [3]. 

Cisco Systems introduced fog computing as an extension of 

cloud computing, bringing its capabilities to the network’s 

edge. This extension benefits IoT services by supporting 

latency-intolerant mobile services. Numerous studies have 

focused on standardizing the computational offloading 

process at the edge or mobile fog, particularly in selecting 

mobile application units. Challenges related to offloading at 
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the mobile edge or fog include mobility, heterogeneity, and 

geographic distribution of devices. 

As the digital world expands and network technologies 

evolve, complex services are emerging [4]. The generation 

of online applications featuring computing, 

communication, and intelligent capabilities continues to 

grow. Despite the growing power of current devices, they 

still struggle with tasks required for smart healthcare, 

augmented reality, intelligent car communication, and 

many smart city services. These applications often require 

another individual to execute tasks as a representative of the 

user's device, a technique known as process offloading [5]. 

Task disburdening is especially advantageous for Internet 

of Things and cloud computing requisition, facilitating 

interactions between edge devices or fog nodes and sensors 

and IoT nodes. Load shedding can be established on 

computational requirements, load balancing, energy 

management, and latency management [6]. 

In a data-rich world, mobile devices with limited resources 

can handle small-to-medium computations but struggle 

with high-level computations. Processing offloading is an 

effective solution to overcome this limitation. Recently, 

cloud computing has been recognized as a suitable platform 

for offloading tasks from mobile devices. However, the 

distance of cloud data centers from mobile devices 

increases network latency and affects the performance of 

real-time IoT applications. 

For essential real-time applications, employing a near-edge 

network approach for computing offload is vital. 

Additionally, the primary controls for distributed mobile 

devices are heterogeneous in the offloading process of 

mobile computing. To overwhelm these contests, a deep 

learning-based response time prediction framework has 

been implemented to optimize offloading decisions near 

fog/edge or cloud nodes. 

The objectives of this research are: 

• Enhance Offloading Performance: Develop a deep 

learning-based framework to improve 

computational offloading efficiency. 

• Minimize Prediction Error: Achieve the lowest 

discrepancy between actual and predicted 

response times using deep learning techniques. 

• Boost Prediction Accuracy: Enhance the accuracy 

of response time predictions with the proposed 

deep learning method. 

The paper is structured as follows: Section 2 covers related 

concepts and foundational research. Section 3 outlines the 

technical methodology, including the proposed method and 

framework. Section 4 analyses the proposed framework, 

presents results, and evaluates their theoretical implications. 

The final section discusses the results' implications and 

concludes with future trends and perspectives. 

 

2- Background 

This section explores concepts and metrics used in 

computational offloading, IoT middleware technologies, 

technologies that enhance fog computing tasks, and 

offloading methods in fog and cloud computing. The 

interplay between cloud, fog, and mobile computing 

models, concerning large computing resources, is analyzed. 

The literature review also covers computing resource 

allocation methods and achievements in cloud computing 

offloading. 

Cloud computing resources are managed using 

virtualization technology. For example,[7] explains optimal 

virtual machine placement, examining distribution methods 

in cloud data centers. Most resource allocation mechanisms 

are designed for green computing. The DPRA allocation 

mechanism, discussed in [8], considers energy consumption 

of virtual and physical machines and data center air 

conditioning. A comparison of three schemes with DPRA 

shows energy savings, PM shutdowns, and reduced VM 

migrations. 

In [9], a multi-objective optimization algorithm balances 

availability, costs, and performance for running big data 

applications in the cloud, outperforming conventional 

methods by reducing costs and achieving higher 

performance. However, the study focuses on big data 

applications. 

In critical real-time applications, for example, patient 

control systems and intelligent transportation, mobile cloud 

computing offloads large tasks while maintaining quality 

standards [10]. A mobility-aware resource allocation 

architecture, Mobihat, provides efficient scheduling but 

does not study the impact of mobility on delay and response 

times for real-time mobile services. 

Offloading mobile edge computing with multiple users, 

based on TDMA and OFDMA, is introduced in [11]. The 

TDMA-based method reduces mobile energy consumption, 

while the OFDMA hybrid model transforms into TDMA, 

defining a discharge priority function for optimal resource 

allocation. 

The optimal computational offloading framework for 

DNNs is presented in [12], considering mobile batteries and 

cloud resources. This method evaluates energy 

consumption and execution time. 

In [13], battery life of nearby mobile devices is used to select 

discharge positions. A non-interactive game model, 

maximizing player payoffs, reduces response times. The 

Nash equilibrium is obtained through the game model and 

indirect induction method, evaluated for response time, end-

user benefit, and memory usage. Yang et al. [14] address high 

implementation delays among mobile devices and fog nodes 

using queuing theory. Data rate and power consumption are 

selected as decision parameters, formulating a multi-

objective optimization problem to decrease transmission 
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energy consumption, power, and cost, determining the 

probability of discharge for all mobile devices. 

A survey on stochastic-based offloading methods in 

different computing environments, including mobile cloud, 

edge, and fog computing, is proposed in [15]. The 

classification is divided into Markov chain, Markov 

process, and hidden Markov models, discussing open issues 

and future challenges. 

In [16], a multi-objective optimization model addresses 

time and energy consumption of mobile users and edge 

server resource utilization. An edge-cloud joint offloading 

method, based on the evolved Strength Pareto algorithm, is 

effective and efficient for scenarios with multiple mobile 

users and heterogeneous edge servers. 

An offloading architecture, combining intelligent 

computing with AI, is presented in [17]. Considering 

mobile task data size and edge node performance, a load 

shedding and task transfer algorithm optimize edge 

computing offloading. Experiments show reduced task 

delay by increasing data and subtask execution. 

Du et al. [18] address offloading in a cloud-cloud 

environment, supporting a heterogeneous model to consider 

task communication cost asymmetry. They prove the NP-

hard nature of the problem and design an efficient algorithm 

for an optimal solution, evaluated through a PageRank-

based program in a controlled cloud edge setting. 

An adaptive wireless resource allocation strategy for 

computational offloading, under a three-layer edge cloud 

framework, is studied in [19]. Modeling the offloading 

process at the minimum block level of allocable wireless 

resources adapts to vehicular scenarios and evolves in the 

5G network. The proposed value density function measures 

cost-effectiveness and energy saving. Numerical results 

show the designed algorithm achieves significant running 

time and energy savings, with superior performance 

compared to benchmark solutions. 

An autonomous computational offloading framework is 

presented in [20] for time-consuming programs, addressing 

control model challenges for managing computing load. 

Various simulations, including deep neural networks and 

hidden Markov models, are performed. Results show the 

hybrid model fits the problem with near-optimal accuracy 

for discharge decisions, delay, and energy consumption 

predictions. MAPE is used for discharge, collection, and 

processing for decision making. The proposed method 

outperforms local computing and offloading in latency, 

energy consumption, network utilization, and execution 

cost. 

In [21], minimizing average task execution time in edge 

systems, considering job request heterogeneity, application 

data pre-storage, and base station cooperation, is addressed. 

A mixed integer nonlinear programming (MINLP) problem 

is formulated and addressed using decomposition theory. 

The GenCOSCO algorithm improves service quality and 

computational complexity. For fixed service cache 

configurations, the FixSC algorithm derives evacuation 

strategies, with simulations showing significant task 

execution time reductions. 

Peng et al. [22] propose three multi-objective evolutionary 

algorithms to tackle the computing offloading challenges in 

IoT for edge and cloud networks. They developed a 

constrained multi-objective load calculation model that 

accounts for time and energy consumption in mobile 

environments. Drawing inspiration from the push and pull 

search (PPS) framework, they introduced three algorithms 

(PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE) that 

integrate population-based search with flexible constraint 

control. These algorithms were tested using multi-task, 

multi-user scenarios across various IoT devices. The results 

demonstrated their effectiveness and superiority. 

Other research presents a user-centered joint optimization 

offloading scheme designed to minimize the weighted costs 

of time delay and energy consumption. The mixed-integer 

nonlinear programming problem is addressed using a 

particle swarm optimization algorithm that incorporates 0-

1 and weight improvement techniques. Simulation results 

indicate higher performance in delay, energy consumption, 

and cost [23]. 

In [24], a computation offloading scheme via mobile 

vehicles in a cloud-IoT network is proposed. Sensing 

devices generate tasks and transmit them to vehicles, which 

then decide whether to compute the tasks locally, on a MEC 

server, or at a cloud hub. The offloading decision is based 

on a utility function that considers energy consumption and 

transmission delay, using a learning-based approach. 

Experimental results show that this solution maximizes 

rewards and reduces delay. 

Based on the research discussed, various techniques can be 

adopted for cloud computing offloading, depending on 

priorities. This research proposes using a response time 

prediction model based on deep learning to determine the 

optimal offloading position. The impact on delay and 

energy efficiency will be evaluated to improve offloading 

performance by minimizing the error between actual and 

predicted response times. 

