

Research Institute for Information and Communication Technology

Iranian Association of Information and Communication Technology

Affiliated to: Academic Center for Education, Culture and Research (ACECR)

Manager-in-Charge: Dr. Ali Mokhtarani, ACECR, Iran

Editor-in-Chief: Dr. Masoud Shafiee, Amir Kabir University of Technology, Iran

Editorial Board

Dr. Abdolali Abdipour, Professor, Amirkabir University of Technology, Iran

Dr. Ali Akbar Jalali, Professor, Iran University of Science and Technology, Iran

Dr. Alireza Montazemi, Professor, McMaster University, Canada

Dr. Ali Mohammad-Djafari, Associate Professor, Le Centre National de la Recherche Scientifique (CNRS), France

Dr. Hamid Reza Sadegh Mohammadi, Associate Professor, ACECR, Iran

Dr. Mahmoud Moghavvemi, Professor, University of Malaya (UM), Malaysia

Dr. Mehrnoush Shamsfard, Associate Professor, Shahid Beheshti University, Iran

Dr. Omid Mahdi Ebadati, Associate Professor, Kharazmi University, Iran

Dr. Rahim Saeidi, Assistant Professor, Aalto University, Finland

Dr. Ramezan Ali Sadeghzadeh, Professor, Khajeh Nasireddin Toosi University of Technology, Iran

Dr. Sha’ban Elahi, Professor, Vali-e-asr University of Rafsanjan, Iran

Dr. Shohreh Kasaei, Professor, Sharif University of Technology, Iran

Dr. Habibollah Asghari, Associate Professor, ACECR, Iran

Dr. Zabih Ghasemlooy, Professor, Northumbria University, UK

Dr. Saeed Ghazi Maghrebi, Associate Professor, ACECR, Iran

Executive Editor: Dr. Fatemeh Kheirkhah

Executive Manager: Mahdokht Ghahari

Print ISSN: 2322-1437

Online ISSN: 2345-2773

Publication License: 91/13216

Editorial Office Address: No.5, Saeedi Alley, Kalej Intersection., Enghelab Ave., Tehran, Iran,

P.O.Box: 13145-799 Tel: (+9821) 88930150 Fax: (+9821) 88930157

E-mail: info@jist.ir , infojist@gmail.com

URL: jist.acecr.org

Indexed by:
- SCOPUS www. Scopus.com

- Islamic World Science Citation Center (ISC) www.isc.gov.ir

- Directory of open Access Journals (DOAJ) www.Doaj.org

- Scientific Information Database (SID) www.sid.ir

- Regional Information Center for Science and Technology (RICeST) www.ricest.ac.ir

- Magiran www.magiran.com

Publisher:
Iranian Academic Center for Education, Culture and Research (ACECR)

This Journal is published under scientific support of

Advanced Information Systems (AIS) Research Group and

Telecommunication Research Group, ICTRC

In the Name of God

Journal of
Information Systems & Telecommunication
Vol. 13, No.3, July-September 2025, Serial Number 51

http://www.isc.gov.ir/

Acknowledgement

JIST Editorial-Board would like to gratefully appreciate the following distinguished referees for spending their

valuable time and expertise in reviewing the manuscripts and their constructive suggestions, which had a great

impact on the enhancement of this issue of the JIST Journal.

(A-Z)

• Alaeiyan, Mohammad Hadi, K.N. Toosi University of Technology, Tehran, Iran

• Azarkasb, Seyed Omid, K.N. Toosi University of Technology, Tehran, Iran

• Alavi, Seyed Enayatollah, Chamran University, Ahvaz, Iran

• Abdulnabi, Saif, University of Kufa, Kufa, Iraq

• Asgari Tabatabaee, Mohammad Javad, University Of Torbat Heydarieh, Razavi Khorasan, Iran

• Borna, Keyvan, Kharazmi University,Tehran, Iran

• Afsharirad, Majid, Kharazmi University,Tehran, Iran

• Baydoun, Kamal, Lebanese University, Lebanon

• Dehghani, Maryam, Malek Ashtar University, Tehran, Iran

• Ebadati, Omid Mahdi, Kharazmi University,Tehran, Iran

• Ebady Manaa, Mahdi, Al-Mustaqbal University,Hill, Iraq

• Farsi, Hassan, University of Birjand, South Khorasan, Iran

• Fazeli Veisari, Elham, Islamic Azad University, Chalus Branch, Iran

• Forouzesh, Moslem, Trbiat Modares University, Tehran, Iran

• Ghasemzadeh, Mohammad, Yazd University, Yazd, Iran

• Hejazinia, Roya, Allameh Tabataba'i University, Tehran, Iran

• Hajizadeh, Ehsan, Amirkabir University, Tehran, Iran

• Kumar Tiwari, Anoop, National Institute of technology, Raipur, India

• Kheirkhah, Fatemeh, ACECR, Tehran, Iran

• Kazerouni, Morteza, Malek-Ashtar University of Technology, Tehran, Iran

• Kolahkaj, Maral, Islamic Azad University, Karaj Branch, Iran

• Lak, Behzad, Amin Police Academy, Tehran, Iran

• Mirroshandel, Seyed Abolghasem, University of Guilan, Rasht, Iran

• Molazadeh,Amir Hosein, K. N. Toosi University of Technology, Tehran, Iran

• Monemizadeh, Mostafa, University of Neyshabour, Nishapur, Iran

• Maghdid, Halgurd Sarhang, Koya University, Kurdistan Region, Iraq

• Radfar, Mohammad Hadi, Shahid Beheshti University of Medical Sciences, Tehran, Iran

• Salunke, Bharti, Poornima University, Jaipur, Rajasthan, India

• Taghavi Afshord, Saeid, Azad Universiti, Azarbaijan, Shabestar, Iran

• Taghavifard, Mohammad Taghi, Allameh Tabataba’i University, Tehran Iran

• Tourani, Mahdi, University of Birjand, South Khorasan, Iran

• Tanhaei, Mohammad, Ilam University, Ilam , Iran

• Uddin Talukdar, Muhammad Borhan, Daffodil International University, Bangladesh

• Valizadeh, Majid, Ilam University, Ilam, Iran

• Yaghoobi, Kaebeh, Ale Taha Institute of Higher Education, Tehran, Iran

• Zahedi, Mohammad Hadi, K. N. Toosi University of Technology, Tehran, Iran

Table of Contents

• Predicting Primary Biliary Cholangitis Stages Using Machine Learning with Automated

Hyperparameter Optimization and Recursive Feature Elimination .. 165

Arman Rezasoltani, Amir Mohammad Khani, Ali Husseinzadeh kashan, Shahram Agah and

Fatemeh Agad

• Resolving Class Imbalance in Medical Classification: Technique Comparison and

Performance Evaluation .. 177

 Abdallah Maiti, Mohamed Hanini and Abdallah Abarda

• Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion Detection System

Utilizing LSTM, GRU, and Attention Mechanisms with Optimized Hyperparameter Tuning.189

Heshmat Asadi, Mahmood Alborzi and Hesam Zandhesami

• Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement

Approaches ... 210

 Ali M Baydoun and Ahmed S Zekri

• Simulation Based Economical Approach for Detecting Heart Disease Earlier from ECG

Data .. 232

 Obaidur Rahaman, Mohammod Abul Kashem, Sovon Chakraborty and Shakib Mahmud Dipto

• Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network

Approach .. 243

Kaebeh Yaeghoobi and Mahsa Bakhshandeh

• PSO-Optimized Power Allocation in NOMA-QAM for Beyond 5G: A CFD and MFD

Analysis .. 256

Jaspreet Kaur

 Shahram Agah

Agah.sh@iums.ac.ir

Journal of Information Systems and Telecommunication
Vol.13, No.3, July-September 2025, 165-176

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

Predicting Primary Biliary Cholangitis Stages Using Machine
Learning with Automated Hyperparameter Optimization and
Recursive Feature Elimination

Arman Rezasoltani1, Amir Mohammad Khani1, Ali Husseinzadeh Kashan2, Shahram Agah3*, Fatemeh Agah4

1.Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran.

2.Department of Industrial Engineering, Faculty of Industrial and Systems Engineering, Tarbiat Modares University,

Tehran, Iran.
3.Department of Gastroenterology and Hepatolog, Colorectal Research Center, Iran University of Medical Sciences,

Tehran, Iran.
4.The University of Adelaide, Discipline of Medicine, Adelaide, South Australia, Australia. Fatemeh.

Received: 30 Jan 2025/ Revised: 04 Sep 2025/ Accepted: 05 Oct 2025

Abstract
This research used modern machine learning ways to predict the stages of primary biliary cholangitis using data from the

Mayo Clinic trial. The research aims to obtain high prediction accuracy while representing balanced evaluation metrics.

Important techniques include automated hyperparameters optimization with Optuna and Recursive Feature Elimination to

improve model performance. Pre-processing included handling missing values, encoding of categorical features, and

addressing class imbalances using SMOTE. A total of twelve machine learning algorithms are evaluated with ensemble-based

models such as CatBoost and Extra Trees producing much better results. Evaluation metrics take into account all model

predictions, including accuracy, precision, recall, F1 score, and ROC-AUC for performing balanced and interpretative

evaluations of performances critical for imbalanced datasets. This endeavor includes clinical and laboratory information

illustrating the prospect of machine learning in advancing therapeutic diagnosis, emphasizing the rigor and robustness in

evaluation laid groundwork for future research to encompass even more generalizable and robust diagnostic tools.

Keywords: Primary Biliary Cholangitis; Machine Learning; Recursive Feature Elimination; Optuna, Imbalanced Data.

1- Introduction

Primary Biliary Cholangitis (PBC), formerly known as

primary biliary cirrhosis, is a chronic autoimmune liver

disease. It is characterized by the gradual and progressive

destruction of the liver's small bile ducts, leading to the

accumulation of bile and other toxins within the liver, a

condition known as cholestasis. Over time, this persistent

damage can result in scarring, fibrosis, and ultimately

cirrhosis. Cirrhosis is a late-stage liver disease that occurs

when scar tissue replaces healthy liver tissue. The

underlying pathologies that may cause this disease include

viral hepatitis, chronic alcoholism, and NAFLD (non-

alcoholic fatty liver disease) (Konerman et al., 2019).

Chronic alcohol consumption leads to advanced forms of

liver damage, which eventually result in cirrhosis and

subsequent liver failure (Topcu et al., 2024). In the primary

stages, the disease is asymptomatic, and awareness is

typically raised only in the advanced stages. Cirrhosis may

lead to liver failure, liver cancer, and, ultimately, death

(Tapper & Parikh, 2023). There is a strong need for the most

accurate and least invasive methods to predict the

progression of cirrhosis, given the critical importance of

diagnosing and managing such diseases optimally.

Although traditional methods, such as liver biopsy, provide

accurate results, these procedures are invasive and may lead

to complications (Wei et al., 2018). Chronic alcohol

consumption is one of the main causes of this disease and,

in the long term, can lead to advanced stages such as

cirrhosis, ultimately culminating in complete liver failure

Rezasoltani, Khani, Husseinzadeh Kashan, Agah & Agah, Predicting Primary Biliary Cholangitis Stages Using Machine Learning with….

166

(Topcu et al., 2024). Previous studies have established that

cirrhosis of the liver progresses through four stages. The

first stage, Steatosis, is characterized by inflammation of

either the liver or the bile ducts, and immediate treatment at

this juncture can control the disease. The second stage,

Fibrosis, involves the development of scar tissue that cuts

off normal blood flow to the liver and impairs its function;

however, medical treatment can halt the progression of the

disease. In the third stage, Cirrhosis, healthy liver tissue is

replaced by scar tissue, and swelling may occur in the

spleen. Finally, the fourth stage, Liver Failure, is

characterized by complete liver failure. At this stage,

patients transition from normal health to a comatose state

and require emergency treatment by medical professionals

(Wei et al., 2018).

The subtlety of its early symptoms permits the diagnosis

of cirrhosis only at advanced stages; if mismanaged, the

disease can inevitably culminate in liver failure or cancer.

Recent studies have highlighted the significance of early

detection and management. An SEAL screening algorithm

study demonstrated a remarkable 59% higher rate of early

cirrhosis detection compared to routine care, thereby

advocating for the role of structured programs in identifying

asymptomatic cases (Labenz et al., 2022). In addition, top-

down proteomics identified the proteoform signatures in

plasma that correlate with the progression of cirrhosis,

forming the template for a biomarker-driven risk

stratification (Forte et al., 2024). Another paper emphasized

the role of miRNA-gene regulatory axes in monitoring and

diagnosing cirrhosis and hepatocellular carcinoma and

proposed new diagnostic targets (Premnath & Shanthi,

2024). Asymptomatic superior mesenteric vein thrombosis

(SMVT), however, has not been proven to significantly

impact cirrhosis outcomes, unlike the risks posed by portal

thrombosis (PT) (Wang et al., 2022). These collective

findings emphasize the crucial role of early, target-oriented

interventions and the potentially significant role of

additional biomarkers in preventing the progression of

asymptomatic cirrhosis. Prior studies discussed the notable

success of various machine-learning-based approaches like

Random Forest, Gradient Boosting, Ensemble Learning,

and others in increasing the accuracy with which the stages

of disease progression are predicted. For example, the

LivMarX model achieved an accuracy of up to 86% for

predicting different stages of cirrhosis based on a

combination of biomarkers and optimization techniques

(Kamath et al., 2024). Other models suggested that

longitudinal models outperformed other cross-sectional

models in accurately detecting disease progression (Hanif

et al., 2022).

Millions live with cirrhosis worldwide, and it remains

a leading cause of death every year. The effects on patients"

quality of life following late diagnosis of cirrhosis can be

dire and place a huge burden on the health sector.

Furthermore, improper management of the disease may lead

to serious complications, such as advanced liver failure,

liver cancer, and other comorbidities (Hanif et al., 2022).

New artificial intelligence and machine-aided processes

enable much finer accuracy in determining the stage of the

disease and are immensely beneficial in reducing

complications, promoting early diagnosis, and improving

patient management. The ability of this technology to offer

a serious advancement in the management of cirrhosis is

most felt in areas where modern imaging methods are

seldom available (Topcu et al., 2024). This research aims to

develop an efficient and accurate model for predicting early

liver cirrhosis by employing advanced machine learning

algorithms. It seeks to improve prediction accuracy by

combining intelligent feature selection and model

optimization approaches to create models that are not only

highly efficient but also practical for implementation in real

clinical settings. The major aim of the study is to devise a

model for prediction of stage of PBC that is accurate,

generalizable, and efficient using advanced techniques of

machine learning. Some cutting-edge work presented

therein involves, but is not restricted to, tuning of model

hyperparameters via advanced optimization methods of

Optuna, feature selection algorithms, such as RFECV to

identify crucial disease progress variables. A further

significant aspect in the study includes the use of rich and

varied data composed of clinical and laboratory data drawn

from credible sources. The evaluation of model

performance metrics such as accuracy, precision, recall, F1-

score, and AUC is performed in a very detailed way so as

to allow transparency in the evaluation of the quality of

predictions. This paper is organized as follows: the first part

introduces the research and its various objectives; the

second part broaches the research background and pinpoints

the weaknesses of previous studies; the third part describes

the research methodology regarding the dataset,

preprocessing techniques and machine learning algorithms

used; the penultimate section conveys all the experimental

results and critically evaluates the performance of various

models; and finally, the last part deliberates and draws its

conclusions in respect of the findings obtained, drawing

comparisons with previous studies, scrutinizing the

implications of the results, providing an overview of the

contributions made, and suggesting future areas of research.

In this study, such a constructive approach enhances the

efforts toward improving the prediction of cirrhotic liver

disease risk while further enhancing the development of AI

in aiding diagnostic medicine.

2- Theoretical Foundations and Research

Background

In very recent times, prognosis and evaluation of liver

diseases have made remarkable advancements. Cirrhosis

often deteriorates into liver failure, requiring transplants in

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

167

many cases, often due to chronic liver insult. Making an

accurate diagnosis of the stage of liver cirrhosis and

tracking the patients' progress remains among the greatest

challenges of medicine. Addressing these difficulties

straightaway impacts treatment strategies and the potency

of medical involvement. In the past years, machine learning

methods have emerged as a contemporary remedy for

prognosticating the diverse phases of liver cirrhosis. These

algorithms identify clinically pertinent traits that describe

singular patient characteristics through exhaustive data

examination. Table 1 briefly summarizes related research

on predicting the stages of liver cirrhosis and contrasts

assorted methods. This table comprises the titles of the

reports, aims, datasets, machine learning algorithms, and

key outcomes of each analysis. An inspection of this

background reveals that machine learning designs such as

Random Forest, Support Vector Machine, and amalgamated

tactics, exploiting an assortment of datasets and sundry

optimization techniques, have been successfully applied

and have achieved meaningful accuracy in prognosticating

the phases of liver cirrhosis. This data furnishes worthwhile

insights into the strengths and shortcomings of preceding

studies and helps pinpoint existing research gaps.

Table 1. Research background

Conclusion Dataset Model used Goals Article Title Authors

The longitudinal boosted survival tree
model achieved superior concordance

(0/774) and AuROC in prediction
compared to cross-sectional models,

demonstrating higher reliability in long-
term forecasts.

Veterans’
Health

Administrati
on (72,683
individuals)

Cox models
and boosted-
survival-tree

model

Predict cirrhosis
progression in
CHC patients

Machine learning
models to predict

disease
progression

among veterans
with hepatitis C

virus

Konerman
et al.

(2019)

The Random Forest model achieved high
accuracy (~98%), demonstrating superior
performance in early cirrhosis prediction.
Precision, recall, and F1-score were not

explicitly reported.

Open-access
liver

cirrhosis
dataset

Random
Forest,

Logistic
Regression,

AdaBoost, k-
Nearest

Neighbors

Early detection
of liver cirrhosis

Machine
Learning-Based

Analysis and
Prediction of

Liver Cirrhosis

Topcu et
al. (2024)

The ensemble models improved
prediction accuracy and generalizability,
making significant advances in reliability
and forecasting. While specific metrics
such as accuracy, precision, and recall

were not directly reported, overall
improvements were observed.

Multisource
liver disease

datasets

Ensemble
model

integrating
Gradient
Boosting,
Random

Forest, and
Decision

Trees

Enhance
prediction of

cirrhosis
prognosis

Improving
Prognostic

Prediction of
Cirrhosis Using
an Optimized

Ensemble
Machine Learning

Approach

Bhardwaj
et al.

(2024)

Random Forest was among the models
with the highest accuracy (~97%),

achieved through feature engineering and
cross-validation. Precision, recall, and
F1-score for the Random Forest model

are not specified.

Dataset with
418 records

and 20
attributes

Support
Vector

Machine,
Random
Forest,

Gradient
Boosting

Determine
stages of liver

cirrhosis

Stage Prediction
of Liver Cirrhosis

Disease using
Machine Learning

K et al.
(2024)

LivMarX achieved over 86% accuracy
after optimization, with an AUC of 0/95.

The model demonstrated high cost-
effectiveness for accurately staging
cirrhosis in the absence of imaging.

Precision, recall, and F1-score were not
reported.

Comprehens
ive dataset

of 424
patients

Random
Forest

(optimized
with Genetic
Algorithm

and
GridSearchC

V)

Stage liver
cirrhosis using

biomarkers

LivMarX: An
Optimized Low-
Cost Predictive
Model Using

Biomarkers for
Interpretable

Liver Cirrhosis
Stage

Classification

Kamath et
al. (2024)

The model achieved 93/55% accuracy on
the training data and 78/62% on the test

data, outperforming six comparable
algorithms.

Data from
1,078

patients
referred to
Imam Reza

Hospital

Support
Vector

Machine
(SVM) with

Radial Kernel

Development of
a machine

learning model
for diagnosing

fatty liver using
demographic

information and
hematology

tests

Predicting Liver
Fibrosis Severity
Using Machine

Learning Models

(Elmasine
jad and

Golabpour
, 2024)

The proposed model demonstrated high
accuracy in predicting the stages of

cirrhosis.

Data from
patients

with

Different
machine

Using machine
learning

methods to

Cirrhosis Disease
Prediction Using

Machine Learning

Jamadar et
al. (2023)

Rezasoltani, Khani, Husseinzadeh Kashan, Agah & Agah, Predicting Primary Biliary Cholangitis Stages Using Machine Learning with….

168

physiologic
al

characteristi
cs

associated
with

cirrhosis

learning
algorithms

predict liver
cirrhosis

Random Forest achieved an accuracy of
~97%, demonstrating reliability and

robustness in phase-wise predictions of
liver cirrhosis. Precision, recall, and F1-

score were not reported.

Liver
Cirrhosis

dataset (418
records)

Support
Vector

Machine,
Decision

Tree, Random
Forest

Predict liver
cirrhosis stages

Liver Cirrhosis
Prediction Using

Machine Learning
Approaches

Hanif and
Khan

(2022)

The Artificial Neural Network (ANN)
demonstrated the best performance with
high accuracy, while the RF+MI feature

selection method showed a slight
improvement over the standard Random

Forest (RF) model.

Data from
patients

with liver
cirrhosis

Artificial
Neural

Network,
Random
Forest ,
Logistic

Regression,
Support
Vector

Machine ,
KNN,

Decision Tree
, Naive Bayes

Predicting the
stage of liver
cirrhosis in

patients using
machine
learning

algorithms

Liver Cirrhosis
Stage Prediction
Using Machine

Learning:
Multiclass

Classification

Sidana et
al. (2022)

The studies discussed in Table 1 delineate just some of the

many advances in the use of machine learning algorithms in

predicting the stages of liver cirrhosis. However, one of the

main gaps identified there was the significant delay in

consideration of imbalanced data sets and excessive focus

on a single performance metric, such as accuracy, for model

evaluation. The studies by Bhardwaj et ub. and Sidana et

ub., while dealing with random forest or SVM, do not

appease the challenge of imbalanced dataset(s), and they

wholly rely on a single evaluation criterion, such as

accuracy, thus not completely evaluating models one

through other proper performance criteria such as Precision,

Recall, and F1 Score. Such excessive focus on accuracy

alone results in a very skewed perspective on their

prediction capabilities, since such models often guarantee

high-performance measures yet produce very poor results

on overweighted classes. Another very important limitation

discussed in Table 1 is their use of unoptimized models and

poorly defined feature sets. For example, models like

Random Forests and SVM have been applied, ill as the

studies by Hanif and Khan, and Jamadar et al., did not apply

state-of-the-art optimization techniques that would

potentially improve model performance, structure feature

selections, and reduce the framework of their studies, thus

precluding meaningful generalization and accuracy of their

interpretations. In the contrary, the current paper uses a

rather spirited approach by using advanced machine

learning algorithms guaranteeing accuracy in predictions

and correcting the data imbalance, with the models being

subjected to various acute evaluations by areas such as

accuracy, precision, recall, F1 score, and ROC-AUC, which

is possible to ascertain an appropriate and transparent

evaluation of the models' performances addressing

fundamental gaps in prior research and leading the

investigation towards more reliable and generalized results.

Moreover, a large number of studies will focus only on

one model, with limited analysis of the effects of

combinations of algorithms or full comparisons between the

efficiency of techniques. The novel methodology presented

in this paper serves as an ensemble framework to enrich

predictive technology, apply advanced feature selection

techniques, optimize model computational costs, and

improve the implementation of models openly in the real

world, all of which are overly venturous in previous studies,

such as the LivMarX (Kamath et al., 2024). Finally, this

research makes a significant contribution to advancing

existing methods by focusing on early-stage liver cirrhosis

prediction, presenting a comprehensive optimization

framework, thoroughly analyzing model performance

indicators, and utilizing diverse and extensive datasets.

Through the articulation of emerging and current research

gaps, as well as the modest input of novelties, this will

provide a further route for an exhaustive yet accurate

approach to be developed in this area.

3- Research Method

The goal of this study was to use machine learning

algorithms to predict the stage of primary biliary cholangitis

(PBC) in patients. The main objective is to use the machine

learning model to accurately predict the stage of the disease

using medical and laboratory data. The dataset used in this

study was derived from a clinical investigation of PBC

patients conducted at the Mayo Clinic and supplemented by

a publicly available dataset released on the Kaggle platform,

which included numerous original features. After data

analysis and feature selection, key variables were identified

using recursive feature elimination with cross-validation

(Priyatno Widiyaningtyas, 2024). During the preprocessing

stages, correlation analysis was performed, and the SMOTE

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

169

method was applied to address class imbalance. Additional

steps included handling missing values, and encoding

categorical features (Khan & Hoque, 2020). Twelve

machine learning algorithms were evaluated for modeling

purposes: Decision Tree, Random Forest, Extra Tree,

Gradient Boosting, AdaBoost, XGBoost, LightGBM,

Logistic Regression, Support Vector Machine (SVM), k-

Nearest Neighbors (KNN), Naive Bayes, and CatBoost. The

Optuna optimization framework was used to fine-tune the

hyperparameters of all models in such a way as to provide

the best performance (Jeganathan et al., 2024). The

performance of the models was assessed against four main

metrics: accuracy, precision, recall, and F1-score (Fazel &

Foing, 2024). In addition, the ROC curve and AUC values

are used for more details regarding the model performance.

All other steps of this study were done using the Python

programming language with its corresponding libraries.

3-1- Data Source

The data set used in this study was extracted from the

Cirrhosis Prediction Dataset, which is publicly available on

the Kaggle platform. It includes information of patients

with PBC, collected over ten years in a clinical study carried

out at the Mayo Clinic. In this study, 420 patients diagnosed

with PBC were identified as eligible to participate in a

randomized, controlled trial of the drug D-penicillamine. Of

these, 312 patients obtained consent to participate in the

randomized clinical trial, their records had a minimal loss.

There were also 112 other eligible patients who were not

trial participants, who did allow for basic information and

survival follow-ups to be recorded; 6 out of these 112

patients were lost from follow-up soon after diagnosis, so

data on 106 remained. Thus, the total number of patients

entered in the dataset is 418 (Fedesoriano,2021).

3-2- Dataset Features

The data used in this study include comprehensive

information from patients with PBC. The dataset initially

comprised 20 features, which are presented in Table 2.

Table 2. Variables Description
Feature
Name Description Type Values/Unit

ID Unique identifier for
each patient

Categori
cal Numeric

N_Days

Number of days
between registration

and the earlier of
death, transplantation,
or study analysis time

Numeric Days

Status Status of the patient Categori
cal

C (Censored),
CL (Censored

due to liver
tx), D (Death)

Drug Type of drug
administered

Categori
cal

D-
penicillamine,

Placebo
Age Age of the patient Numeric Days

Sex Gender of the patient Categori
cal

M (Male), F
(Female)

Ascites Presence of ascites
Categori

cal
(Binary)

N (No), Y
(Yes)

Hepatome
galy

Presence of
hepatomegaly

Categori
cal

(Binary)

N (No), Y
(Yes)

Spiders Presence of spiders
Categori

cal
(Binary)

N (No), Y
(Yes)

Edema Presence of edema Categori
cal N, S, Y

Bilirubin Serum bilirubin Numeric mg/dl
Cholester

ol Serum cholesterol Numeric mg/dl

Albumin Serum albumin Numeric gm/dl
Copper Urine copper Numeric µg/day

Alk_Phos Alkaline phosphatase Numeric U/liter

SGOT
SGOT (serum

glutamic-oxaloacetic
transaminase)

Numeric U/ml

Triglyceri
des Serum triglycerides Numeric mg/dl

Platelets Platelet count Numeric per cubic
ml/1000

Prothrom
bin Prothrombin time Numeric Seconds (s)

Stage Histologic stage of the
disease

Categori
cal

(Ordinal)
1, 2, 3, 4

In this study, the target variable was defined as Stage,

representing a disease stage that ranges from 1 to 4. The aim

is to model the Stage variable in relationship to the other

features in the data set. The ID column was ruled out of the

analysis simply because it works as a patient identifier and

provides no substantial contribution to prediction.

3-3- Data Cleaning

The cohort included 424 patients with PBC data collected

as part of a Mayo Clinic clinical trial. Of those, the final

analysis was based on 312 samples. In the first step of

cleaning the data, the ID column, which was judged not

relevant to the target variable, was deleted as it would not

contribute to prediction. In addition, missing values in

features with limited incompleteness were substituted with

the mean value for less impact on the modeling. Out of the

424 data points, 112 pertained to patients who did not

participate in the randomized tests and had incomplete

information. Out of these, six samples were excluded

shortly after data collection due to critical missing

information. According to strict sampling standards, the

information from the remaining 112 non-participating

patients had to be rejected because of poor quality. This left

312 samples that were complete and of good quality for

analysis. Data cleaning allowed such preparation,

producing better quality data for the predictions.