3- Methodology 

A mobile fog node expands the capabilities of fog and 

mobile cloud computing models by offering a localized 

system to minimize potential delays and execution times 

while maintaining continuous and direct communication in 

conjunction with the cloud data center. The proposed 

model, depicted in Figure 1, encompasses three offloading 

positions: the cloud data center, adjacent mobile station, and 

mobile fog. This setup is supported by the LTE hierarchical 

architecture and the Wi-Fi intra-network reference model, 

situating the mobile fog at the network's edge. Access points 

and access point controllers operate as mobile fog nodes. 
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Fig. 1 Mobile Fog System Model for Computational Offloading - 

Verification and confirmation of Mobile Stations is Achieved by 3GPP 

AAA via Extensible Authentication Protocol-Authentication and Key 

Agreement(EAP-AKA) over Internet Key Exchange version 2 (IKEv2) 

Within this architecture, the mobile edge/fog is represented 

by the fog-1 node, the mobile fog by the fog-2 node, and the 

public cloud serves as the third offloading position, referred 

to as the cloud node. Communication within the fog is 

enabled by the Evolved Packet Core, which provides the 

Evolved Packet Data Gateway. 

Access points not only facilitate communication between 

mobile stations but also offer cloud services such as, 

Network as a Service (NaaS), Platform as a Service (PaaS), 

and Infrastructure as a Service (IaaS). IEEE Ethernet 

interfaces connect access points to access point controllers, 

while IEEE 802.11 WLAN interfaces link mobile stations 

to access points. The access point controller manages block 

code migration, overseeing memory, processing, I/O, and 

networking capabilities to sustain mobile cloud services. 

Hence, the access point controller similarly serves as a fog 

network controller. In Figure 1, fog-enabled access points 

are labeled as "fog-access points," and access point 

controllers are designated as "fog-access point controllers." 

Mobile station authentication is conducted by the 3GPP 

AAA via EAP-AKA over IKEv2, with the verification and 

validation vector derive through the shared home server unit 

in the LTE network. The data network gateway, which 

handles access to user equipment or mobile stations and 

virtual machines (VMs), has evolved into a packet data 

gateway. The top module, the public cloud, functions as a 

traditional delivery network, providing pervasive and 

scalable services accessible via the web using both mobile 

and static devices. 

 

 

 

3-1- Unloading Node Process 

This section details the offloading process based on the 

previously described model, with a focus on the fog/mobile 

edge. In critical real-time applications, nodes such as public 

cloud and mobile fog and mobile edge are physically 

dispersed to deliver services to mobile cloudlets, which are 

resource-limited mobile stations. Due to the dynamic nature 

of these applications, request times are unknown and 

random, with variable response times, making it 

challenging to identify the optimal offloading node. 

To tackle this issue, a deep learning-based approach is 

recommended. This approach learns from the request 

history and response times of nodes to predict future 

response times. The node with the lowest predicted 

response time is then selected for offloading. The 

relationship between the computing requirements of cloud 

or fog nodes and the response time of virtual machines is 

complex. 

Predicting workload data patterns is challenging due to their 

non-consecutive nature. Therefore, aggregated workload 

data characteristics of VMs are used instead of single VM 

data for prediction purposes. A deep learning model can 

better determine workload data dispersions based on 

inherent data characteristics, outperforming simpler 

models. This preference is due to the deep model's ability to 

learn complex relationships between workload data 

features. Although structurally similar to a Multi-Layer 

Perceptron (MLP), a Deep Belief Network (DBN) has a 

diverse training method, allowing it to address gradient 

fading effectively. 

 
Fig. 2 Flowchart of the DBN-based offloading decision process, 

integrating predictive modelling, fallback selection via p-model, and 

feedback-driven model updates for sustainable smart city applications. 
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Figure 2 illustrates the complete workflow of the proposed 

DBN-based computational offloading system for smart city 

environments. The process begins with data collection from 

mobile devices and virtual machines, including historical 

request patterns and aggregated workload characteristics. 

After preprocessing and feature extraction, the data be used 

for DBN step, which performs multi-layer encoding and 

pattern recognition to predict future response times of 

candidate nodes. Based on these predictions, the system 

attempts to select the node with the lowest latency for 

offloading. If due to unpredictable workload patterns or 

insufficient confidence no suitable node is identified, the 

system activates a fallback mechanism using the p-model, 

which randomly selects a server based on predefined 

probability. The final stage involves task execution and 

feedback logging, which continuously refines the DBN 

model for future decisions. 

3-2- Deep Belief Network (DBN) 

A Restricted Boltzmann Machine (RBM) can extract 

features and recreate data entry, in spite of that, it struggles 

with gradient blurring. To address this, multiple RBMs can 

be combined with a classifier to form a Deep Belief 

Network (DBN). This method, known as greedy layer-by-

layer unsupervised pretraining, involves training the DBN 

two layers at a time, treating each pair of layers as an RBM. 

In this architecture, the hidden layer of one RBM acts as the 

input layer for the subsequent RBM. The training process 

starts with the initial RBM, whose outputs are fed into the 

next RBM, and this sequence continues until the output 

layer is reached. Through this process, the DBN identifies 

inherent data patterns, functioning as an advanced multi-

layer feature extractor. A unique aspect of this network is 

its ability to learn the complete structure of the input at each 

layer, similar to a camera gradually focusing an image. 

Finally, labels are applied to the resulting patterns in the 

DBN. The DBN is subsequently fine-tuned through 

supervised learning using a small set of labeled samples, 

with minor changes to weights and biases leading to a 

marginal increase in accuracy. 

The proposed approach includes a deep belief network with 

one-layer neural network. This method employs an 

unsupervised approach to extract more robust and helpful 

features from VM workload data. By increasing the hidden 

layers in the DBN, the error gradient is significantly 

amplified before being minimized. Training is conducted 

using an unsupervised greedy layer-wise method. To further 

optimize, the DBN's top layer utilizes a standard sigmoid 

regression. Future request predictions are generated by 

analyzing response times in terms of bandwidth (B), 

memory (M), and processing capability (P). 

As presented in Figure 3, inputs to the DBN model include 

the bandwidth, memory and processing capability of entire 

requests, along with the recent workload of all VMs. These 

data cover actual response times discovered over various 

time spans. For each node, the trained DBN models predict 

response times, with input values normalized between 0 and 

1. The core layer's units equal the sum of the VMs in the 

cloud and the time slots.  

Number of Units=VM×TI  (1) 

Where: 

VM represents the number of virtual machines. 

TI represents the number of time intervals. 

This simple yet effective formula helps determine the total 

number of units required based on the given parameters. 

Alternatively, a supervised approach with a precisely 

configured logistic regression layer can be employed to 

label the data and predict the workload of a VM. 

 
Fig. 3 Stacks before RBM Training 

Initially, the standard binary RBM is modified to a 

Gaussian-Bernoulli RBM. The visible unit biases in the 

RBM energy function are adjusted to include quadratic bias 

terms [3]. An example of a load shedding decision session 

is shown in Table 1. The Energy function and Conditional 

Probability Distribution are conveyed in following way:  

E(x, h|θ) = ∑
(𝑥𝑖−𝑎𝑖)2

2𝜎𝑖
2

𝑋
𝑖=1 − ∑ 𝑏𝑗ℎ𝑗

𝐻
𝑗= − ∑ ∑

𝑣𝑖

𝜎𝑖
ℎ𝑗𝑤𝑖𝑗

𝐻
𝑗=1

𝑋
𝑖=1

     (2) 

𝑃(ℎ𝑖|𝑥; 𝜃) = 𝛿(∑ 𝑤𝑖𝑗𝑥𝑖
𝑋
𝑖=1 + 𝑏𝑗)  (3) 

𝑃(𝑥𝑖|𝑥; 𝜃) = 𝑁(𝜎𝑖 ∑ 𝑤𝑖𝑗𝑥𝑖
𝑋
𝑖=1 + 𝑎𝑗 , 𝜎𝑖

2) (4) 

Table 1: Description of symbols 

Symbol Description 

𝜇 mean 

𝜎2 variance 

𝜎 standard deviation 

P probability 

E expectancy 

X observable variables 

H common hidden space of variables 

W linear mapping coefficient 

B bias 

In this context, the Gaussian distribution's probability 

distribution function is represented by N(μ,σ2), where μ is 

the mean, and σ2 is the variance vector. Hinton’s training 

method outlines the prediction process as follows: 

Unsupervised Training: The RBN visible and hidden 

layer are trained. The RBM input comprises a request 

section and a response time dataset. θ  is the only non-

continuous parameter in the RBM. 

 
 
 

 

Input Value Output Value 
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Layer Inheritance: Each visible layer in RBM inherits and 

utilizes the extracted features of the preceding RBM as its 

input. This process is repeated for subsequent RBMs, with 

the parameter θ retained for the next and initial RBM. 

Input to Logistic Regression: The regression layer is 

trained using labelled data in a supervised manner; and 

input of that is the output of the final RBM.  

Supervised Training: The θ parameters are trained and 

adjusted using the backpropagation (BP) algorithm. 

The deep belief network-based response time prediction 

method leverages edge/cloud computing to accurately 

determine whether to offload computations to a 

neighbouring node, an edge/fog node, or a cloud node. To 

handle the unpredictability of resource availability in 

edge/fog and cloud nodes, the proposed offloading 

procedure leverages the technique of RBM learning. 

To begin the substantial data volumes and the demand for 

real-time applications, particularly in the e-health sector, a 

near-edge network approach for offloading computations is 

recommended. This strategy addresses the primary controls 

for distributed mobile devices, easing the offloading 

process in mobile and heterogeneous computing 

environments. A deep learning-based response time 

prediction framework has been developed to enhance 

computational offloading performance, determining the 

optimal offloading target, whether it's a nearby fog/edge 

node, an adjacent fog/edge node, or a cloud node. 

Additionally, the Restricted Boltzmann Machine (RBM) 

learning technique is utilized to handle the variability of 

resource availability. 

In this study, the DBN model was trained using aggregated 

workload data collected from simulated virtual machines 

operating under diverse conditions. The training process 

involved unsupervised pre-training of Restricted 

Boltzmann Machines (RBMs) followed by supervised fine-

tuning using labeled response time data. Training was 

conducted on a standard CPU-based computing 

environment, which, was sufficient for the scale and 

complexity of the dataset used. The total training time 

varied depending on the configuration, typically ranging 

from 30 minutes to 2 hours. Once trained, the model was 

deployed for inference on edge servers, where its 

lightweight architecture enabled real-time prediction 

without significant computational overhead. This setup 

demonstrates that even without specialized hardware, the 

DBN-based offloading strategy remains practical and 

effective for mobile and fog-based environments. 

4- Result and Analysis 

This section examines the performance of the proposed 

models. The simulation results integrate real mobility 

tracking, server datasets, and model implementation on 

actual machines. Subsequent sections will explore the 

performance benefits of DBN-based models using three 

probability distributions (uniform, normal, and exponential) 

to achieve accurate results. 

4-1- Data Collection 

To simulate mobile node movements, a dataset of vehicle 

movements in Rome was utilized, as referenced in [25]. 

This dataset comprises coordinates of 320 taxis collected 

over 30 days, including their coordinates, date, time, and 

GPS location. Mobility tracking treats any movement as a 

point in time to check server or dump time, rather than 

studying user mobility. Each movement is modeled as an 

interaction with a mobile edge computing server. 

Processing times are obtained from real servers (CPU 

usage), involving around 150 data servers (over 1 billion 

rows). With e very movement, a server is selected from the 

dataset, its utilization is checked, and an unloading decision 

is made based on the model's recommendation. 

The evaluation spans more than five days (5000 rows of 

movements). An evacuation decision is made every minute, 

resulting in over 1000 evacuation decisions, ensuring the 

proposed models' behavior is observed over an extended 

period. The DBN-based response time prediction method 

leverages edge/cloud computing to determine whether to 

offload computations to a neighboring node, an edge/fog 

node, or a cloud node.  

Given the challenges posed by large data volumes and real-

time applications, particularly in the e-health sector, a near-

edge network approach was recommended for offloading 

computations. The proposed RBM learning technique 

addresses the randomness of resource availability. 

Figure 4 distribution of server usage probabilities across all 

servers in the dataset. The data generally follows a normal 

distribution, illustrating typical CPU utilization patterns 

observed during simulation. 

 
Fig. 4. CPU usage distribution of servers (CPU unit is percentage and 

Density is J) 
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Table 2 sample load shedding decision session, showing 

CPU consumption values for selected mobile edge 

computing servers at specific geographic positions and time 

intervals. 

Table 2: Dataset Sample Used in the Experiment. (ID: xx6, Motion Time 
Interval: 10 Seconds) 

Position Machine CPU Consumption 

X=41.8911, 

Y=12.49073 
M_xx39 51 

X=41.89905, 

Y=12.4899 
M_xx36 47 

X=41.8994, 

Y=12.48940 
M_xx41 20 

X=41.8994, 

Y=12.489401 
M_xx41 37 

4-2- Evaluation 

This section focuses on simulating and evaluating the 

proposed evacuation rules across various variables. The 

primary aim is to observe the models' behavior under 

different conditions, allowing generalization to parameters 

such as quality of service and response time concerning 

computational load. 

MATLAB software is chosen for the simulation, which can 

perform process-based discrete event simulation. The 

“Advance Mode” is selected for the probability distribution 

of the random variable X, including time (processing). In 

the simulation, a resource actually is a mobile edge 

computing server k that is modelled and can advertises its 

processing time Xk. A process is a mobile node that 

modelled to traverses the mobile edge computing servers 

and checks latency of each server based on the processing 

time. Initially, we consider n=5, means having five mobile 

edge computing servers. The processing time X follows a 

normal distribution (50 ms to 10 ms), a uniform distribution 

in the interval [0-1], and a binominal distribution of 50 

J/mol. MATLAB has generated incidental variables 

following the determined apportionment. 

At every initiation, a node begins polling the mobile edge 

computing servers consecutively, starts with server one. At 

this step, the proposed approaches are utilized to choose a 

mobile edge computing server. The important parameters in 

processing time are waiting time, delay and total delay. 

Additionally, based on the program types, the range of 

processing time differs from 100 milliseconds to 800 

seconds, and in intervals of 10 milliseconds to 30 

milliseconds. Therefore, various ranges for parameter X can 

be considered derived from the proposed models, which 

producing similar outcomes as observed in the experiment 

dataset. Table 3 shows the values and range of parameters 

in the simulation test. 

The main approach used in the simulation involves 

comparing values obtained from other studies, random 

values, the nearest server (immediate loading), and a 

method from the same family of algorithms proposed in this 

work. This evaluation is limited to comparisons between 

different models, including the random and probabilistic 

model (p). These approaches are compared to the superior 

option, where the server or time with the minimum value is 

chosen. 

Table 3: Simulation Parameters Values for all Methods 

Parameters Value / Range of Values 

X N(10, 50) & U(0, 1) 

No. of mobile nodes  1000 

N {3, 5, 10} 

P for p-model 0.8 

R {0, 0.25, 0.5, 1} 

𝜃 
{30, 40, 50, 60} 

{0.3, 0.4, 0.5, 0.6} 

{20, 30, 40, 50, 60} 

C 
{1, 2, 3, 4, 5, 20, 30} 

{0.1, 0.2, 0.3, 0.4} 

{1, 10, 15, 20, 30, 40} 

The reasons for adopting this approach are as follows: 

Primarily, this research emphasizes data decision-making 

and task offloading. Additionally, deep learning algorithms 

inherently differ from traditional algorithms, especially 

when the decision maker lacks complete information. Thus, 

the approach to optimality is the main analysis for 

evaluating these algorithms. Optimization is suitable when 

all server information is available to the decision maker, 

facilitating the mobile node in determining the ideal 

offloading location. Ultimately, these algorithms are 

implemented in sequence, complicating direct comparisons 

with other algorithms. 

In this setting, in the absence of offloading rules, the mobile 

node will likely choose the first available mobile edge 

computing server. For edge computing load, such an 

offloading method is optimal for task offloading. So, the p-

model method is utilized as a fallback technique. In the p-

model, each server is assigned a loading probability, set to 

p=0.8. During each user move, each server has a probability 

p=0.8 of being selected to load the job. In this experiment, 

increasing p intensively the probability of selecting the first 

server for loading. Consequently, the p-model replicates the 

scenario where the mobile node chooses the nearest servers 

that is closest edge servers due to the higher probability 

p=0.8. 

When evaluating the actual dataset, if a server is preferred 

(server is chosen for loading) the process stops; if no server 

is preferred, the last server is chosen. A server is randomly 

preferred for each user to offload the work in the random 

selection model. 

The results of all models are compared with values obtained 

from the proposed model, where the server with the shortest 

processing time is chosen for each unloading session. 

Models that are closer to the optimal value demonstrate 

superior performance in offloading decisions. The optimal 
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model is achieved by choosing the server with the shortest 

processing time for each load sequence. 

4-3- Results 

The simulation results evaluate the performance of the 

proposed DBN-based offloading model across multiple 

dimensions, including execution time, server usage, energy 

efficiency, and successful offloads. The evaluation spans 

three distinct probability distributions for the processing 

time variable X: normal, uniform, and exponential. Each 

distribution reflects different real-world workload scenarios 

in mobile edge computing environments. 