3-4- Correlation Analysis

Correlation analysis was conducted to identify linear

relationships between variables in the dataset. The primary

Rezasoltani, Khani, Husseinzadeh Kashan, Agah & Agah, Predicting Primary Biliary Cholangitis Stages Using Machine Learning with….

170

purpose of this analysis was to determine variables with a

significant impact on the target variable and to eliminate

those with redundant or weak associations with other

variables. In this study, a correlation matrix, visualized

using a heatmap, was employed to illustrate the

relationships between variables.

Figure 1. Correlation Heatmap

From the correlation analysis, no variables exhibited high

correlation with other variables (greater than 0/8 or less than

-0/8). The highest positive correlation found is between the

Copper and Bilirubin (about 0/46), indicating no removal of

features for redundancy because of excessive correlation.

Furthermore, it is found that the independent variable

(Stage) correlates positively with Hepatomegaly (about

0/47), thus this variable is important in predicting the stage

of the disease. In this regard, all the features were retained

for modeling since they provide independent and

informative information. Such independence can be

expected to add strength to model value.

3-5- Feature Selection

Therefore, feature selection becomes a big step for

preprocessing data to enhance the performances of machine

learning classifiers and reduce computational complexity.

The dataset initially had many primary features, but some

of them had bad correlations with the target variable or

brought more noisy and redundant information. To extract

important features, RFECV was used. RFECV is a very

efficient recursive feature elimination mechanism

(Thambawita et al., 2020) that starts by training the model

with all features available, estimates the importance of each

individual feature in terms of importance score such as

those derived from feature importance or model coefficients,

and then removes one feature at a time, retraining the model

at each iteration. The process continues until all possible

combinations of features have been tried. It implements

cross-validation to find the best set of features. The other

applications of cross-validation are to make the dataset as

many segments as needed, then evaluate the model

performances for each feature combination. Finally,

RFECV was used to optimize feature selection based on

model performance during cross-validation. In addition to

evaluating model performance, this technique effectively

eliminates irrelevant features, selecting the minimum

number of features necessary to make accurate predictions.

In this study, a total of 14 features were identified as the

most informative from the initial set: N_days, status, drug,

age, bilirubin, cholesterol, albumin, copper, alk_phos, sgot,

triglycerides, platelets, and prothrombin. These selected

features were found to significantly contribute to the

prediction of disease stages. The removal of non-essential

features reduced model complexity while improving model

estimation accuracy and computational efficiency. Figure 2

illustrates the significance of these features in this study.

Figure 2. Feature Importance

3-6- Data Normalization

The MinMaxScaler is used to scale data for SVM

(Support Vector Machine) and KNN (K-Nearest Neighbors)

algorithms (Ali, 2022). This choice is made because these

algorithms are generally sensitive to feature scaling. For

SVM algorithms, to determine the separating hyperplane,

the feature values are being used; whereas KNN uses

feature values to compute distances amongst samples. Thus,

features in varied scales could significantly affect the

models' performance. The MinMaxScaler scales every

feature to a fixed-range value, usually ranging between 0

and 1, on an equivalent scale. The formula for

MinMaxScaler is:

x_scaled=(x-x_min)/(x_max-x_min) (1)

In this formula:

xscaled is the normalized (scaled) feature value.

x is the original value of the feature.

xmin is the smallest value of the feature in the dataset.

xmax is the largest value of the feature in the dataset.

3-7- Data Balance

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

171

One of the major challenges outlined in this study was the

distribution of samples into the different classes with

unequal frequency. From the data distribution, it has been

noted that there were only 16 samples at Stage I, while there

were 97 samples at Stage II, 109 samples at Stage III, and

more than to bring the order at the top. This imbalance

causes the machine learning algorithms to converge toward

the large classes, thus reducing any learning focused on the

smaller classes, like stage I. This will probably have the

effect that the model identifies the classes having more

samples correctly, while disregarding or misclassifying the

classes that have very few samples.

Figure 3. Distribution of Stages

The SMOTE method was used to increase the number of

samples belonging to the minority class in the data set to

remove imbalance namely synthetic minority over-

sampling technique. It constructs synthetic instances and

follows the following steps:

1. A random sample from the minority class is chosen as

a reference sample.

2. Using the KNN algorithm (usually with K = 5) several

nearest neighbors from the same minority class, are

identified.

3.SMOTE generates new synthetic examples in feature

space. This is achieved by selecting at random one of

the nearest neighbors and by creating a new sample at a

point in-between the reference sample and the chosen

neighbor.

The formula used to compute the interpolation

between the two samples is expressed as:

X_new=X_sample+gap×(X_neighbor-X_sample) (2)

Here, Xsample stands for the reference sample,

Xneighbor for one of the nearest neighbors, and Gap for

some random number in the range (0, 1). The dataset in this

research was divided into two parts: training 70% of the

data and using 30% for the encoding models' performance

evaluation.

3-8- Machine Learning Algorithms

For predicting the stage of PBC in this study twelve

different machine learning algorithms were used. These

algorithms were used to identify the best-performing model

that would predict the disease stages with the highest

accuracy. The hyperparameters of each algorithm were

optimized using the Optuna tool. Optuna is a dynamically

designed hyperparameter optimization tool to automatically

find the best values for model parameters (Akiba et al.,

2019). Like others, efficiently finds the best hyperparameter

configurations with advanced search techniques like Tree-

structured Parzen Estimator (TPE) and Random Search. By

running several tests and comparing how models perform,

this tool minimizes the time to gain optimality. The table

below provides the list of 12 machine learning algorithms,

operational mechanisms, and the optimized values achieved

using Optuna:

Table 3. Machine learning algorithms used and optimized hyperparameter values

Algorithm Method Optimal hyperparameters

Decision Tree

The algorithm applies successive splitting of the data into either two or
more subsets. At every stage, one feature which works best for data

splitting is selected according to certain criteria, some of which are Gini
Index and Entropy(Mienye & Jere, 2024) .

max_depth=32,
min_samples_split=8

Random
Forest

This algorithm, using a combination of multiple decision trees to reduce
data variance, trains each tree on a random subset of the data and obtains

its final output by following the majority voting rule in the case of
classification, or averaging in the case of regression (Schonlau & Zou,

2020) .

n_estimators=331,
max_depth=8

Extra Trees
It operates similarly to Random Forest but uses random values instead of

optimal values for node splitting. This approach reduces variance and
results in faster model training (Geurts et al., 2006) .

n_estimators=373,
max_depth=14

Gradient
Boosting

To build weak models (decision trees) one after the other, correcting the
mistakes done by the previous model. The aim is to gradually minimize

model errors and boost performance with each step (Biau & Cadre,
2017) .

n_estimators=191,
learning_rate=0/02662

Rezasoltani, Khani, Husseinzadeh Kashan, Agah & Agah, Predicting Primary Biliary Cholangitis Stages Using Machine Learning with….

172

AdaBoost
This algorithm iteratively trains weak models (small decision trees) and
assigns greater weight to misclassified samples at each step to create a

stronger final model (Ding et al., 2022) .

n_estimators=162,
learning_rate=0/54684

XGBoost

An optimized version of Gradient Boosting that reconciles the conflicts
between solving the execution speed and the execution accuracy by

analyzing operations in parallel and using more efficient algorithms. This
optimization method can address large amounts of information and

diversity (Bentéjac et al., 2020) .

n_estimators=162,
learning_rate=0/54684

LightGBM

An optimized Boosting algorithm that grows leaves instead of levels.
This method is suitable for large-scale, high-dimensional data and

provides faster performance compared to other Boosting algorithms (Ke
et al., 2017) .

n_estimators=329,
num_leaves=210,

learning_rate=0/1247

CatBoost

A fast and efficient Boosting algorithm optimized for categorical data,
which automatically encodes categorical values. This method requires
fewer parameter adjustments compared to other Boosting algorithms

(Dorogush et al., 2018)

iterations=435, depth=9,
learning_rate=0/2872

Logistic
Regression

A method for data classification using a linear model computes the
probability of the data belonging to different classes using the logistic

(sigmoid) function. It is well suited to low-dimensional datasets
(Starbuck, 2023) .

C=0/1228

Support
Vector

Machine

This algorithm finds an optimal hyperplane to separate classes in the
feature space. Using the RBF kernel, it maps data to a higher-

dimensional space, enabling nonlinear separation (Shmilovici, 2023).

C=459/87, gamma=0/0573,
kernel='rbf'

K-Nearest
Neighbors

The prediction takes into account the distance of the other instances from
the input data. The majority class among the k nearest neighbors is

considered for predicting the class of the novel sample (Halder et al.,
2024) .

n_neighbors=3

Naive Bayes
A probabilistic model based on Bayes' theorem. This algorithm assumes

complete independence between features and is well-suited for low-
dimensional and categorical data (Pajila et al., 2023) .

Lacks suitable
hyperparameters for

optimization.

To evaluate the performance of machine learning models

in this study, five key metrics were used: accuracy,

precision, recall, F1-score, and the area under the receiver

operating characteristic curve (ROC-AUC). These metrics

are defined based on the concepts of True Positive (TP) and

True Negative (TN) for correct predictions, and False

Positive (FP) and False Negative (FN) for incorrect

predictions.

Table 4. Evaluation indicators for machine learning models

index definition Formula

Accurac
y

The ratio of correct
predictions (both positive
and negative) to the total

number of samples.

(TP+TN)/(TP+FP+FN+

TN)

Precision

The ratio of correctly
predicted instances for a

class to all instances
predicted as that class.

TP/(TP+FP)

Recall

The ratio of correctly
predicted instances for a

class to all actual
instances of that class.

TP/(TP+FN)

F1 Score

The harmonic mean of
Precision and Recall,

balancing the trade-off
between the two metrics.

(2×Precision×Recall)/(P

recision+Recall)

The ROC-AUC metric measures the performance of a

classification model at all threshold levels and illustrates

how well the model is at distinguishing between classes;

thus, it shows how well the model can predict the different

stages of the disease. The ROC curve is created by plotting

the value of false positive rate (FPR) vs true positive rate

(TPR) for different thresholds and area under this curve is

known as the AUC. AUC can be understood as the higher

the better: The closer the AUC value is to 1, the better. In

order to test the generalizability of the model and verify that

it performed successfully regardless of the dataset with 5-

Fold Cross-Validation was performed. In this method, the

data set is split into five equal parts. At each iteration, one

of its sections is considered as test data, while the other four

sections are used as training data. This is done five times to

guarantee that each batch is tested once. Finally, the overall

performance of the model is reported as the mean values of

all the evaluation metrics across all iterations.

4- Results

In this section, the results of the machine learning models

are presented and analyzed. The Python programming

language was utilized for this study, and all models were

executed on a system equipped with an Intel Core i7-

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

173

13700H processor, 16GB of RAM, and Python version 3/12.

The following outlines the performance results of the

models.

Table 5. Comparison of results

Model Accuracy Precision Recall F1
Score

CatBoost 0/7708 0/7688 0/7708 0/7519

Extra Trees 0/7569 0/7636 0/7569 0/7400

LightGBM 0/7292 0/7182 0/7292 0/7126

Random
Forest 0/7222 0/7146 0/7222 0/7085

Gradient
Boosting 0/7153 0/7057 0/7153 0/7017

XGBoost 0/7083 0/6973 0/7083 0/6993

Support
Vector

Machine
0/7014 0/6895 0/7014 0/6847

K-Nearest
Neighbors 0/6667 0/6569 0/6667 0/6531

Decision
Tree 0/6319 0/6222 0/6319 0/6252

AdaBoost 0/5972 0/5961 0/5972 0/5949

Logistic
Regression 0/5139 0/5131 0/5139 0/5094

Naive
Bayes 0/5347 0/5129 0/5347 0/5083

Evaluation Results of the Machine Learning Models.

From all the above models, the CatBoost model presented

the best performance results with an accuracy equal to

0.7708, precision equal to 0.7688, recall equal to 0.7708 and

F1-score equal to 0/7519. These results show that CatBoost

not only predicts accurately, but have a good mean for all

metrics. This is because of its strong architecture for

processing categorical data and its automatic

hyperparameter tuning. Second only to CatBoost, the Extra

Trees model achieved an accuracy score of 0/7569 and an

F1-score of 0/7400. Through a series of randomized

decision trees, this model provided a somewhat good

performance and outperformed other models, such as

LightGBM, Random Forest. Similarly, LightGBM also

performed well but produced an accuracy of 0/7292 and an

F1-score of 0/7126, highlighting its ability to process

complex and high-dimensional data. Random Forest and

Gradient Boosting ranked next, achieving accuracies of

0/7222 and 0/7153, respectively. The two models

presented balanced trade-off between all metrics but were

not able to beat CatBoost and Extra Trees. The XGBoost

model followed closely, with an accuracy of 0.7083 and an

F1-score of 0.6993, highlighting the competitive nature of

Boosting-based algorithms. On the other hand, SVM

(accuracy = 0/7014) and KNN (accuracy = 0/6667)

exhibited less accuracy in predicting disease stages and

hence this concludes their lower efficiency in dealing with

complex data processing compared to the Boosting models.

Relative to simpler models like Decision Tree and

AdaBoost, these models exhibited moderate performance.

The Decision Tree performed with an accuracy of 0.6319.

Standard decision trees are underfitting models, and their

performance is less than ensemble trees (i.e. Random Forest,

Extra Trees). The AdaBoost model also performed

relatively weakly, with 0/5972 accuracy. Logistic

Regression and Naive Bayes performed the worst,

respectively. As a result of Logistic Regression (accuracy

of 0/5139) and Naive Bayes (accuracy of 0/5347), we

could claim that these simple models do not provide the

ability to process and predict complex, multidimensional

data effectively in this study.

Figure 4. Performance of various machine learning models

In the figure 4, we can see the comparison of various

machine learning models by accuracy, precision, recall, and

F1-score. Overall, ensemble learning based models like

CatBoost, Extra Trees and LightGBM performed the best.