Across all simulations, the DBN-based model consistently 

demonstrates superior performance compared to 

benchmark algorithms such as Delay Tolerant Offloading 

(DTO), Best Choice Problem (BCP), Cost-based Optimal 

Task (COT), Quality-Aware Odds, Random selection, and 

the p-model. The proposed method achieves lower average 

execution times, reduced CPU usage, and higher rates of 

successful offloads under varying resource constraints. 

Figures 5 through 13 present comparative results for each 

distribution scenario. These include average processing 

times, server utilization, and the number of effective 

offloads under different CPU thresholds. The DBN model 

shows strong alignment with the optimal model, 

particularly in scenarios where resource availability is 

dynamic and unpredictable. This confirms the model’s 

ability to make accurate offloading decisions and maintain 

system efficiency under diverse conditions. 

Performance Analysis with Normal Distribution 

As illustrated in Figure 5, when the processing time X 

follows a normal distribution, the proposed DBN-based 

algorithm achieves the shortest execution time among all 

evaluated methods. The average execution time for 

computational discharge is approximately 40 milliseconds, 

outperforming DTO, BCP, COT, and the p-model 

algorithms. 

 
Fig. 5 Simulation Results for All Models in Case of X Normal 

Distribution. 

The figure also reveals a significant overlap between the 

DBN model and the optimal model, indicating that the 

DBN’s predictions closely approximate ideal offloading 

decisions. In contrast, models such as the p-model and 

random selection exhibit higher variance and longer 

processing times. The BCP model achieves a processing 

time of 46 milliseconds, which is lower than the p-model 

and random approaches but still less efficient than the DBN. 

These results validate the effectiveness of the DBN-based 

offloading strategy in minimizing latency and optimizing 

resource allocation in mobile edge computing. The model’s 

ability to learn from historical workload patterns and predict 

response times contributes to its superior performance 

across varying conditions. 

The results in Figure 6 reveal that the variation between the 

optimal model and DBN model is significantly smaller than 

the variation detected with other models. Notably, for 

models other than the DBN, the optimal threshold for each 

experiment k is generally close to the average processing 

time of 50 milliseconds. For example, in the DTO model 

and COT model, the thresholds generated for n=5 are {40, 

42, 43, 46, 50}, all near the average processing time. 

 
Fig. 6 Average Processing Time for Different Models with X Normal 

Distribution. 

Using these optimal thresholds as a reference, the initial 

threshold value for the Odds method is set to 50, with 

performance evaluated for various values. The results, 

indicate the effective performance of the Odds method. This 

performance can be credited to the high likelihood of 

choosing a server with a processing time under 50 

milliseconds. Thus, by setting a threshold value close to the 

average processing time, a shorter processing time is 

achieved for unloading the computational load. 

Furthermore, the results demonstrate better performance for 

the BCP method compared to the p-models and Random 

method. The BCP evacuation policy is more likely to 

achieve the shortest processing time, leading to a lower 

average processing time than other models. This increased 

likelihood results in a lower expected processing time 

compared to the random and p models 

Significantly, while the probability of selecting the best 

server is assumed to be similar in the BCP and Odds 

models, the defined threshold in the Odds model enhances 

performance by ensuring quality-aware decisions when 
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examining mobile edge computing servers. The main 

conclusion from these results is that the proposed method, 

referred to as the optimal model, achieves a shorter 

processing time than other methods, thereby reducing 

response time and improving the performance of 

computational offloading in cloud computing. 

Performance Analysis with Uniform Distribution 

In the initial results, the random variable X followed a 

normal distribution. To achieve more accurate findings, we 

conducted an additional simulation with X uniformly 

distributed within the interval [0-1] (Figure 7). This range 

represents server usage, such as CPU utilization, where a 

value of 0.5 indicates 50% CPU usage. We applied similar 

steps to all models, as in previous experiments. 

In the DTO model, the delay coefficient initially began at 

r=0, with results for other r values presented subsequently. 

For the cost-based optimal task model, an ideal threshold 

was identified for each cost value in the second set. 

Specifically, for c = 0.2, evaluations determined the optimal 

threshold to be 0.3. The cost interpretation is similar to the 

normal distribution scenario: a higher cost (smaller 

threshold V) signifies a greater need for shorter processing 

times. 

 
Fig. 7 Simulation Results for All Models in Case of X Uniformly 

Distribution. 

In the quality-aware Odds model, the threshold was set to 

0.5, yielding a 42% probability of selecting a server with 

X=0.5. Though the BCP model shares this probability, 

setting the threshold notably improved the Odds model's 

performance. Figures 7 and 8 show that model performance 

aligns closely with results from the normal distribution 

scenario. DTO and COT models remain top performers, 

with deep belief network-based models coming closer to 

optimality compared to random and p models. 

As illustrated in Figure 8, the average execution time for 

various algorithms, including the proposed method based 

on the deep belief network, has been evaluated. The results 

demonstrate that the proposed method achieves a shorter 

execution time compared to other methods, indicating a 

more efficient response to computational offloading in 

mobile edge computing. 

 
Fig. 8 Average Processing Time for Different Models with Uniform X 

Distribution. 

Performance Analysis with Exponential Distribution 

Figure 8 demonstrates that the proposed algorithm achieves 

an execution time of approximately 0.15 milliseconds, 

which is shorter compared to other methods. On the other 

hand, the p-model algorithm exhibits the longest execution 

time due to the consideration of a threshold value for 

selecting servers. These results suggest that the deep belief 

network (DBN) method provides superior response times 

for computational offloading in mobile edge computing, 

attributed to its layered approach. 

Besides normal and uniform distributions, this experiment 

also included an exponential distribution with a mean of 50. 

The same procedural steps were followed as in the previous 

distributions. Initially, the delay coefficient in the DTO 

method was set to r=0, with results for other r values 

subsequently presented. The results under these conditions 

are shown in Figures 9. 

In the Cost-based Optimal Task model, the figures depict 

the optimal threshold values V corresponding to each cost 

value. For this simulation, the cost was initially set to 20, 

with the optimal threshold determined to be 45.81, resulting 

in the lowest simulated expectation of X among other 

values. Performance across various cost values is also 

demonstrated. The cost interpretation aligns with scenarios 

where X follows normal and uniform distributions: a higher 

cost (smaller threshold V) indicates an increased demand for 

shorter processing times. 

In the quality-aware Odds method, the threshold was set to 

50, resulting in a 44% probability of selecting a server with 

X=50. The results in Figures 9 and 10 indicate that the 

proposed model's performance is consistent with the results 

obtained when X follows normal and uniform distributions. 

The DBN-based method consistently outperforms other 

algorithms, demonstrating the best performance and closest 

proximity to optimality compared to the random and p-

models. 
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Figure 9 demonstrates that the proposed method with 

exponential distribution achieves a lower execution time 

compared to other methods. This distribution effectively 

guides server selection for mobile edge calculations, 

showing that the deep belief network-based method 

provides a faster response for computational offloading in 

mobile edge computing than other algorithms. 

 
 Fig. 9 Simulation Results for All Models in Case of X Exponential 

Distribution. 

Figure 10 illustrates the average response time for different 

methods with exponential distribution. The proposed 

method has a significantly lower response time, 

approximately 10 milliseconds, compared to other 

algorithms. This demonstrates that the proposed method 

surpasses other approaches in reducing response time for 

computational offloading in mobile edge computing. 

 

Fig. 10 Average Processing Time for Different Models With X 

Exponential Distribution. 

Server Usage and Energy Efficiency 

Figure 11 illustrates the average server usage recommended 

by each model. The DTO and COT models show results 

closest to the proposed method, with DTO performing 

better than the others by an absolute difference of 23 units 

compared to the proposed method. The findings indicate 

that the proposed method has a lower average server 

consumption than the other methods, meaning it consumes 

less energy for mobile edge calculations. 

Additionally, the proposed method, based on the deep belief 

network, demonstrates a shorter average unloading time 

compared to other algorithms. Consequently, this suggests 

that the response time for computational offloading in 

mobile edge computing is more efficient with the proposed 

method than with others. 

 
Fig. 11 Average CPU Usage and Average Computational Drain Time by 

each Model 

Server Consumption and Successful Offloads 

Figure 12 illustrates the average server consumption for the 

proposed method compared to other solutions. The 

proposed deep belief network method demonstrates a lower 

average server consumption, indicating that it not only 

reduces the response time for computational offloading but 

also optimizes server usage. This results in lower overall 

server consumption compared to other algorithms. 

 
Fig. 12 Average Usage of Servers for Different Algorithms. 

Result presented the average server consumption for the 

proposed method compared to other solutions. The 

proposed deep belief network method demonstrates lower 

average server consumption, indicating that it not only 

reduces response time for computational offloading but also 
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optimizes server usage, resulting in lower overall server 

consumption compared to other algorithms. 

Beyond average server utilization, we compare 

performance based on the number of effective offloads for 

each model. An effective offload refers to unloading 

decisions that meet specific requirements set by each 

model. To assess this, we assume three different mobile 

edge computing programs (x, y, and z) each with distinct 

needs. For example: 

• Program x requires less than 10% CPU utilization. 

• Program y requires less than 20% CPU utilization. 

• Program z requires a server with less than 30% 

CPU utilization. 

If an offload occurs for a server with usage less than 10%, 

it is considered a successful offload for program x. 

Figure 13 illustrates the effective offloads for various 

resource demands across entire methods. The proposed 

deep belief network-based method achieves the highest 

number of successful offloads in these three cases, with 

values of 102, 463, and 1887 successful offloads, 

respectively. 

 
Fig. 13  Number of Effective Discharges for each Model Based on 

Various Threshold Values. 

4-4- Discussion 

The simulation results for various methods indicate that the 

presented models generally exhibit a time complexity of 

O(n) at worst, both in terms of time and space. If each 

model's condition is met on server number n, the mobile 

node will visit server n. For the DTO, COT, and Quality-

aware Odds models, a pre-observation step involves 

generating thresholds. This step is presumed to be executed 

a single time by the service provider, external to the mobile 

node, although it can be implemented within the mobile 

node if necessary. For example, computing the threshold at 

the mobile node in the Odds and DTO methods requires 

O(n) time complexity. The COT method requires more time 

to calculate the threshold, depending on the likelihood 

distribution. Merely a sole operation is essential for a 

(uniform) distribution, while a normal distribution requires 

integration estimation with a time complexity no greater 

than O(n2). 

Regarding space complexity, the BCP model does not 

require additional space for data storage, resulting in a space 

complexity of O(n). This also applies to other models, 

provided the training step is performed outside the mobile 

node. If the training step is conducted locally at the mobile 

node, only the probability distribution parameters need to 

be stored. For a uniformly distributed X, the maximum and 

minimum values are stored, while for exponentially 

distributed X, the 𝜇 mean and 𝜎2 standard deviation are 

required. Previous results showed that the time complexity 

of the proposed method based on a deep belief network 

(DBN) is O(1), the lowest complexity for predicting time 

and improving computational offloading performance in 

mobile edge computing. 

Analyzing the execution time and server consumption 

across different algorithms reveals that the proposed 

method is more efficient in performing the computational 

offloading process. The results indicate that the proposed 

model is completely independent and lightweight for 

implementation in the mobile node, outperforming other 

compared solutions. The DBN-based method requires less 

processing time for computational offloading and task 

execution, with lower CPU consumption than other 

solutions. This makes it suitable for managing 

computational offloading of resources, compressing, or 

delaying limited tasks. 

A practical scenario that highlights the effectiveness of the 

proposed DBN-based offloading mechanism involves a 

mobile user engaged in augmented reality (AR) navigation 

within a smart city. AR applications are latency-sensitive 

and require rapid processing of environmental data, user 

location, and graphical overlays. In such a context, the DBN 

model predicts the response times of available fog and cloud 

nodes based on historical workload patterns and real-time 

system conditions. By selecting the node with the lowest 

predicted latency, the system ensures that AR content is 

rendered and delivered with minimal delay, thereby 

preserving user experience and application responsiveness. 

In cases where no optimal node is identified, the fallback 

mechanism ensures continuity by probabilistically selecting 

a viable server. This dynamic and adaptive offloading 

strategy demonstrates the model’s potential to support real-

time, resource-intensive mobile applications in complex 

urban environments. 
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5- Conclusion  

The principal aim of this research is to enhance 

computational offloading performance in mobile edge 

computing. To achieve this, we have employed a 

computational analysis method based on the deep belief 

network (DBN), incorporating various deep learning 

features to improve the evacuation process. By adding 

specific steps to the computational evacuation process, we 

aim to reduce server consumption, increase process speed, 

and decrease response time to computational requests. 

In this study, the deep belief network algorithm has been 

utilized to further optimize computational offloading, 

making it suitable for various cloud computing applications, 

including mobile edge computing. The proposed algorithm 

focuses on reducing execution time for requests and 

increasing the number of successful offloads within the 

mobile edge computing system. By combining different 

distribution functions and the core features of the DBN 

algorithm, our method seeks to enhance efficiency and the 

volume of computational offloading. 

Our approach to computational offloading on the server side 

is designed to provide a solution with low response time, 

ultimately reducing time complexity and energy 

consumption. It is crucial to employ the appropriate method 

to perform this process efficiently. Incorrect algorithms for 

computational offloading in cloud computing can lead to 

increased energy consumption and decreased successful 

offloads. Timely offloading reduces server-side energy 

consumption and increases efficiency, highlighting the 

importance of an accurate response time prediction solution 

to improve computational offloading performance in 

mobile edge computing. 

A detailed examination of our results indicates that the 

proposed algorithm effectively improves computational 

offloading in mobile edge computing. This algorithm 

requires less time to execute offloading processes and 

respond to requests from mobile nodes. The number of 

requests handled by the servers does not increase response 

time, thereby reducing the duration of computational 

offloading. Compared to Delay Tolerant Offloading (DTO), 

Best Choice Problem (BCP), Cost-based Optimal Task 

(COT), and p-model algorithms, our method demonstrates 

shorter average processing times for computational 

offloading and request responses, achieving optimal results 

for the evaluated dataset. The proposed method outperforms 

other methods in terms of time complexity, energy 

consumption, processing time, CPU usage, average offload 

time, and the number of successful offloads. 

While the proposed algorithm sometimes exhibits longer 

processing times for specific requests, overall performance 

in processing time, resource utilization, average server 

usage, successful offloads, and computational offload time 

is superior in improving computational offloading in mobile 

edge computing. By balancing accuracy and speed, our 

method effectively reduces response time and increases the 

number of successful offloads. 

Future research should evaluate the proposed method across 

various cloud computing systems, applications, and datasets 

to fully explore its efficiency and applicability. 

Additionally, further studies can investigate other neural 

network algorithms, such as long short-term memory and 

convolutional neural networks, to enhance offloading 

performance in mobile edge computing. Meta-heuristic 

algorithms may also be considered to address the NP-hard 

nature of computational offloading problems, aiming to 

reduce complexity and increase successful offloads. 

Finally, developing solutions that require minimal 

processing and computing resources, while considering 

available resource consumption, will lead to more efficient 

computational offloading and increased successful offloads. 
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Abstract 
This paper proposes a power allocation method based on particle swarm optimization (PSO) to enhance spectrum sensing 

performance in downlink Non Orthogonal Multiple Access (NOMA) systems employing high-order Quadrature Amplitude 

modulation (QAM) modulation for beyond 5G networks. By intelligently adjusting user power levels, the proposed approach 

significantly improves detection reliability while maintaining stringent false alarm constraints, even under challenging low-

SNR conditions. The goal is to enhance spectrum sensing performance by maximizing the probability of detection (Pd) while 

maintaining a constrained probability of false alarm (Pf). Cyclostationary Feature Detection (CFD) and Matched Filter 

Detection (MFD) techniques are applied to evaluate detection performance under varying Signal to noise ratio (SNR) 

conditions. Simulation results demonstrate that the optimized framework not only strengthens detection performance 

particularly for high order QAM but also enhances overall system responsiveness.  Also CFD surpasses MFD in higher SNR 

scenarios due to its ability to exploit cyclic features of modulated signals, which are preserved even in moderately noisy 

environments. The integration of PSO further enhances system performance, offering a practical and scalable solution for 

next-generation Internet of Things (IoT)-enabled spectrum sharing environments. 

 

 

 

Keywords: Non Orthogonal Multiple Access (NOMA); Matched Filter Detection (MFD); CFD, PSO; Cognitive Radio 

Networks (CRN); Next Generation Networks (NGN).

1- Introduction 

The increase in the number of connected devices and the 

rapid expansion of wireless services are creating an 

unprecedented need for spectral resources, pushing 

networks toward the capabilities envisioned for beyond 

5G and 6G systems [1]. Because cognitive radio (CR) 

technology allows for dynamic spectrum access and 

opportunistic usage of unused frequency bands, it has 

become a key paradigm to solve spectrum shortages [2]. 