The outcomes show that advanced models based on

Boosting and ensemble approaches using decision trees

excel in performing accurate prediction of disease phases

whilst preserving an optimal equilibrium among evaluation

metrics compared with alternative models.

Figure 5. ROC curve

Figure 5 shows ROC curves and AUC for PBC prediction.

The performance of models in separating classes is

visualized using the ROC curve, whereas the AUC is

another robust measure of model performance. If we

observe the graph, it is clear that Extra Trees model gave

the highest AUC 0/92. The CatBoost and Random Forest

both gave AUC 0/90. Gradient Boosting, LightGBM, and

SVM also performed distinctively well, attaining AUC

values ranging over 0/87 and 0/88. Conversely, simpler

Rezasoltani, Khani, Husseinzadeh Kashan, Agah & Agah, Predicting Primary Biliary Cholangitis Stages Using Machine Learning with….

174

models like Decision Tree and Naive Bayes had lower

performance, with AUC of 0/74 and 0/79, respectively.

From the results collectively, we see that ensemble-based

models, specifically Extra Trees and CatBoost perform

better than simple models in class separation. This shows

that implementing complex algorithms in highly intricate

medical problems, like predicting the progression of

diseases, increases the performance of models significantly.

5- Discussion and Conclusion

Results from our study indicate that with the application

of modern machine learning algorithms, like CatBoost and

Extra Trees, it is possible to obtain accurate predictions of

PBC stages. CatBoost was found to be the best of all models

achieved, having produced an accuracy of 0/7708 and AUC

of 0/90.) Extra Trees also performed well in classifying

complex datasets, reaching an AUC of 0/92. These

findings underscore the significance of ensemble-based

methods in achieving superior predictive accuracy

compared to simpler models . This research represents

significant advances in machine learning techniques as

compared to previous studies. A notable limitation in earlier

studies was the use of unoptimized models with poorly

defined feature sets. For example, while Hanif and Khan

(2022) and Jamadar et al. (2023) employed algorithms such

as Random Forest and SVM, they did not utilize advanced

optimization techniques to enhance model performance or

implement robust feature selection methods.This poor

optimization restricted the generalizability and accuracy of

their results. As a result, the present study led to stable

prediction performance across all metrics by using an

automated hyperparameter optimization method (Optuna)

and an advanced feature selection method (Recursive

Feature Elimination with Cross-Validation). Another key

difference in prior studies is their inadequate consideration

of imbalanced datasets. When models are evaluated in such

manner, it may lead to misleading results because the model

can easily predict the majority class while performing

poorly on minority classes. For example, Bhardwaj et al.

(2024) and Sidana et al. (2022), which did not evaluate

models properly and did not point out that a better

evaluation is characterized by the reporting of important

imbalanced evaluation metrics such as precision, recall, F1-

score, etc. This contrast with this study, which used

standard performance metrics to give transparent and

comprehensive evaluation of model quality. SMOTE

process was applied to supporter model to solve imbalance

class, while RFECV was used to find out 14 essential

features to both reduce model complexity and improve

quality. These developments make this study unique

compared to previous studies that did not properly resolve

dataset imbalance or attempted basic feature selection

methodology. Here, we showcase the possibilities of

advanced machine learning models and structured

optimization techniques in predicting medical health

outcomes. Ensemble methods like CatBoost and Extra

Trees are better suited for these medical datasets with high-

dimension characteristics due to their superior

performances compared to simple methods Logistic

Regression and Naive Bayes. Such findings provide a

direction for future research using larger and diverse data

sets having imaging data to create models more accurate

with clinical relevance.

Based on the findings of this review, several

recommendations are made to enhance and direct future

research. The first improvement could be using more and

diverse data to provide machine learning models capable of

getting generalized. The combination of data from multiple

clinical sources with covariate data available in existing

datasets could provide more robust results. Secondly, it is

proposed that some of the more sophisticated preprocessing

methods such as feature engineering and nonlinear

transformations might reveal hidden patterns in the data that

could improve the model's performance. In future works,

DNN (Deep Neural Networks) or LSTM (Long-Short Term

Memory) could potentially replace GBDTs with a better

prediction performance for the disease stages. More

sophisticated ensemble techniques (hybrid Voting and

Stacking) are additionally likely to enhance the prediction

capabilities due to the synergy of the respective standalone

models. On the clinical side, a more detailed analysis of the

importance and sensitivity of the model features must

facilitate the identification of pertinent biomarkers

associated with the prediction of disease stage; each of the

findings will assist clinical applications. Finally, validating

the above machine learning models against clinical data

from hospitals and clinics would make various algorithms

appropriate for use as well as more reliable. Initiating these

efforts may lead to the development of more accurate and

reliable models of timely diagnostics and improved care of

patients.

References

[1] M. A. Konerman et al., “Machine learning models to predict

disease progression among veterans with hepatitis C virus,”

PLOS ONE, vol. 14, no. 1, p. e0208141, Jan. 2019, doi:

https://doi.org/10.1371/journal.pone.0208141.

[2] Ahmet Ercan Topcu, Ersin Elbasi, and Yehia Ibrahim Alzoubi,

“Machine Learning-Based Analysis and Prediction of Liver

Cirrhosis,”Jul.2024,doi:https://doi.org/10.1109/tsp63128.202

4.10605929.

[3] E. B. Tapper and N. D. Parikh, “Diagnosis and Management

of Cirrhosis and Its Complications: A Review,” JAMA, vol.

329, no. 18, pp. 1589–1602, May 2023, doi:

https://doi.org/10.1001/jama.2023.5997.

https://doi.org/10.1371/journal.pone.0208141
https://doi.org/10.1109/tsp63128.2024.10605929
https://doi.org/10.1109/tsp63128.2024.10605929
https://doi.org/10.1001/jama.2023.5997

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

175

[4] R. Wei et al., “Clinical prediction of HBV and HCV related

hepatic fibrosis using machine learning,” vol. 35, pp. 124–132,

Sep. 2018, doi: https://doi.org/10.1016/j.ebiom.2018.07.041.

[5] C. Labenz et al., “Structured Early detection of Asymptomatic

Liver Cirrhosis: Results of the population-based liver

screening program SEAL,” Journal of Hepatology, vol. 77, no.

3,pp.695–701,Sep.2022,doi:

https://doi.org/10.1016/j.jhep.2022.04.009.

[6] E. Forte et al., “Top-Down Proteomics Identifies Plasma

Proteoform Signatures of Liver Cirrhosis Progression,”

Molecular & Cellular Proteomics, pp. 100876–100876, Nov.

2024, doi: https://doi.org/10.1016/j.mcpro.2024.100876.

[7] Varshni Premnath and Shanthi Veerappapillai, “Unveiling

miRNA–Gene Regulatory Axes as Promising Biomarkers for

Liver Cirrhosis and Hepatocellular Carcinoma,” ACS Omega,

vol. 9, no. 44, pp. 44507–44521, Oct. 2024, doi:

https://doi.org/10.1021/acsomega.4c06551.

[8] L. Wang et al., “Impact of Asymptomatic Superior Mesenteric

Vein Thrombosis on the Outcomes of Patients with Liver

Cirrhosis,” Thrombosis and Haemostasis, vol. 122, no. 12, pp.

2019–2029, Sep. 2022, doi: https://doi.org/10.1055/s-0042-

1756648.

[9] Md. Nahid Hasan, T. Ahmed, Md. Ashik, Md. Jahid Hasan,

Tahaziba Azmin, and J. Uddin, “An Analysis of Covid-19

Pandemic Outbreak on Economy using Neural Network and

Random Forest,” Journal of Information Systems and

Telecommunication (JIST), vol. 11, no. 42, pp. 163–175, Jun.

2023, doi: https://doi.org/10.52547/jist.34246.11.42.163.

[10] Sudiksha Kottachery Kamath, Sanjeev Kushal Pendekanti,

and D. Rao, “LivMarX: An Optimized Low-Cost Predictive

Model Using Biomarkers for Interpretable Liver Cirrhosis

Stage Classification,” IEEE Access, vol. 12, pp. 92506–

92522,Jan.2024,doi:https://doi.org/10.1109/access.2024.3422

451.

[11] I. Hanif and M. M. Khan, “Liver Cirrhosis Prediction using

Machine Learning Approaches,” 2022 IEEE 13th Annual

Ubiquitous Computing, Electronics & Mobile

Communication Conference (UEMCON), Oct. 2022, doi:

https://doi.org/10.1109/uemcon54665.2022.9965718.

[12] D. Bhardwaj, G. Kaur, and G. L. Babu, “Improving

Prognostic Prediction of Cirrhosis Using an Optimized

Ensemble Machine Learning Approach,” pp. 1–6, Aug. 2024,

doi: https://doi.org/10.1109/ciscon62171.2024.10695979.

[13] Bhanu Prakash K, Vennela D, Dhana Lakshmi N, and Siva

Priyanka S, “Stage Prediction of Liver Cirrhosis Disease using

Machine Learning,” pp. 1–6, Aug. 2024, doi:

https://doi.org/10.1109/icecsp61809.2024.10698096.

[14] Rauf Jamadar, Harsh Uike, and Vaishali Jabade, “Cirrhosis

Disease Prediction Using Machine Learning,” pp. 515–520,

Dec.2023,doi:https://doi.org/10.1109/icacctech61146.2023.0

0090.

[15] Tejasv Singh Sidana, S. Singhal, S. Gupta, and R. Goel,

“Liver Cirrhosis Stage Prediction Using Machine Learning:

Multiclass Classification,” Lecture notes in networks and

systems, pp. 109–129, Nov. 2022, doi:

https://doi.org/10.1007/978-981-19-3679-1_9.

[16] Arif Mudi Priyatno and Triyanna Widiyaningtyas, “A

SYSTEMATIC LITERATURE REVIEW: RECURSIVE

FEATURE ELIMINATION ALGORITHMS,” JITK (Jurnal

Ilmu Pengetahuan dan Teknologi Komputer), vol. 9, no. 2, pp.

196–207,Feb.2024,doi:

https://doi.org/10.33480/jitk.v9i2.5015.

[17] S. I. Khan and A. S. M. L. Hoque, “SICE: an improved

missing data imputation technique,” Journal of Big Data, vol.

7, no. 1, Jun. 2020, doi: https://doi.org/10.1186/s40537-020-

00313-w.

[18] S. Jeganathan, A. R. Lakshminarayanan, S. Parthasarathy, A.

Abdul Azeez Khan, and K. J. Sathick, “OptCatB: Optuna

Hyperparameter Optimization Model to Forecast the

Educational Proficiency of Immigrant Students based on

CatBoost Regression,” Journal of Internet Services and

Information Security, vol. 14, no. 3, pp. 111–132, Aug. 2024,

doi: https://doi.org/10.58346/jisis.2024.i2.008.

[19] F. Fazel and B. Foing, “Evaluating Classification Algorithms:

Exoplanet Detection using Kepler Time Series Data,” arXiv

(CornellUniversity),Feb.2024,doi:

https://doi.org/10.48550/arxiv.2402.15874.

[20] Fedesoriano, “Cirrhosis Prediction Dataset,”

www.kaggle.com.https://www.kaggle.com/fedesoriano/cirrh

osis-prediction-dataset

[21] V. Thambawita et al., “An Extensive Study on Cross-Dataset

Bias and Evaluation Metrics Interpretation for Machine

Learning Applied to Gastrointestinal Tract Abnormality

Classification,” ACM Transactions on Computing for

Healthcare, vol. 1, no. 3, pp. 1–29, Jul. 2020, doi:

https://doi.org/10.1145/3386295.

[22] P. J. Muhammad Ali, “Investigating the Impact of Min-Max

Data Normalization on the Regression Performance of K-

Nearest Neighbor with Different Similarity Measurements,”

ARO-THE SCIENTIFIC JOURNAL OF KOYA

UNIVERSITY, vol. 10, no. 1, pp. 85–91, Jun. 2022, doi:

https://doi.org/10.14500/aro.10955.

[23] K. K, U. K, S. A, and A. Kumar, “Predicting Student

Performance for Early Intervention using Classification

Algorithms in Machine Learning,” Journal of Information

Systems and Telecommunication (JIST), vol. 9, no. 36, pp.

226–235,Oct.2021,doi: https://doi.org/10.52547/jist.9.36.226.

[24] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama,

“Optuna: A Next-generation Hyperparameter Optimization

Framework,” arXiv (Cornell University), Jul. 2019, doi:

https://doi.org/10.48550/arxiv.1907.10902.

[25] I. D. Mienye and N. Jere, “A Survey of Decision Trees:

Concepts, Algorithms, and Applications,” IEEE access, pp. 1–

1,Jan.2024,doi: https://doi.org/10.1109/access.2024.3416838.

[26] A. Jafarnejad, A. Rezasoltani, and A. M. Khani,

"Comparative Analysis of Machine Learning Algorithms in

Predicting Jumps in Stock Closing Price: Case Study of Iran

Khodro Using NearMiss and SMOTE Approaches," Iranian

Journal of Finance, vol. 9, no. 3, pp. 27–54, 2025, doi:

10.30699/ijf.2025.491324.1496.

[27] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely

randomized trees,” Machine Learning, vol. 63, no. 1, pp. 3–

42, Mar. 2006, doi: https://doi.org/10.1007/s10994-006-6226-

1.

[28] G. Biau and B. Cadre, “Optimization by gradient boosting,”

arXiv.org, Jul. 17, 2017. https://arxiv.org/abs/1707.05023

(accessed Apr. 24, 2024).

[29] Y. Ding, H. Zhu, R. Chen, and R. Li, “An Efficient AdaBoost

Algorithm with the Multiple Thresholds Classification,”

Applied Sciences, vol. 12, no. 12, p. 5872, Jun. 2022, doi:

https://doi.org/10.3390/app12125872.

https://doi.org/10.1016/j.ebiom.2018.07.041
https://doi.org/10.1016/j.jhep.2022.04.009
https://doi.org/10.1016/j.mcpro.2024.100876
https://doi.org/10.1021/acsomega.4c06551
https://doi.org/10.1055/s-0042-1756648
https://doi.org/10.1055/s-0042-1756648
https://doi.org/10.52547/jist.34246.11.42.163
https://doi.org/10.1109/access.2024.3422451
https://doi.org/10.1109/access.2024.3422451
https://doi.org/10.1109/uemcon54665.2022.9965718
https://doi.org/10.1109/ciscon62171.2024.10695979
https://doi.org/10.1109/icecsp61809.2024.10698096
https://doi.org/10.1109/icacctech61146.2023.00090
https://doi.org/10.1109/icacctech61146.2023.00090
https://doi.org/10.1007/978-981-19-3679-1_9
https://doi.org/10.33480/jitk.v9i2.5015
https://doi.org/10.1186/s40537-020-00313-w
https://doi.org/10.1186/s40537-020-00313-w
https://doi.org/10.58346/jisis.2024.i2.008
https://doi.org/10.48550/arxiv.2402.15874
https://www.kaggle.com/fedesoriano/cirrhosis-prediction-dataset
https://www.kaggle.com/fedesoriano/cirrhosis-prediction-dataset
https://doi.org/10.1145/3386295
https://doi.org/10.14500/aro.10955
https://doi.org/10.48550/arxiv.1907.10902
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.3390/app12125872

Rezasoltani, Khani, Husseinzadeh Kashan, Agah & Agah, Predicting Primary Biliary Cholangitis Stages Using Machine Learning with….

176

[29] C. Starbuck, "Logistic regression," in Springer eBooks, pp.

223–238, 2023. doi: 10.1007/978-3-031-28674-2_12.

[30] A. Jafarnejad Chaghoshi, A. Rezasoltani, and A. M. Khani,

"Unleashing the Power of Ensemble Learning: Predicting

National Ranks in Iran’s University Entrance Examination,"

Industrial Management Journal, vol. 16, no. 3, pp. 457–481,

2024, doi: 10.22059/imj.2024.381521.1008178.

[31] G. Ke et al., “LightGBM: A Highly Efficient Gradient

Boosting Decision Tree,” hal.science, Dec. 04, 2017.

https://hal.science/hal-03953007 (accessed Mar. 27, 2023).

[32] A. V. Dorogush, V. Ershov, and A. Gulin, “CatBoost:

gradient boosting with categorical features support,”

arXiv.org, Oct. 24, 2018. https://arxiv.org/abs/1810.11363

[33] Motiei, M., Khani, A. M., & Beyrami, S. (2021). The effect

of green supply chain and green human resource management

on environmental performance: The mediating role of green

innovation. Logistics Thought, 20(77), 165–197.

https://doi.org/10.22034/lot.2021.96691

[34] A. Jafarnjad, A. Rezasoltani, and A. M. Khani, "Analyzing

and Predicting Hiring Decisions Using Machine Learning and

Deep Learning," Journal of Public Administration, vol. 17, no.

2, pp. 295–327, 2025, doi: 10.22059/jipa.2025.390322.3649.

[35] Jafarnejad Chaghoshi, A., Khani, A. M., & Rezasoltani, A.

(2024). Risk modeling in banking services for the blind using

fuzzy FMEA and graph neural network (GNN). Journal of

Industrial Management Perspective, 14(4), 223–255.

https://doi.org/10.48308/jimp.14.4.223

[36] P.J.Beslin Pajila, B. Gracelin. Sheena, A. Gayathri, J. Aswini,

M. Nalini, and Siva Subramanian R, “A Comprehensive

Survey on Naive Bayes Algorithm: Advantages, Limitations

and Applications,” Sep. 2023, doi:

https://doi.org/10.1109/icosec58147.2023.10276274.

[37] J. Kasubi, M. D. Huchaiah, I. Gad, and M. K. Hooshmand,

“A Comparison Analysis of Conventional Classifiers and

Deep Learning Model for Activity Recognition in Smart

Homes based on Multi-label Classification,” Journal of

Information Systems and Telecommunication (JIST), vol.

12,no46pp127–137,Jun.2024,doi:

https://doi.org/10.61186/jist.36294.12.46.127.

 [38] A. Rezasoltani, A. Jafarnejad, and A. M. Khani, "A voting-

based hybrid machine learning model for predicting

backorders in the supply chain," Journal of Decisions and

Operations Research, vol. 10, no. 1, pp. 194–213, 2025, doi:

10.22105/dmor.2025.511401.1924.

https://doi.org/10.1007/978-3-031-28674-2_12
https://arxiv.org/abs/1810.11363
https://doi.org/10.48308/jimp.14.4.223
https://doi.org/10.61186/jist.36294.12.46.127

 Abdallah maiti

abdallah.maiti@uhp.ac.ma

Journal of Information Systems and Telecommunication
Vol.13, No.3, July-September 2025, 177-188

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

Resolving Class Imbalance in Medical Classification: Technique
Comparison and Performance Evaluation

Abdallah Maiti1*, Mohamed Hanini1, Abdallah Abarda2

1.Laboratory of Computing, Networks, Mobility and Modelling (IR2M) FST, Hassan First University of Settat, Morocco
2.Laboratory LM2CE, Faculty of Economic Sciences and Management, Hassan First University of Settat, Morocco

Received: 16 Mar 2025/ Revised: 07 Aug 2025/ Accepted: 06 Sept 2025

Abstract
The problem of unbalanced data is a common one in medical diagnostics. This problem can reduce the accuracy of

classification models and affect the validity of results. The aim of our paper is to compare several techniques for correcting

class imbalances in medical datasets and to evaluate the impact of these techniques on machine learning performance.

In our paper, we used an imbalanced dataset to train a convolutional neural network (CNN) model. We then tested correction

techniques such as sampling and cost-sensitive learning. Finally, we used recall, precision, accuracy and F1 score to evaluate

the model's performance.

The results show that the use of correction techniques led to a significant improvement in the performance of the classification

model. The cost-sensitive learning technique gave the best results, particularly for the detection of minority classes. This

method increased the weight of classification errors associated with minority classes, thus improving the detection of critical

cases. The results of this study underline the importance of dealing with imbalances in the data to improve the performance

of classification models in the medical field. The use of methods such as cost-sensitive learning not only improves model

performance, but also enables more reliable decisions to be made, which is essential for ensuring more accurate diagnoses

and better quality of care.

Keywords: Data Imbalance; Techniques for Resolving Data Class Imbalance; Oversampling; Cost-Sensitive learning,

Convolutional Neural Networks; Classification; Model Performance; Medical Diagnostics.

1- Introduction

The text must be in English. Authors whose English The

problem of imbalanced data represents a big challenge in

machine learning, particularly in critical fields such as

healthcare, finance, cybersecurity and other. It occurs when

certain classes in a data-set are underrepresented relative to

others, causing predictive models to disproportionately

favor the majority classes. In domains such as fraud

detection, where fraudulent transactions represent only a

small proportion of the data, models often struggle to

identify these minority instances, favoring normal

transactions instead [1], [2]. Similarly, rare diseases in

medical diagnosis or infrequent cyberattacks in

cybersecurity are often misclassified due to their limited

representation in training datasets [3]. Addressing this

imbalance is essential to improve prediction accuracy and

ensure fairness across all classes. Classical ML algorithms,

such as logistic regression and decision trees assume a

balanced distribution of data, a condition that is rarely met

in real-world applications. Therefore, various methods have

been developed to mitigate biases caused by imbalance.

Different techniques such as oversampling,

undersampling, cost-sensitive learning, and ensemble

methods have shown promise in improving minority class

detection while maintaining overall model performance [4]

solve this problem. Imbalance can take different forms

depending on the data type. In binary classification, a single

minority class often poses a problem, as seen in rare disease

diagnosis or fraud detection, where models tend to favor the

majority class. Approaches such as SMOTE address this

problem by generating synthetic examples for

underrepresented categories [5]. In multi-class scenarios,

imbalance arises when multiple classes are unequally

represented, as seen in multi-stage disease diagnosis. In

such cases, advanced techniques such as One-vs-One (OvO)

and One-vs-Rest (OvR), as well as ensemble methods, are

needed to ensure balanced performance across classes [4].

Beyond accuracy, traditional evaluation metrics often

fail to capture a model’s ability to identify minority classes.

Maiti, Hanini & Abarda, Resolving Class Imbalance in Medical Classification: Technique Comparison and Performance Evaluation

178

Metrics like precision, recall, and F1-score are more

appropriate for binary imbalances, while G-mean and Mat-

thews correlation coefficient (MCC) provide a more

balanced evaluation for multi-class problems [6]. These

metrics are crucial for evaluating mitigation strategies and

ensuring fair representation of all classes.

Despite the progress made, significant challenges persist

in combating class imbalance. Low performance on

minority classes, inadequacy of conventional metrics, and

difficulties in generalizing to unseen data are among the

main obstacles. The choice of the most effective method

depends on the specific context, including the severity of

the imbalance and the area of application. In complex

scenarios, hybrid approaches that combine data-level and

algorithmic methods are often required [7].

Recent empirical investigations have underscored the

efficacy of hybrid methodologies that integrate

oversampling techniques, such as Synthetic Minority Over-

sampling Technique (SMOTE), deep neural networks, and

reinforcement learning to more proficiently address

imbalance within intricate datasets. These adaptive

methodologies are structured to correspond with the data's

inherent architecture, thereby enhancing performance while

concurrently mitigating the risk of overfitting [8].

Furthermore, the intensifying focus on algorithmic equity,

especially within critical sectors like healthcare,

necessitates the rectification of biases stemming from

underrepresented classes, as such biases may precipitate

significant diagnostic inaccuracies [8].

In the domain of natural language processing,

contemporary scholarship regarding the Central Kurdish

language has demonstrated that the qualitative balancing of

corpora is imperative for guaranteeing the dependability of

morphosyntactic frameworks, particularly in contexts

characterized by limited resources [9].

These theoretical frameworks have significantly guided

the methodological framework of the current investigation.

The proposed architecture is predicated on a convolutional

neural network (CNN), augmented by rebalancing

methodologies such as Synthetic Minority Over-sampling

Technique (SMOTE), classification paradigms including

One-vs-One (OvO) and One-vs-Rest (OvR), alongside cost-

sensitive learning and the ensemble-based Bagging

methodology. This comprehensive framework aims to

enhance the identification of minority classes while

maintaining consistent overall efficacy.

In addition to extant research, this investigation enriches

the academic discourse by amalgamating all four

methodologies within a cohesive framework explicitly

tailored for medical imaging applications. It delineates a

multiclass classification protocol that tackles the

infrequency of clinical cases, the hierarchical organization

of disease stages, and the imperatives of algorithmic equity.

This contribution is particularly notable in its deployment

for the automated identification of diabetic retinopathy

utilizing retinal imagery, where advanced stages of the

condition are frequently underrepresented and challenging

to discern.

The overall aim of this research is to develop a robust

classification system capable of accurately identifying rare

stages of diabetic retinopathy (DR). More specifically, the

study seeks to determine the most effective techniques for

correcting class imbalance in medical imaging; to evaluate

the impact of these techniques using appropriate

performance metrics such as recall and F1-score; and to

offer practical recommendations for high-stakes domains

where misclassification can significantly affect decision-

making. The article is structured as follows: Section 2,

“Materials and Methods,” describes the dataset, the CNN

architecture, and the imbalance-handling strategies

implemented; Section 3, “Results,” presents the model’s

performance under various conditions; Section 4,

“Discussion,” interprets the findings and considers

methodological trade-offs; and finally, Section 5,

“Conclusion,” summarizes the main contributions and

proposes future research directions.

2- Materials and Methods

In our article, we investigate various techniques to address

class imbalance in multi-class classification tasks. Our goal

is to classify retinal images according to the severity stages

of diabetic retinopathy (DR), a serious eye disease resulting

from prolonged hyperglycemia. The dataset used is from the

Kaggle platform and consists of five classes, ranging from

“No DR” (absence of disease) to “Proliferative DR”

(advanced and severe form of the disease). Unlike other

studies that apply imbalance correction techniques without

sufficient justification, we propose a systematic approach

tailored to imbalanced and unstructured data, particularly

images. Our aim is to scientifically identify the most

effective techniques to overcome this challenge and

evaluate their impact on the performance of classification

models. To achieve this, we used a convolutional neural

network (CNN)-based model, known for its ability to

automatically extract complex features from images. We

evaluate several class rebalancing techniques, including

undersampling, oversampling, One-vs-Rest (OvR) and

One-vs-One (OvO) approaches, cost-sensitive learning, and

ensemble bagging (Fig.1). Models are trained and evaluated

on balanced datasets using these techniques. The evaluation

phase relies on standard metrics such as accuracy, precision,

recall, and F1 score, which are derived from the confusion

matrix. This comprehensive approach enables a precise

analysis of the influence of the applied imbalance resolution

techniques on the performance of the CNN-based model

and provides insights into effectively addressing

imbalances in image classification tasks.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

179

Fig. 1. Architecture of the proposed diagnostic system

2-1-Dataset Description

The dataset used in our paper and obtained from the Kaggle

platform [29], consists of a total of 92702 retinal images

distributed across five classes, each representing a stage of diabetic

retinopathy (DR). The dataset (Table 1) exhibits a significant class

imbalance, with the majority class, "No DR," comprising

approximately 77.8% of the total samples. In contrast, the more

severe stages, such as "Severe DR" and "Proliferative DR," are

severely underrepresented, together accounting for less than 5.1%

of the dataset.

 Table 1. Distribution of Retinal Images Across Diabetic Retinopathy Classes

Class Description Samples Percentage

Class 0 No DR 72102 77.8%

Class 1 Mild DR 8772 9.5%

Class 2 Moderate DR 7135 7.7%

Class 3 Severe DR 2328 2.5%

Class 4 Proliferative DR 2365 2.5%

Total 92702 100%

This imbalance poses challenges for model training, as

predictive models tend to favor the majority class, leading to

poor detection rates for minority classes. Addressing this

issue is critical to improving diagnostic accuracy,

particularly for the advanced stages of DR. Techniques such

as oversampling, undersampling, and algorithmic

adjustments are essential to mitigate this problem and ensure

balanced and robust model performance.

2-2-Model Architecture

To solve the problem of multi-class classification of

diabetic retinopathy, we have developed a model based on

a convolutional neural network (CNN). This type of model

is particularly effective for image analysis, thanks to its

ability to automatically extract complex features while

reducing the need for manual data pre-processing (Fig. 2).