NOMA has simultaneously become well-known as a 

crucial method for enhancing spectral efficiency and 

facilitating huge connections [3-4]. CR employs three 

primary sensing methods to detect available spectrum: 

Energy Detection (ED), Matched Filter Detection (MFD), 

and Cyclostationary Feature Detection (CFD). It has been 

found in recent surveys that over 75% of spectrum is 

wasteful [4]. Therefore, it is crucial to make use of 

unutilized spectrum. Primary users (PUs) possessing 

license do not always use the allocated spectrum, causing 

spectrum to be wasted. Assigning spectrum to unlicensed 

users, frequently referred to as secondary users or SU, is 

one method of increasing spectrum utilization when PUs 

are discovered to be inactive [5]. Simultaneously, the 

spectrum ought to be redistributed to the PUs whenever 

they choose to utilize it, without affecting the SU’s 

performance [6]. This implies that SUs should use the 

spectrum whether or not PUs are present. There is great 

potential for attaining high data rates and effective 

spectrum usage when CR and NOMA are combined, 

especially when using high order modulation techniques 

like 64-QAM and 256-QAM [7-8]. These benefits, 

however, come at the expense of more complicated 

spectrum sensing and a greater susceptibility to fading and 

noise, particularly in the low signal-to-noise ratio (SNR) 

conditions typical of CR situations [9]. For secondary 

users to operate dependably in shared spectrum scenarios 

and to prevent detrimental interference with primary 

users, accurate spectrum sensing is necessary [10]. This 

study addresses the central question of whether an 

intelligent power allocation strategy can enhance 

spectrum sensing performance in CR-enabled NOMA 
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systems while maintaining strict constraints on false alarm 

rates. We hypothesize that a Particle Swarm Optimization 

(PSO)-based approach can dynamically allocate user 

power in a manner that maximizes detection probability, 

reduces sensing time, and maintains efficient spectrum 

utilization even under challenging conditions. 

Conventional sensing techniques, including CFD and 

MFD, often exhibit degraded performance in low SNR 

conditions, particularly when dealing with high-order 

modulations [11-12]. Moreover, many existing studies 

focus solely on detection algorithms without considering 

adaptive resource allocation as part of the sensing 

framework. Our work bridges this gap by integrating 

PSO-based power optimization into the CR-NOMA 

sensing process, offering a holistic solution that jointly 

considers sensing accuracy and power efficiency. This 

represents a substantial contribution toward enabling 

practical, robust CR-NOMA implementations. The 

motivation for this research lies in the growing demand 

for agile and energy-efficient spectrum sharing techniques 

capable of supporting high-throughput applications, 

Internet of Things (IoT) deployments, and massive 

machine-type communications. By optimizing power 

allocation, we aim to achieve reliable detection 

performance without excessive sensing overhead, paving 

the way for practical deployment of cognitive radio 

systems in next-generation networks. Motivated by the 

need for improved detection in noisy NOMA-QAM 

environments, this work proposes a PSO-based power 

allocation framework to enhance spectrum sensing 

performance. Key contributions include: 

 

(i) Development of a PSO-optimized power allocation 

scheme for NOMA systems with high-order QAM to 

boost detection accuracy. 

(ii) Comparative analysis of CFD and MFD for QAM-64 

and QAM-256 modulation schemes. 

(iii) Simulation results showing up to 47.91% 

improvement in detection probability (Pd) over 

conventional MFD, validating the approach in challenging 

noise conditions. 

This is how the rest of the paper is structured. Relevant 

literature related to NOMA, QAM, MFD, CFD and PSO 

is given in Section 2. The system model and the suggested 

PSO-based optimization methodology are covered in 

depth in Section 3. Simulation data, performance 

comparisons, and information on the efficacy of the 

suggested strategy are presented in Section 4. The paper's 

conclusion and some future study directions are covered 

in Section 5 and 6. 

2-  Literature Review 

Lately, a number of research on spectrum 

sensing techniques using NOMA have 
demonstrated potential in fulfilling the spectrum needs of 

several 5G applications. 5G mobile communications are 

about to become worldwide. For an OFDM system, cyclic 

prefix detection was proposed by Arun et al. [13]. The 

recommended method's demand for previous knowledge 

from the principal user is one of its key drawbacks. The 

energy detection method of SS for OFDM system was 

implemented by the authors [14]. The simulation results 

show that while OFDM without CP performs better 

towards Pf, OFDM system consisting of CP shows 

improved throughput performance. Recent studies further 

extended the applicability of NOMA-based cognitive 

systems [21-22]. Recent advancements in spectrum 

sharing and NOMA integration have focused on 

intelligent resource allocation and IRS-assisted systems to 

enhance performance in Beyond 5G networks [25-26]. 

Additionally, Bala Kumar and Nanda Kumar [28] 

explored block chain-enabled cooperative spectrum 

sensing in MIMO-NOMA CRNs for improved security 

and sensing accuracy. For instance, Salameh et al. [29] 

feature-based spectrum sensing to adaptively detect 

primary user signals in fading channels without requiring 

a fixed detection threshold while Zhai et al. [30] proposed 

a joint optimization scheme combining active IRS and 

multicluster NOMA to improve spectral efficiency. These 

works underscore a growing trend toward intelligent, 

adaptive spectrum management strategies. However, most 

of these approaches either focus on physical-layer 

improvements or overlook sensing complexity under 

high-order modulation and low-SNR conditions. In 

contrast, this study addresses the need for efficient 

spectrum sensing by integrating PSO-based power 

allocation with advanced detection techniques in high-

QAM NOMA-CR systems. Detailed literature specifically 

for NOMA-QAM systems is given in Table 1. 
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Table 1 :- Literature Review relevant to proposed Work 

S.No Reference Year Aim Findings 

1 [15] 2010 Implement and examine a MIMO-OFDM system 
Implementation and analysis done 

using MATLAB simulations 

3 [4] 2019 Enhance sensor performance at low SNR 
3 dB gain with optimized NOMA 

over O-NOMA 

4 [1] 2019 
Explore advanced spectral efficiency techniques in CRNs 

using NOMA and 5G signals. 

NOMA-CRN outperforms 

conventional CR in spectrum 
efficiency 

5 [3] 2020 
To Integrate NOMA into CR networks to enhance spectrum 

efficiency and accommodate large number of users 

High SE and large user support 

shown in CR scenarios 

6 [22] 2021 Use NOMA to efficiently utilize the spectrum 
Allows SU to use several PU 

types with and without 

interference 

7 [24] 2021 
To Assess the effectiveness of NOMA in uplink 

communications using fixed power coefficients. 

Weak user power boost improves 

performance, especially at low 
SNRs 

8 [27] 2021 Apply Swarm Intelligence to address future network issues 
SI types classified; challenges and 

research opportunities discussed 

9 [26] 2022 Detailed review of 5G waveforms using sensing methods 
Cyclostationary methods show 2 

dB advantage over traditional 

techniques 

10 [28] 2024 

Introduce block chain-enabled cooperative 

spectrum sensing for 5G/B5G CR using 
massive MIMO-NOMA 

 

Demonstrated enhanced security 
and reliability in spectrum sensing 

using decentralized block chain 

mechanisms in MIMO-NOMA 
CRNs. 

11 [29] 2025 
Machine learning-driven, feature-based spectrum sensing 

approach to improve NOMA signal detection in dynamic IoT 

networks operating under fading channels. 

Method Employs feature-based 

spectrum sensing to adaptively 
detect primary user signals in 

fading channels without requiring 

a fixed detection threshold. 

2-1- Research Gap and Motivation 

Despite the extensive efforts to enhance spectrum 

efficiency using CR and NOMA techniques, several 

challenges remain unaddressed. Most of the prior works 

focus on static or suboptimal power allocation strategies, 

often overlooking the impact of dynamic power tuning 

under high-order modulation schemes. Furthermore, few 

studies have explored the integration of advanced 

optimization algorithms such as swarm intelligence for 

real-time adaptation in CR-NOMA environments under 

low-SNR conditions. Additionally, limited work has been 

done to jointly optimize sensing accuracy and power 

distribution while accounting for false alarm constraints in 

high-QAM signal environments. As a result, a critical gap 

persists in developing unified frameworks that can 

adaptively optimize both detection performance and 

spectral efficiency in practical CR scenarios. Motivated 

by this gap, the present study proposes a novel power 

allocation framework based on Particle Swarm 

Optimization (PSO), tailored for CR-enabled NOMA 

systems operating under high-order QAM. The approach 

aims to achieve enhanced sensing accuracy, reduced false 

alarm rates, and optimized throughput, all while 

maintaining practical feasibility for next-generation 

wireless systems. 

3- Proposed System Model 

This work investigates a downlink NOMA-based 

communication system utilizing QAM modulation for 

Beyond 5G scenarios. Multiple users are multiplexed in 

the power domain and served concurrently over a shared 

channel. Power levels for each user are dynamically 
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allocated using Particle Swarm Optimization (PSO) to 

enhance overall detection performance while maintaining 

user fairness. At the receiver, spectrum sensing is carried 

out using both CFD and MFD, with performance 

evaluated across different SNR values for QAM-64 and 

QAM-256 schemes. The PSO algorithm optimizes power 

allocation by maximizing the Pd under a constraint on the 

Pf ≤ 0.5. These methods help the CR identify when the 

spectrum is idle based on two hypotheses: H1(primary 

user presence) and H0(absence of a primary user). 
 