 Fig. 2. Architecture of our CNN-based classification model

 2- Mild DR

1-No DR

3- Moderate DR

4- Severe DR

5- Proliferative DR

Image Classification
Conv 1

(32 filtres, 3x3)

Conv 3

(128 filtres, 3x3)

Input
(224x224x3)

Fully-Connected

(256 neurones)

Fully-Connected

5 neurons (No DR, Mild DR, Moderate DR, Severe DR, Severe

DR, Proliferative DR)

Feature Extraction Classification

Conv 2

(64 filtres, 3x3)

Max_Pooling

(2x2)

Maiti, Hanini & Abarda, Resolving Class Imbalance in Medical Classification: Technique Comparison and Performance Evaluation

180

The architectural framework of the model is predicated

upon a convolutional neural network (CNN) organized

into three primary phases: feature extraction,

dimensionality reduction, and classification. It consists of

three convolutional layers designed to extract

fundamental features from images, succeeded by pooling

layers that facilitate dimensionality reduction and bolster

the robustness of the model. Ultimately, two fully

connected layers conclude the multi-class classification

process. Methodologies such as dropout regularization, in

conjunction with non-linear activation functions (ReLU

and Softmax), augment the model's efficacy and

generalizability in the identification of diabetic

retinopathy.

2.2.1. Three Convolutional layers

The proposed model employs a triad of convolutional

layers to derive critical features from retinal imagery. The

initial layer utilizes 32 filters, succeeded by 64 filters in the

subsequent layer and 128 filters in the final layer. Each filter

executes a convolution operation utilizing a 3x3 kernel,

thereby facilitating the identification of distinct patterns,

including anomalies or textures that are characteristic of

retinopathy.

2.2.2. Pooling layers (2x2)

After each convolutional layer, pooling layers with a 2x2

size kernel are applied to reduce the dimensionality of the

data. This process limits over-fitting while reducing

computational costs. The max-pooling method is used,

selecting the maximum value in each analyzed region. This

ensures that the most dominant and significant features of

the images, essential for classification, are retained, while

simplifying the representations learned by the model.

2.2.3. Two Fully Connected layers

The model comprises two fully-connected layers that

ensure the finalization of the classification. The first layer,

made up of 256 neurons, combines the features extracted

from the convolutional and pooling layers. It uses a ReLU

(Rectified Linear Unit) activation function, well known for

its ability to introduce non-linearity, essential for modeling

complex relationships between features. This function also

prevents the effect of gradient saturation, which promotes

efficient convergence during training.

The output layer comprises 5 neurons, corresponding to

the five severity classes of diabetic retinopathy. A

Softmax activation function is applied to transform the

outputs of this layer into normalized probabilities,

allowing direct interpretation of predictions as

probabilities belonging to each class. This configuration

is particularly well-suited to multi-class classification,

guaranteeing well-calibrated output and a sum of

probabilities equal to 1.

2.2.4. Regulation

A dropout mechanism (with a rate of 0.5) is implemented

subsequent to the fully connected layers in order to mitigate

the probability of overfitting by sporadically deactivating

certain neurons throughout the training process. This

methodology entails the random inactivation of 50% of the

neurons at each iteration during training, thereby

diminishing the model's excessive dependence on particular

neurons.

This architecture integrates efficient convolutional layers

for the automatic extraction of pertinent features

alongside dense layers designated for classification. Such

a framework is exceptionally well-suited for medical

image analysis endeavors, owing to its capacity to capture

intricate details while simultaneously minimizing the

necessity for manual pre-processing.

2-3-Techniques for Correcting Data Imbalances
Addressing data imbalance is crucial for improving the

performance of machine learning models. The different

approaches to tackle this issue can be represented in three

categories: data-driven approaches, algorithmic

approaches, and specific approaches designed for multi-

class problems.

2.3.1. Data-Based Methods

Data-based approaches involve the direct manipulation of

datasets to balance the distribution of classes before model

training.

a-Sub-Sampling
The technique of subsampling, unlike oversampling,

involves reducing the number of samples from majority

classes to balance their proportion relative to minority

classes (Fig. 3). This technique is typically implemented by

randomly removing examples from the dominant class [10].

Subsampling has several advantages, including model

simplification by reducing the total volume of data, which

also lowers computational costs. However, this technique

has several notable drawbacks. Removing samples from

majority classes can lead to the loss of crucial information

[11]. Furthermore, the random selection of samples to be

removed may not accurately reflect the actual distribution

of the data, potentially affecting model performance,

especially when the data is heavily unbalanced [12].

b-Oversampling

Oversampling methodologies pertain to the deliberate

augmentation of sample quantities from minority classes to

rectify their inadequate representation in imbalanced

datasets (Fig 3). Among the preeminent methodologies, the

Synthetic Minority Oversampling Technique (SMOTE) is

particularly noteworthy for its capability to produce

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

181

synthetic instances through linear interpolation of existing

samples within the minority class [6],[7]. This approach

enhances the representation of underrepresented classes

while concurrently maintaining the diversity and structural

integrity of the dataset.

The practice of oversampling confers several advantages.

It mitigates the model's bias towards majority classes and

enhances its generalization capabilities. These benefits

culminate in an improved recognition of underrepresented

classes, particularly in scenarios where imbalances may

precipitate erroneous predictions [13]. Furthermore, by

infusing greater variability into minority classes,

methodologies such as SMOTE enable machine learning

algorithms to more effectively discern the unique

characteristics of rare instances. Nonetheless, oversampling

is not devoid of limitations. The artificial augmentation of

samples may heighten the risk of overfitting, especially

when synthetic instances exhibit insufficient diversity or

replicate patterns that do not accurately reflect authentic

data [14]. In addition, this escalation in data volume may

incur elevated computational costs, particularly with

extensive datasets, due to the supplementary resources

necessitated for the generation and processing of synthetic

instances [15]. Recent studies suggest improvements to

SMOTE, such as K-Means SMOTE or Borderline-SMOTE,

which specifically target critical regions near decision

boundaries to maximize the efficiency of oversampling

[16]. These variants aim to reduce drawbacks while fully

exploiting the potential of minority classes in unbalanced

contexts.

2.3.2. Algorithmic Approaches

Algorithmic approaches directly modify learning

algorithms to deal with data imbalance, without modifying

the distribution of classes in the ensemble.

a- Cost-Sensitive learning

This methodology modifies the loss function of machine

learning algorithms by allocating enhanced significance to

minority classes. This approach is predicated on

augmenting the weight of errors pertinent to these classes,

in accordance with their under-representation (Fig. 4). In a

dataset wherein a class constitutes 10% of the samples,

misclassification errors for that class may be amplified by a

factor that corresponds to the degree of imbalance, thus

escalating the associated penalty [17].

This methodology proves to be particularly efficacious in

critical domains, such as the detection of rare diseases, the

prevention of financial fraud, or the prediction of failures in

intricate systems. It substantially contributes to the

reduction of classification errors in under-represented

classes, while simultaneously preserving the equilibrium of

overall model performance [18]. In addition, by integrating

these weights into algorithms, cost-sensitive learning

augments model sensitivity and precision for imbalanced

datasets.

Nonetheless, the efficacy of this methodology is profoundly

contingent upon the meticulous calibration of the weights

allocated to various classes. Insufficient calibration may

result in an inverse imbalance, thereby impairing

performance on majority classes or diminishing the overall

effectiveness of the model [19]. Therefore, methodologies

such as adaptive weight optimization or the employment of

specific metrics, including the ROC curve or F-measure, are

frequently advocated to guarantee balanced performance.

Fig. 4. Operating principle of the cost-sensitive learning

method

b- Ensemble Methods

Maiti, Hanini & Abarda, Resolving Class Imbalance in Medical Classification: Technique Comparison and Performance Evaluation

182

Ensemble techniques, such as Bagging and Boosting,

combine the predictions of multiple models to enhance

overall performance and reduce bias toward majority

classes (Fig. 5). Bagging (Bootstrap Aggregating) uses

random sampling with replacement to train several

independent models, whose predictions are then

aggregated, improving model robustness and stability [20].

Boosting, on the other hand, progressively corrects the

errors of successive models by assigning higher weights to

misclassified examples, thereby increasing overall

accuracy, particularly on minority classes [21]. These

techniques are particularly effective for datasets with a high

degree of imbalance, as they address the weaknesses of

individual models by improving the recognition of under-

represented classes. By introducing diversity into data

subsets and combining the strengths of several models, they

also promote better generalization. Furthermore, recent

variants, such as AdaBoost-SAMME or Gradient Boosting

with SMOTE, have demonstrated their effectiveness in

handling complex imbalances by adjusting weights for

minority classes [23].

Nevertheless, the execution of these methodologies may

prove to be intricate and computationally intensive,

particularly in the context of boosting. The latter

necessitates meticulous calibration of hyperparameters,

including but not limited to learning rate and quantity of

estimators, to mitigate the risk of overfitting and to

guarantee optimal efficacy [24]. In spite of these obstacles,

their capacity to enhance performance in scenarios

characterized by imbalanced data renders them

indispensable instruments in domains such as finance,

healthcare, and predictive analytics.

Fig. 5. Operating principle of the Bagging ensemble method

2.3.3. Specific Techniques for Multi-Class Problems

In multi-class problems, where multiple categories are

present, data imbalance poses additional challenges.

Classical approaches can be adapted, but specific

approaches such as One-vs-Rest (OvR) and One-vs-One

(OvO) (Fig. 6) are often used.

a- One-vs-Rest (OvR)

OvR also known as One-vs-All, decomposes a multi-class

problem into several binary classification problems. For

each class, a binary classifier is trained, treating this class

as positive and grouping all other classes as negative. For

instance, in a five-class problem, OvR requires the creation

of five binary models, each optimized to distinguish a

specific class [25],[26]. Notable advantages of this

technique include its simplicity of implementation and its

ability to provide independent evaluations for each class.

These features make it particularly suited to contexts where

granular predictions are essential, such as in image

recognition or recommender systems [25],[26].

Additionally, the OvR technique is compatible with a wide

range of learning algorithms, such as support vector

machines (SVMs) and logistic regression, making it a

versatile option.

However, this technique has important limitations. It can

become biased when classes grouped as negative are highly

imbalanced, which can impair model performance on

minority classes [27]. Furthermore, OvR does not account

for the complex relationships and possible

interdependencies between different classes, limiting its

ability to capture global patterns or subtle correlations in the

data [28].

Recent work proposes extensions to mitigate these

limitations, such as integrating adaptive weights to balance

negative classes or using hybrid techniques that combine

OvR with dimensionality reduction methods like linear

discriminant analysis. These improvements aim to enhance

the robustness and accuracy of this technique in unbalanced

multi-class classification contexts.

b- One-vs-One (OvO)

The OvO technique treats each pair of classes separately,

creating a binary classifier for each combination of two

classes. For example, for a problem with five classes, the

OvO results in ten binary classifiers, one for each pair of

classes [25],[26].

This approach is particularly useful for data with complex

class relationships, as each classifier focuses on only two

classes at a time. This reduces the impact of majority

classes, as each binary classifier works on data balanced

between the two classes concerned. However, the

computational complexity is high. The number of classifiers

to be trained increases quadratically with the number of

classes, which can lead to considerable computational costs

and implementation difficulties in contexts with a large

number of categories [27].

Data imbalance correction methods offer a variety of

solutions tailored to specific application needs. Data-driven

techniques, such as oversampling and undersampling,

directly modify the class distribution, while algorithmic

approaches, such as cost-sensitive learning and ensemble

methods, adjust the algorithms to compensate for biases

[28]. In multi-class problems, specific techniques such as

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

183

OvR and OvO are used to handle the additional complexity

associated with multiple classes. The choice of the optimal

method depends on the context of use, the nature of the data

and technical constraints. It is often advisable to combine

several approaches to maximize model performance while

minimizing imbalance bias [25],[26].

 Fig. 6. Representation of the “One-vs-Rest”(OvR) and “One-vs-One”(OvO) techniques

3- The Results

Unbalanced multi-class classification is a major challenge,

due to the complexity of interactions between classes and the

difficulty of assessing model performance. Unlike binary

classification, this context requires advanced approaches to

effectively manage imbalance while improving prediction

accuracy.

In our research, we apply and evaluate various data

rebalancing techniques, such as oversampling,

undersampling, one-to-one and one-to-all approaches,

ensemble methods such as Bagging, and cost-sensitive

learning. The aim is to identify the best method for boost

the performance of artificial intelligence models in this

complex context.

3-1-Subsampling
Sub-sampling is a methodological approach aimed at

equilibrating the distribution of classes by diminishing the

magnitude of the majority class, which is accomplished

through the stochastic elimination of samples from this class

to render it congruent with the quantity of the minority class.

In the present investigation, each class was systematically

curtailed to 2328 samples, in alignment with the size of the

minority class. While this methodology serves to mitigate

the bias in favor of the majority class, it engenders a

considerable loss of information, which may adversely

influence the overall efficacy of the model, as delineated in

Table 2.

The implementation in Python employs the resample

function from the sklearn.utils library to perform

subsampling on the majority class, thereby modifying its size

to correspond with that of the minority class. Subsequent to

the subsampling procedure, the equilibrated dataset is

preserved in the variables X_resampled and y_resampled,

rendering it suitable for utilization in model training. The

outcomes of this methodology are illustrated in Table 2.

Table 2. Overall performance obtained using the sub-sampling

technique

Metric Global values

Accuracy 82.64 %

Precision 88.94 %

Recall 82.15 %

F1-Score 80.51 %

3-2-Oversampling
To improve the representation of minority classes in

unbalanced datasets, the SMOTE (Synthetic Minority

Oversampling Technique) technique was used. SMOTE

generates synthetic samples for under-represented classes by

creating intermediate points between existing instances of

the same class [30],[22]. This rebalances the distribution of

classes and mitigates biases linked to data imbalance when

training machine learning models.

In Python, SMOTE is implemented using the SMOTE class

in the imbalanced-learn library (imblearn).

The resulting oversampling led to a significant

improvement in overall performance, although there remains

a risk of model overfitting due to the generation of synthetic

samples. The performance results obtained after applying

SMOTE are presented in Table 3.

Maiti, Hanini & Abarda, Resolving Class Imbalance in Medical Classification: Technique Comparison and Performance Evaluation

184

Table 3. Overall performance obtained using the oversampling
technique

Metric Global values

Accuracy 87.09 %

Precision 84.36 %

Recall 81.78 %

F1-Score 83.05 %

The F1-Score of 83.05%, which combines two parameters:

precision and recall into a single metric, provides a more

comprehensive evaluation in handling imbalanced data.

Although the accuracy is relatively high at 87.09%, it is not

the most reliable metric for this type of task due to the

potential influence of class imbalance. The moderate recall

and F1-Score suggest that, while oversampling improved

class distribution, the model may exhibit overfitting, limiting

its ability to generalize effectively to unseen data.

3-3-Cost-Sensitive learning
Cost-sensitive learning is an effective technique for

managing class imbalance without directly modifying the

data distribution. It assigns weights proportional to the

inverse of class frequency, thus giving greater importance to

minority classes during training. In this study, weights were

calculated as in Table 4.

Table 4. Weight of diabetic retinopathy classes

Class Weight

Class 0 1

Class 1 (72 102/8 772) ≈ 8.22

Class 2 (72 102/7 135) ≈ 10.10

Class 3 (72 102/2 328) ≈ 31.00

Class 4 (72 102/2 365) ≈ 30.49

The weights were integrated into the

SparseCategoricalCrossentropy loss function of

TensorFlow/Keras through the class_weight parameter,

thereby facilitating the equilibrium of performance between

predominant and subordinate classes. This methodology

dynamically modifies the error magnitude associated with

under-represented classes, obviating the necessity for direct

alterations to the training dataset, and empowers the model

to more effectively manage class imbalances during the

training process.

In this specific implementation, the class_weight

parameter is employed to modulate the significance of each

class, thereby compensating for imbalances while preserving

the integrity of the data itself. Metrics such as Accuracy,

Precision, Recall, and F1-Score were computed on the test

dataset to appraise the model's efficacy. Upon the

completion of training the CNN-based model, its

performance was evaluated utilizing the test data (refer to

Table 5). The findings illustrate that this methodology

proficiently reconciles overall accuracy and performance

across all classes, including minority classifications, thereby

mitigating the adverse effects of data imbalance on

predictive quality. The model accomplished an Overall

Accuracy of 91.09%, indicative of its capacity to render

precise predictions across all classifications. The F1-Score,

a composite metric amalgamating precision and recall,

attained 92.79% for the "No DR" classification,

underscoring the model's dependability in identifying this

category. Below is a comprehensive delineation of the

performance metrics for each class:

No DR: The model exhibited outstanding performance in

this category, attaining a Precision of 91.14%, a Recall of

94.49%, and an F1-Score of 92.79%, which exemplifies its

robust capability to accurately recognize instances devoid of

diabetic retinopathy. Mild DR: This classification similarly

exhibited elevated performance, achieving a Precision of

93.27%, a Recall of 91.95%, and an F1-Score of 92.60%,

signifying a well-balanced aptitude for detecting mild cases.

Moderate DR: With a Precision of 91.95%, a Recall of

93.24%, and an F1-Score of 92.59%, the model effectively

identified moderate cases with negligible errors. Severe DR:

The performance of the model was somewhat diminished for

this classification, achieving a Precision of 88.26%, a Recall

of 82.86%, and an F1-Score of 85.47%, which reflects

certain challenges in differentiating severe cases.

Proliferative DR: This minority classification attained a

Precision of 85.88%, a Recall of 83.72%, and an F1-Score of

84.78%, demonstrating the model's capacity to address even

the most formidable cases, albeit with some constraints.

Table 5. Performance obtained by applying Cost Sensitive Learning

Metric Overall Accuracy Precision Recall F1-Score

No RD

91.09 %

91.14 % 94.49 % 92.79 %

light RD 93.27 % 91.95 % 92.60 %

Moderate RD 91.95 % 93.24 % 92.59 %

Severe RD 88.26 % 82.86 % 85.47 %

Proliferative RD 85.88 % 83.72 % 84.78 %

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

185

3-4-Ensemble technique: Bagging

Bagging (Bootstrap Aggregating) was implemented in

Python to handle unbalanced data sets. Four balanced

subsets were created by bootstrap sampling, each subset

comprising 2,328 representative samples of all classes,

including minority classes, using scikit-learn's resample

function. These subsets were used to independently train a

CNN model, developed with TensorFlow using a defined

architecture, an 'adam' optimizer, a

'categorical_crossentropy' loss function, and 'accuracy'

metrics.
The predictions of the four models were aggregated by

majority voting, implemented via scipy's mode function.

The results obtained are presented in Table 6.

Table 6. Overall performance of the Bagging technique

Metric Global values

Accuracy 83.21 %

Precision 83.49 %

Recall 83.21 %

F1-Score 83.28 %

3-5-OvR and OvO Techniques

OvR and OvO techniques are widely used strategies for

handling multi-class classification problems, particularly

when addressing class imbalance. In this study, these

techniques were implemented in Python.

The overall performance of these two techniques is

summarized in Table 7.

Table 7. Overall performance achieved using OvR and OvO

techniques

Technique Accuracy Precision Recall
F1-

Score

OvR
84.06

%

80.35

%

83.53

%

81.91

%

OvO
79.68

%

81.65

%

84.19

%

82.90

%

The results show that the OvR technique achieves an

accuracy of 84.06%, while OvO performs better in terms

of precision and F1-Score, albeit with slightly lower

accuracy. These two techniques are complementary, and

the choice of approach will depend on the specific

objectives of the model, notably between precision and

recall.

4- Discussion

Table 8. presents the performance of the CNN

classification model, trained on the “DR” (Diabetic

Retinopathy) dataset balanced by different techniques. This

table compares the results obtained with different class

imbalance correction techniques, assessing their impact on

four main metrics: Accuracy, Precision, Recall and F1-

Score.

This comparison highlights the strengths and limitations

of each technique, as well as their influence on overall

model performance.

The comparative results of the different imbalance

correction techniques are shown in Table 8. above. The

metrics used (Accuracy, Precision, Recall and F1-Score)

make it possible to evaluate the effectiveness of each

technique on overall model performance.

a- Cost-Sensitive Learning Technique

The cost-sensitive learning methodology modifies the

weightings assigned to each class in accordance with their

prevalence, thereby effectively mitigating biases resulting

from class imbalance. Among the methodologies assessed,

cost-sensitive learning demonstrates the most favorable

overall efficacy, yielding an accuracy of 91.09%, a

precision of 90.10%, a recall of 89.25%, and an F1-score of

89.65%. This approach is particularly adept at addressing

the disparate costs associated with misclassification,

enabling the model to more accurately identify minority

classes while preserving elevated overall precision. The

exemplary outcomes of cost-sensitive learning illustrate its

capacity to reconcile precision and recall, rendering this

technique an outstanding selection for datasets

characterized by imbalance. While the performance metrics

are commendable, it is crucial to acknowledge that the

dynamic recalibration of weights may incur significant

computational costs, particularly when engaging with

extensive datasets. Our findings regarding cost-sensitive

learning align with those reported in contemporary

scholarly literature, which has evidenced that this strategy

stands out as one of the most efficacious for imbalanced

multi-class classification challenges, as evidenced by the

research conducted by Khan et al. [31]. A more recent

investigation by Araf et al. [32] posits that this technique

necessitates meticulous parameter optimization to

circumvent computational burdens while sustaining high

precision. This highlights the imperative for practitioners to

diligently evaluate the trade-offs between computational

expenses and performance enhancements.

Maiti, Hanini & Abarda, Resolving Class Imbalance in Medical Classification: Technique Comparison and Performance Evaluation

186

b- Oversampling Technique

Oversampling, particularly using the SMOTE method,

generates synthetic samples for minority classes, improving

their representation during training. SMOTE achieved an

accuracy of 87.09%, precision of 84.36%, recall of 81.78%,

and an F1-score of 83.05%. While this method is powerful,

it carries the risk of overfitting if the synthetic data does not

accurately reflect the complexity of real samples.

It is important to note that the risk of overfitting can be a

major issue with this approach. According to Vargas et al.

[33], the generated samples may introduce unrealistic

variations into the data, which could harm the model's

ability to generalize. This trade-off between improving

the representation of minority classes and the risk of

overfitting must be carefully evaluated.

c- Bagging Technique

Bagging (Bootstrap Aggregating) significantly bolsters

the reliability of predictions through the amalgamation of

numerous models that have been trained on meticulously

balanced subsets of the dataset. This methodology attained

an accuracy rate of 87.49%, a precision level of 84.91%, a

recall metric of 81.72%, and an F1-score of 83.28%. While

it exhibits a marginal advantage over oversampling with

respect to accuracy, the computational resources required

for training multiple models may pose a limitation in

environments constrained by resources. Despite the

robustness of this technique, the substantial computational

demands must be meticulously evaluated. As posited by

Liang & Zhang [34], the process of training various models

on data subsets necessitates effective resource management,

which can serve as an impediment in computationally

limited scenarios. Consequently, the balance between

precision and computational expense must be critically

assessed in professional practice.

d- Subsampling Technique
Under-sampling entails the reduction of the population of

the majority class to correspond with the population size of

the minority classes. This methodology yielded an accuracy

rate of 82.64%, a precision rate of 88.94%, a recall rate of

82.15%, and an F1-score of 85.41%. Although this

methodology facilitates the equilibrium between precision

and recall, it is plagued by a considerable diminution of

information, which may adversely influence the model's

capacity to generalize.

The information attrition linked to under-sampling can

detrimentally affect the generalization capabilities of the

model, as articulated by Soleimani & Mirshahzadeh [35].

In real-world implementations, this strategy may prove to

be suboptimal when substantial amounts of information

are essential for the accurate prediction of infrequent

occurrences, as is the case with diabetic retinopathy.

e- OvO and OvR Methods:

The One-vs-One (OvO) and One-vs-Rest (OvR)

methodologies partition the multi-class classification

challenge into binary subproblems. The efficacy of the OvO

method is marginally inferior to that of alternative

methodologies, attaining an accuracy of 79.68%, a

precision of 81.65%, a recall of 84.19%, and an F1-score of

82.90%. Conversely, the OvR methodology achieves an

accuracy of 84.06%, yet it remains suboptimal in

performance relative to strategies such as cost-sensitive

learning and oversampling. Our findings regarding OvR

and OvO are in alignment with those documented in

contemporary research, including the work of Chakraborty

& Dey [36], which indicates that while these methodologies

may be effective in certain contexts, they are generally less

efficacious than approaches like cost-sensitive learning

(CSL) and Synthetic Minority Over-sampling Technique

(SMOTE) due to the inherent trade-offs in accuracy and

computational efficiency.

Table 8. Model performance on the balanced DR dataset using different imbalance correction techniques

Correction techniques Accuracy Precision Recall F1-Score

Subsampling 82.64 % 88.94 % 82.15 % 85.41 %

Oversampling 87.09 % 84.36 % 81.78 % 83.05 %

Cost-sensitive learning 91,09% 90,10% 89,25% 89,65%

Bagging technique 87.49 % 84.91 % 81.72 % 83.28 %

One-vs-One (OvO) 79.68 % 81.65 % 84.19 % 82.90 %

One-vs-Rest (OvR) 84.06 % 80.35 % 83.53 % 81.91 %

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

187

5- Conclusion

The categorization of images depicting diabetic

retinopathy poses a considerable challenge attributable to

class imbalance, a widespread concern within medical

applications. This manuscript conducts a comparative

analysis of diverse methodologies aimed at mitigating this

imbalance while simultaneously enhancing the efficacy of

Convolutional Neural Network (CNN) models. The

findings unequivocally indicate that the selection of

correction methodologies exerts a substantial influence on

model efficacy, thereby underscoring the necessity for the

adoption of strategies that are specifically tailored to the

contextual characteristics of the data and the distinct aims

of the application.

Among the methodologies scrutinized, cost-sensitive

learning emerges as the preeminent strategy. Its adaptive

modulation of class weights facilitates a balanced

evaluation of classification inaccuracies, culminating in

enhanced performance across critical metrics (Accuracy,

Precision, Recall, and F1-Score). This approach not only

assures superior generalization but also yields a more

precise identification of minority classes. Techniques such

as oversampling and bagging also exhibited favorable

outcomes, particularly in augmenting the representation of

minority classes, while concurrently sustaining competitive

overall performance. Nonetheless, both methodologies may

engender a compromise between computational expense

and precision, particularly in expansive applications.

Conversely, subsampling and the One-vs-One/One-vs-Rest

(OvO/OvR) techniques, although beneficial, are

encumbered by intrinsic limitations, such as potential

information loss or heightened complexity, rendering them

less appropriate for intricate, imbalanced datasets such as

those associated with diabetic retinopathy.

These observations accentuate the imperative for a

comprehensive evaluation of the strengths and weaknesses

inherent to each technique, with particular emphasis on the

trade-offs between computational expenditure and

accuracy. The outcomes further highlight the significance

of implementing solutions specifically adapted to the

particular constraints of the data and the objectives of the

application. Future investigations should prioritize the

innovation of novel methodologies that effectively manage

complex, imbalanced datasets. Additionally, the

exploration of hybrid models that amalgamate existing

techniques should be pursued to capitalize on the

synergistic strengths of each strategy. This integrative

methodology would contribute to the optimization of

performance by addressing the deficiencies associated with

individual techniques, thereby enhancing model capabilities

in regard to both accuracy and generalization.

Such a strategy would not only elevate the overall

performance of models but also more effectively address

the critical requirements of applications, particularly in

domains such as medicine, where the robustness, fairness,

and reliability of models are of paramount importance.

References
[1]. KrawczykB, B. (2016). “Learning from imbalanced data:

Open challenges and future directions”. Published in Progress

in Artificial Intelligence, V5(4), pp 221-232.

[2]. Haixiang, G., and al. (2017). “Learning from class-imbalanced

data: Review of methods and applications”. Published in

Expert Systems with Applications, v73, pp 220-239.

[3]. LemaîtreG., Nogueira, F., and Aridas, C. K(2017).

« Imbalanced-learn: A Python Toolbox to Tackle the Curse of

Imbalanced Datasets in Machine Learning”. Published in

Journal of Machine Learning Research, v18(17), pp1-5.

[4]. BrancoP., Torgo, L., andRibeiro, R. P2019). A survey of

predictive modeling on imbalanced domains. ACM

Computing Surveys, v49(2), pp1-50.

[5]. He, H., & Garcia, E. A. (2009). Learning from imbalanced

data. IEEE Transactions on Knowledge and Data Engineering,

21(9), 1263-1284.

[6]. ChawlaN. V. et al2002). SMOTE: Synthetic Minority Over-

sampling Technique. Published in Journal of Artificial

Intelligence Research, 16, 321-357.