 
 

 
Table 2.Comparison between traditional and proposed sensing technique 

 

{
𝐻0                          ∶ Xj(t) = Nj(t)

H1: Xj(t) = hjS(t) + Nj(t),   j =  1, … … … . Nu
}  (1) 

The fitness function is defined as:  

 F(P) =  𝑃𝑑(P) − λ. max (0, 𝑃𝑓(P) − 0.5)              (2) 

where P  is the power allocation vector, lambda  is a 

penalty factor, and  Pd(P) and Pf(P) are computed based on 

the NOMA-QAM system model. Although PSO is a 

widely established optimization technique, its 

characteristics make it particularly suitable for power 

allocation in dynamic CR-NOMA environments. PSO 

efficiently handles multi-objective, non-convex 

optimization problems without requiring gradient 

information, which is especially important under real-

time, non-linear, and noisy conditions typical of cognitive 

radio systems. Moreover, PSO’s low computational cost 

and adaptability enable quick convergence in 

environments where SNR and user demands fluctuate. 

This makes PSO a practical and effective choice for 

simultaneously optimizing detection probability and 

power distribution in high-QAM scenarios. The novelty 

of this work lies in embedding PSO within a joint 

spectrum sensing and power allocation framework, where 

the optimization process is directly influenced by 

detection metrics (Pd and Pf). This unique application is 

further distinguished by its evaluation under high-QAM 

and CFD/MFD trade-offs. Comparison of proposed model 

with benchmarking techniques is given in Table 2.  

 

 

3-1- Matched Filter Detection 

The MFD technique evaluates whether primary users are 

present by comparing the detected signal with a reference 

signal. The next step involves comparing the output with 

a dynamic threshold. It is extremely effective in low SNR 

since it optimizes SNR in presence of AWGN. The 

formula for the test statistic is TMF = ∑y (n)*x (n). The 

PU signal in this case is represented by (𝑥), the SU signal 

by (𝑛), and the test parameter for MFD is TMF. It then 

compares a threshold with the test statistics (TMF) to 

ascertain availability of spectrum. The signal received 

from Secondary and Primary user are roughly modeled as 

random Gaussian variables as depicted in fig. (1). 

Figure 1.  Block diagram for NOMA MFD 

S. No. Spectrum Sensing 

Technique 

Remarks 

1 Conventional Energy 

Detection 

Simple to implement with low computational complexity. 

Poor performance at low SNR (Pd = 0 at SNR < -12 dB). 

Susceptible to interference be- tween PUs and SUs. 

2 Conventional CFD  Robust detection at low SNR (Requires prior knowledge of signal periodicity). 

Moderate computational complexity due to autocorrelation. 

3 Conventional MFD Effective at low SNR (Pd = 0.19 at SNR = 4 dB for QAM-256). 

Requires prior knowledge of PU signal. 

SUs can only use spectrum in absence of PUs. 

4 Proposed Optimized MFD 

& CFD 

 

 

High Pd (0.83 at Pf = 0.5 for QAM-256, 47.91% improvement over MFD). 

Robust at low SNR (Pd = 0.79 at SNR = -5 dB).  

Increased computational complexity due to PSO optimization. 
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3-2- Cyclostationary Feature Detection 

CFD is amongst the most significant technique for 

advanced as it is able to identify the spectrum at low SNR 

without the impact of noise. It uses signal's periodicity 

features as it calculates mean and autocorrelation of the 

signal. The spectrum correlation density functions and 

cyclic autocorrelation are useful in order to estimate the 

CS signals. The initial stage in CS is to use a number of 

procedures, including filtering, encoding, and sampling, 

to convert the signal into second-order CS. 

   {y(+)} =  {y (t + to)}                            (3) 
    The (𝑟) is represented as cyclic auto-correlation 

function at: 

    βγ =  {M/To}                                         (4) 

 

 

 
Figure 2.  Block diagram for NOMA CFD 

 

In a NOMA system, each subcarrier's power spectrum 

density (PSD) can be characterized. For n-th subcarrier, 

PSD can be represented as: 

𝜑𝑛(𝑓) = 𝑃𝑛𝑇𝑠 (
𝑆𝑖𝑛𝜋𝑓𝑇𝑠

𝜋𝑓𝑇𝑠
)

2

                         (5)                                                         

where, Ts stands for the symbol duration, φ is the PSD of 

the next subcarrier, and Pn is transmit power that is 

released by preceding subcarrier. A possible technique to 

represent CFD using NOMA is as 

 𝜑𝑛(𝑓) = |𝐻𝑛(𝑓)|2                                (6)  

The prototype filter's frequency spectrum with coefficient 

h[n] and n = 0, 1... W-1 is represented as Hn(f) [6]. An 

example of a frequency response's source is:  

|Hn(f)|=h [
W

2
] +2 ∑ h [(

W

2
)  1] cos(2∏r)  

W

2
-1

i=1

      (7) 

 The following formula determines the phase angle: 

Ph(u) = [sou, s1u, s2u … …  sl − 1u]  (8)                                                                                                                                                   

for u=1, 2...U 

sj(u) = exp (jɵ0
(𝑢)

)                                                 (9) 

j=0, 1, L-1, and where jɵ0
(𝑢)

  denotes random phase angle. 

So the representation of NOMA symbol can be shown as:  

𝑌𝑘 = [𝑌𝑘,0, 𝑌𝑘,1 … … … … … … … … 𝑌𝑘,𝑙−1] (10)                                                                                      

 The phase angle is applied to the NOMA symbols as 

follows: 

𝑌𝑘
(𝑣) = 𝑝(𝑢)  ∗ 𝑌𝑘                                         (11) 

yu(t)= ∑ ∑ X
k

'
,I

(Umin)
h(t-

K'T

2

k-1

K'=0

L-1
I=0 ))e

j2∏It

T ejɵK'I+ ∑ dk,I
(u)

h(t-L-1
I=0

KT

2
))e

j2∏It

T ejɵK'I                                          (12) 

Lastly, the following represents the received NOMA 

signal: 

Y’(t)=∑ 𝑋
𝑘′,𝑙

(𝑈𝑚𝑖𝑛)
𝑒𝑗ɵ𝑘,𝐼𝐾−1

𝑘=0 ℎ(𝑡 − 𝑘𝑅0)         (13) 

We can infer from Eq. (13) that the NOMA - CR system 

is capacious than traditional OFDM system. The block 

diagram of the recommended technique is displayed in 

Fig. 2. A sequential generation process generates a 

random parallel symbol. IFFT is used to examine the 

signal in the time domain, and once it has been transmitted 

across a Rayleigh channel, SC permits many users to use 

the sub-channel. The receiver uses SIC to decode the time 

domain signal and FFT to translate it to the frequency 

domain. In the end, a threshold is determined and if 

received symbol's energy exceeds the threshold value, 

identification will occur; otherwise, no detection will be 

taken into account. 
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Figure 3.  Flowchart of MFD and CFD Technique using PSO  

 

4- Simulation Parameters and Performance 

Analysis.                    

In an effort to implement the suggested algorithm shown in 

Fig.  3 MATLAB 2022 is used. Table 3. depicts the 

simulation parameters for optimizing and analyzing NOMA 

QAM CFD and MFD using PSO. Simulation results of 

matched filter spectrum sensing method and 

Cyclostationary feature detection based on NOMA are used 

to comprehensively examine the results. This study 

determines the threshold value at the NOMA system's 

receiver end.  

 
               

 

 

 

 

Table 3. Simulation Parameters 

 

 

 

 

 

 

 

 

 

 

 
It is based on the idea that only detection will be presumed 

if the signal received equals or exceeds the threshold value; 

otherwise, no detection will be inferred. When assessing the 

effectiveness of MFD and CFD, a constant threshold value 

is taken into account because a changing threshold can 

deteriorate the efficiency of spectrum sensing methods. To 

Parameters Description Values 

f frequency 16 MHz 

M QAM order 64,256 

BW Bandwidth 30 MHz 

N Number of users 50 

n Population size 100 

SNR Signal to noise ratio -20dBto 5 dB 

k FFT Size 1024 
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investigate the role of thresholds in MFD and CFD 

identification, QAM-64 and QAM-256 transmission 

systems with 64 and 256 sub-carries were used. Table 4 and 

Figure 4 display the Pd for various Pf values. Pf indicates the 

false representation of noise as a desired signal.  SNR = 10 

dB was fixed in the current simulation to analyze the 

effectiveness of MFD & CFD strategy for NOMA. It is seen 

from fig.4 and table 4 that NOMA M-256 Pd is higher than 

M-64. So it is inferred that NOMA-QAM-MFD 256 Pd is    

better than QAM-64 as shown in fig (4).   

Figure 4: Pd Vs Pf for M-QAM MFD 
    

Table 4:  NOMA-QAM MFD Pd vs Pf result 

 
Pf/Pd 

(MFD) 
0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1 

NOMA 

M-256 
0 0 0 0.07 0.14 0.27 0.47 0.76 1 

NOMA 

M-64 
0 0 0 0.05 0.09 0.18 0.33 0.56 1 

 

 

     
Figure.5. Pd Vs Pf for CFD for M-QAM. 

       

Table 5: Pd vs Pf for NOMA-QAM using CFD 

 
Table 5 and Figure 5 shows the Pd vs Pf values for M-QAM 

CFD. A comparative analysis demonstrates the clear 

advantage of the proposed NOMA-CFD approach over 

MFD. At Pf = 0.5 and SNR = 10 dB, CFD with QAM-256 

achieves a Pd of 0.76, outperforming both QAM-64 (Pd = 

0.68) and MFD, with an observed 44.28% improvement in 

detection probability. Across the full range of Pf values, 

CFD consistently maintains higher Pd, indicating superior 

sensing reliability and robustness to false alarms compared 

to conventional techniques. 

 

Figure 6. Plot for MFD Pd against SNR. 

 
Table 6.  Pd against SNR for MFD in NOMA-QAM 

SNR/Pd 

(MFD) 
-

20 
-

16 
-12 -8 -4 0 4 8 12 16 

NOMA 

M-256  
0 0 0 0 0.19 0.965 1 1 1 1 

NOMA 

M-64 
0 0 0.004 0.02 0.14 0.66 1 1 1 1 

 

The Pd is displayed as a function of SNR in Table 6 and 

Fig.6. We do analysis and simulations across a variety of 

SNR values (10 dB to 20 dB) for MFD. For QAM-64 & 

256, 100% Probability of detection (Pd) is achieved at 4 dB 

and 6 dB, respectively. Therefore, QAM-Pd can be 

considered better than QAM-256. For instance, at SNR = –

10 dB, MFD yields a Pd of 0.56 (QAM-256), while CFD 

fails to detect (Pd ≈ 0). However, at SNR = 4 dB, CFD 

rapidly improves to Pd = 1.0, outperforming MFD’s Pd of 

Pf /Pd 

(CFD) 

0.01  0.11 0.22 0.28 0.33 0.39 0.44 0.50 

NOMA 

QAM-

256 

0.22  0.46 0.59 0.61 0.66 0.69 0.73 0.76 

NOMA 

QAM-

64 

0.12  0.32 0.45 0.51 0.56 0.60 0.65 0.68 
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0.97. This demonstrates CFD’s steeper gain in detection 

performance once the SNR threshold is crossed. 

Table 6 and Figure 6 shows the Pd for various Pf values. 

SNR = 10 dB was fixed in the current simulation to measure 

the effectiveness of the CFD strategy for NOMA. It is seen 

that for NOMA QAM CFD Pd value is 0.76 for Pf of 0.50 

as compared to 0.68 Pd value for NOMA QAM-64. Also  

 
Table7.Pd vs SNR for NOMA-QAM with CFD. 

SNR(dB)/P

d 
-25 -20 -15 -10  -5 0 +5 

NOMA 

QAM-256 
0.1

1 
0.1

6 
0.3

3 
0.5

6 
 0.7

9 
0.9

7 
1 

NOMA 

QAM-64 
0.1

0 
0.1

5 
0.3

0 
0.5

0 
 0.7

4 
0.9

1 
0.9

8 

 
Table 8. BER vs SNR of NOMA-QAM MFD & CFD 

Pf /Pd 0.0

1 
0.0

6 
0.1 0.1

5 
0.2 0.2

5 
0.3 0.4 0.5

0 
Optimiz

ed Pd of 

MFD 

0.3

3 
0.3

7 
0.3

9 
0.4

0 
0.4

2 
0.4

3 
0.4

5 
0.4

7 
0.4

9 

Optimiz

ed Pd of 

CFD 

0.5
1 

0.5
9 

0.6
3 

0.7
0 

0.7
3 

0.7
5 

0.7
9 

0.8
1 

0.8
3 

results improve by 44.28% when compared with MFD 

technique. The figure illustrates that NOMA-QAM-256 Pd 

is better than QAM-64. Also it is clear from results that 

NOMA-CFD outperforms the results of MFD. 

Figure.7. Pd Vs SNR for CFD. 

The table 7 and Fig. 7 depicts results of Pd vs SNR of 

NOMA-QAM CFD. We examine and model Pd throughout 

a spectrum of SNR ranging from -25 to 5dB. From obtained 

results it is evident that at 0 dB and 5dB in the case of QAM-

64 and QAM-256, Pd reaches an ideal value of 100%.Thus, 

it may be said that QAM- 64 Pd is superior to QAM-

256's.The superior low-SNR performance of MFD is due to 

its reliance on known signal templates. In contrast, CFD 

requires stronger signals to detect Cyclostationary features 

but eventually surpasses MFD in higher-SNR regions, 

making it better suited for mid-to-high-SNR cognitive 

environments. 

 

 
Figure 8. BER vs SNR of NOMA-QAM MFD & CFD 

 

As SNR increases, the BER lowers, as Fig. 8 and Table 8 

demonstrate. For M-256, a BER of 0.309 is obtained at 6 

dB using the MFD technique and 0.212 at 12 dB using the 

CFD technique. Matched Filter Detection MFD 

consistently achieves lower BER compared to CFD across 

all SNR levels due to its reliance on known signal patterns. 

CFD shows limited improvement at low SNR but performs 

better as SNR increases beyond 10 dB. Overall, MFD is 

more reliable for low-SNR environments, while CFD 

requires stronger signals to reduce errors. 

Figure 8 reinforces these findings, showing that MFD 

achieves a BER of 0.309 at 6 dB, while CFD only achieves 

0.212 at 12 dB. This indicates that while MFD offers lower 

BER in noisy environments, CFD benefits more from clean 

conditions. As observed in Tables 5 and 7, Pd increases with 

SNR for both MFD and CFD. Notably, MFD achieves a Pd 

of 0.97 at 0 dB for QAM-256, while CFD reaches similar 

performance only at higher SNR levels (>4 dB). This 

indicates that MFD is more suitable for low-SNR 

environments due to its coherent detection mechanism. 
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Figure 9. Optimized Pd using MFD and CFD using PSO 

 
Table 9.  Pf against optimized Pd using PSO for CFD in NOMA-QAM 

BER 

of 

CFD 0.484 0.491 0.493 0.495 0.496 0.312 0.212 
BER 

of 

MFD 0.39 0.37 0.339 0.309 0.272 0.237 0.199 
SNR 0 2 4 6 8 10 12 

 
Table 9 and Fig. 9 shows PSO-optimized Pd vs Pf plot using 

PSO in MFD and CFD technique. Results improved and 

high value of Pd was achieved for lesser Pf values showing 

improved detection performance (Pd of 0.75) at reduced 

false alarm rates (Pf of 0.33). At Pf = 0.3, PSO-optimized 

CFD achieves Pd = 0.79, which translates to a 35% increase 

in successful PU detection compared to MFD. This is 

critical in CR-IoT applications where minimizing missed 

detection reduces interference and improves network 

reliability. CFD surpasses MFD in higher SNR scenarios 

due to its ability to exploit cyclic features of modulated 

signals, which are preserved even in moderately noisy 

environments. The integration of PSO further enhances 

detection performance by adaptively selecting parameters 

that maximize Pd under false alarm constraints. Despite its 

superior performance, CFD exhibits higher computational 

complexity compared to MFD, making it less suitable for 

real-time or resource-constrained IoT nodes. Additionally, 

PSO   requires tuning and incurs optimization overhead, 

which may limit deployment in ultra-low-latency scenarios. 

5- Conclusion 

 This study introduces a PSO-optimized power allocation 

framework for NOMA-QAM systems in cognitive radio 

environments, targeting enhanced detection using CFD and 

MFD techniques. The proposed model significantly 

improves detection performance, particularly for high-order 

modulation schemes like QAM-256, achieving up to 

47.91% gain in Pd over traditional MFD approaches. CFD 

demonstrates superior robustness at low SNR and reduced 

sensing time when optimized via PSO. These improvements 

contribute to more reliable and energy-efficient spectrum 

access, addressing the demands of IoT-enabled Beyond 5G 

networks. Future work will explore integration with IRS-

assisted channels and deep learning-based sensing 

optimization for dynamic environments. 

6- Future Research Directions 

Future research can extend the proposed PSO-based power 

allocation framework to support advanced modulation 

schemes like OFDM and OTFS. Incorporating adaptive 

sensing techniques, such as machine learning-based 

threshold selection or reinforcement learning, may further 

enhance detection in dynamic environments. Additionally, 

integrating Intelligent Reflecting Surfaces (IRS) to improve 

signal quality and spectral efficiency, especially in 

obstructed scenarios, is a promising direction. Finally, 

validating the system's scalability in large-scale IoT 

deployments and testing it on real-world platforms would 

strengthen its practical relevance. 
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