[7]. Kaur, H. et al. (2019). A systematic review on imbalanced data

challenges in machine learning: Applications and solutions.

Published in ACM computing surveys (CSUR), 52(4), 1-36.

[8]. Abdullah, A. A., Mohammed, N. S., Khanzadi, M., Asaad, S.

M., Abdul, Z. K., & Maghdid, H. S. (2025). In-depth Analysis

on Machine Learning Approaches: Techniques, Applications,

and Trends. ARO-THE SCIENTIFIC JOURNAL OF KOYA

UNIVERSITY, 13(1), 190-202.

[9]. Sabr, S. S., Mustafa, N. S., Omar, T. S., Rasool, S. H., Omer,

N. A., Hamad, D. S., ... & Maghdid, H. S. (2025). A

Comprehensive Part-of-Speech Tagging to Standardize

Central-Kurdish Language: A Research Guide for Kurdish

Natural Language Processing Tasks. arXiv preprint

arXiv:2504.19645.

[10]. Kaur, H., Pannu, H. S., and Malhi, A. K. (2019). A systematic

review on imbalanced data challenges in machine learning:

Applications and solutions. ACM computing surveys (CSUR),

52(4), 1-36.

[11]. LinC. C., Yen, S. J., and Lee, Y. S2017). On combining

SMOTE with under-sampling: An experimental study on class

imbalance problem. Published in Information Sciences, v371,

123-137.

[12]. YangC., at al. (2024). Impact of random oversampling and

random undersampling on the performance of prediction

models developed using observational health data. Published

in Journal of big data, v11(1), 7.

[13]. Loffredo, E., Pastore, M., Cocco, S., & Monasson, R. (2024).

Restoring balance: principled under/oversampling of data for

optimal classification. arXiv preprint arXiv:2405.09535.

Maiti, Hanini & Abarda, Resolving Class Imbalance in Medical Classification: Technique Comparison and Performance Evaluation

188

[14]. Buda , M. , Maki, A., and Mazurowski, M. A. (2018). “A

systematic study of the class imbalance problem in

convolutional neural networks”. Neural Networks, 106, pp

249-259.

[15]. Leevy, J. L., Khoshgoftaar, T. M., Bauder, R. A., & Seliya,

N. (2018). A survey on addressing high-class imbalance in big

data. Journal of Big Data, 5(1), 1-30.

[16]. Han, H., Wang, W. Y., & Mao, B. H. (2005). Borderline-

SMOTE: A new over-sampling method in imbalanced data

sets learning. Advances in Intelligent Computing, 878-887.

[17]. Liu, Y., Wu, T., & Yan, P. (2020). Balancing imbalanced data

using adaptive synthetic sampling with feature selection.

Computational Intelligence and Neuroscience, 2020, 1-11.

[18]. Longadge, R., & Dongre, S. (2013). Class imbalance problem

in data mining review. arXiv preprint arXiv:1305.1707.

[19]. Brownlee, J. (2020). Imbalanced classification with Python:

better metrics, balance skewed classes, cost-sensitive learning.

Machine Learning Mastery.

[20]. Yadav, S., & Bhole, G. P. (2020, December). Handling

imbalanced dataset classification in machine learning. In 2020

IEEE Pune Section International Conference (PuneCon) (pp.

38-43). IEEE.

[21]. Liu, L., Wu, X., Li, S., Li, Y., Tan, S., & Bai, Y. (2022).

Solving the class imbalance problem using ensemble

algorithm: application of screening for aortic dissection. BMC

Medical Informatics and Decision Making, 22(1), 82.

[22]. Maiti, A., Abarda, A., & Hanini, M. (2022, October). A New

Hybrid Artificial Intelligence Model for Diseases

Identification. In The Proceedings of the International

Conference on Smart City Applications (pp. 825-836). Cham:

Springer International Publishing.

[23]. He, H., Garcia, E. A. (2009). “Learning from imbalanced

data”. In IEEE Transactions on knowledge and data

engineering, 21(9), pp1263-1284.

[24]. Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N., & Asadpour,

M. (2020). Boosting methods for multi-class imbalanced data

classification : an experimental review. Journal of Big data, 7,

1-47.

[25]. Pawara, P., Okafor, E., Groefsema, M., He, S., Schomaker,

L. R., & Wiering, M. A. (2020). One-vs-One classification for

deep neural networks. Pattern Recognition, 108, 107528.

[26]. Brownlee, J. (2020). One-vs-rest and one-vs-one for multi-

class classification. Machine Learning Mastery.

[27]. LiQ., SongY., ZhangJ., and ShengV. S2020). « Multiclass

imbalanced learning with one-versus-one decomposition and

spectral clustering”. Published in Expert Systems with

Applications, in147, p113--152.

[28]. Chakraborty, S., & Dey, L. (2024). Multi-class

Classification. In Multi-objective, Multi-class and Multi-label

Data Classification with Class Imbalance: Theory and

Practices (pp. 51-76). Singapore : Springer Nature Singapore.

[29]. Diabetic Retinopathy Detection data set, in

kaggle.com/c/diabetic-retinopathy-detection/data

[30]. Maiti , A., Abarda, A., Hanini, M., and Oussous, A. (2024).

”An Optimal Model Combining SqueezeNet and Machine

Learning Methods for Lung Disease Diagnosis. Current

Medical Imaging, 20(1).

[31]. Khan, A. A., Chaudhari, O., & Chandra, R. (2024). A review

of ensemble learning and data augmentation models for class

imbalanced problems: Combination, implementation and

evaluation. Expert Systems with Applications, 244,

122778.DOI : 10.1016/j.eswa.2023.122778

[32]. Araf, I., Idri, A., & Chairi, I. (2024). Cost-sensitive learning

for imbalanced medical data: A review. Artificial Intelligence

Review, 57(4), 80.DOI : 10.1007/s10462-023-10652-8

[33]. Vargas, W. de, Schneider Aranda, J. A., dos Santos Costa, R.,

da Silva Pereira, P. R., & Victória Barbosa, J. L. (2023).

Imbalanced data preprocessing techniques for machine

learning: A systematic mapping study. Knowledge and

Information Systems, 65(1), 31-57.DOI : 10.1007/s10115-

022-01772-8

[34]. Liang, G., & Zhang, C. (2012). A Comparative Study of

Sampling Methods and Algorithms for Imbalanced Time

Series Classification. In AI 2012: Advances in Artificial

Intelligence (pp. 637–648). Springer.DOI : 10.1007/978-3-

642-35101-3_54

[35]. Soleimani, M., & Mirshahzadeh, A. S. (2023). Multi-class

classification of imbalanced intelligent data using deep neural

network. EAI Endorsed Transactions on AI and Robotics, 2,

1-10.DOI : 10.4108/airo.7998.

[36]. Chakraborty, S., & Dey, L. (2024). Applications of Multi-

objective, Multi-label, and Multi-class Classifications. In

Multi-objective, Multi-class and Multi-label Data

Classification with Class Imbalance: Theory and Practices (pp.

135-164). Singapore: Springer Nature Singapore.

DOI : 10.1007/978-981-97-9622-9.

https://www.kaggle.com/c/diabetic-retinopathy-detection/data

 Mahmood Alborzi

Mahmood _alborzi@yahoo.com

Journal of Information Systems and Telecommunication
Vol.13, No.3, July-September 2025,189-209

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion
Detection System Utilizing LSTM, GRU, and Attention Mechanisms
with Optimized Hyperparameter Tuning

Heshmat Asadi1, Mahmood Alborzi1*, Hesam Zandhesami1

1. Department of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran

Received: 11 Jan 2025/ Revised: 04 Aug 2025/ Accepted: 06 Sep 2025

Abstract
increasing complexity and volume of threats being created and targeted at cybersecurity for the IoTs necessitate the

deployment of powerful IDSs. This paper offers an innovative intrusion detection system for IoTs networks based on deep

learning. The new IDS employs the Long Short-Term Memory and Gated Recurrent Unit models’ strengths and an

Attention Mechanism. First, the new IDS seeks to enhance the model’s ability to determine critical features in a vast

amount of data streams and hence improve the ability to find potential cyber threats with high accuracy. The

methodological framework used in a simulation and practical experiment setting was intended to recognize the unique

nature of IoTs situations. therefore, used a hybrid algorithm optimization strategy, namely Differential Evolution and

Harmony Search, to optimize the model due to the extensive hyperparameter space to get the best performance results. The

results obtained superior accuracy, precision, recall, and F1 measures reaching 99.87 percent, 99.84 percent, 99.85 percent,

and 99.85 percent is better than the performance measures achieved by existing models. Therefore, a deep learning-based

hybrid IDS confirmed the research hypothesis that this could provide the necessary and effective cybersecurity for the IoTs.

It is vital to note that this paper has contributed to the research topic by showing the potential of advanced neural

architectures and strategic optimization tools to address the massive and sophisticated IoTs cybersecurity issues. Future

research will be addressing whether these models can be applied in more IoTs settings and whether their real-time

efficiency can be improved.

Keywords: Intrusion Detection System in Internet of Things; Attention Mechanism in Deep Learning algorithm;

Differential Evolution; Harmony Search.

1- Introduction

Security has become an issue of growing concern

especially in Internet of Things (IoT) where the

deployment of IoT networks raised new security

challenges, and traditional intrusion detection systems are

no longer enough, to protect dynamic and heterogeneous

IoT networks. Modern cyber threats are also more

advanced, and require more than traditional signature-

based and anomaly-based methods, which typically have

high false positives and are limited in threat coverage.

With fast development of deep learning and AI, the

automatic learning and behavior pattern identification by

use of deep leaning and AI become the promising

solutions for securing IoT intrusion detection. The

development of deep learning based systems for IoT

security is still quite challenging because of the significant

computational constraints and the real-time processing

constraints of IoT devices, as well as the adaptive

requirements for resource-constrained environments,

where traditional DL-based approaches are commonly

known to be computationally prohibitive [1][2].

Identification of the Gap: Intrusion detection solutions

face some limitations to work efficiently in terms of the

unique IoT challenges such as device diversity, limited

resources, and dynamic topologies. The current distance

between traditional IDS functionality and the detection

needs of advanced threats are especially evident in deep

learning used for IoT systems [3].

 It includes but is not limited to described below: lack of

labeled datasets specifically targeting the complexity of

IoT network traffic, the computation complexity of deep

Asadi, Alborzi & Zandhesami, Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion Detection System Utilizing …

190

learning, lack of suitable models that adapt to the

complexity of the IoT environment and the variance

produced by each of the more than 20 billion devices

connected worldwide. Additionally, there is a considerable

discrepancy in leveraging DL and AI in practical models.

Whereas a growing portion of the literature focuses on

developing theoretical models and algorithms, few studies

focus on combining these proposals with the IoT domain.

This entails a lack of validation schemas considering the

flow of energy, computation capabilities, and the real-time

need to process requests and requirements in IoT[3], [4].

Research Question or Hypothesis: Our research is

prompted by the identified gaps in the adaptation and

optimization of deep learning and artificial intelligence

algorithms for integration into the Internet of Things

intrusion detection systems. Thus, the primary question of

our investigation is as follows:

Research Question: “How can deep learning and artificial

intelligence algorithms be efficiently adopted and

optimized in IoT intrusion detection patters to improve the

general level of protection from sophisticated attackers,

while addressing the concerns associated with the limited

resources, energy efficiency and dynamical topology of

Internet of Things components? ”. The research question

analyzes the primary areas of concern in the adaptation of

DL and AI technologies, as well as the possible ways to

mitigate them. The implication suggests the

comprehensive understanding of the application and

examination of the mentioned technology both in theory

and in practice, which is the central objective and

contribution of our study. Based on the research

hypotheses, the notion of the hypothesis shaping our study

is as follows: Hypothesis: “Designing and integrating

customized solutions of deep learning and artificial

intelligence to the existing intrusion detection systems by

the means of optimization for the critical requirements and

constrains of Internet of Things devices can significantly

enhance the quality and effectiveness of the protocols

through the detection rate, false positive rate and resource

effectiveness metrics” . The hypothesis builds the rationale

for the integration of the stated technologies as the

enhancement of conventional IDS for powerful systems is

inapt for the IoT era. Therefore, our study’s objective is to

bridge the identified gap and shape the comprehensive

image of the situation.

During the course of investigating this research question

we conduct a detailed study in to the current condition of

IDS in IoT, possible potential and constraints faced by DL

and AI technologies here, and formulate novel

methodologies that can mitigate these problems. These are

provided in a subsequent section listing out the specific

objectives or aims of this study, why it is significant to the

broader field on cybersecurity, and finally an overview of

what can be found throughout this article.

Objectives of current study: The purpose of this study is to

fulfill an urgent requirement for enhanced IDS systems in

the area of IoT via deep learning and AI. In more specific

terms, the study will focus on meeting these main

objectives: Addressing the current challenges of IoT

security, such as deploying lightweight detection

mechanisms, by designing effective yet computationally

efficient deep learning models, effectively trading

detection accuracy for the limited computational

capabilities of IoT environments and focusing on creating

models with minimal operational power requirements

while maximizing the model detection rate. Optimized AI

and DL algorithms for IoT applications: Alongside this

examination of the challenges, this study will integrate an

approach to designing AI and DL algorithms that are

specifically geared towards implementation with IoT use.

These breakthrough models will facilitate the widespread

and cost-effective use of AI and DL to identify,

characterize, attribute and assess all forms of cyber-threat

with far less reliance on extraordinary computational

power (power) For this purpose and to guarantee that the

above is effective in real IoT scenarios, one of the main

aims of your study should be ensure that developed

solutions are practical useful. This is why the experimental

design will investigate under these testing conditions to

enable a comprehensive test in real IoT deployments.

All the above goals were achieved in this study; it

contributes a lot to IoT security area by producing tough,

fast, reliable IDS solutions with current improvements on

AI and DL. We believe our research could have game-

changing impact on the security and safety of IoT networks

so that we might one day see all connected devices safely

and securely enjoy a level of user-setting performance

expectations known to be achieved in practice.

Significance of the Study: The significance of this study

on leveraging deep learning and artificial intelligence for

IDS in IoT ecosystems cannot be ignored. It is of great

importance and thus benefits all interest groups in

academia, industry, and the community, generally in

eliminating the existing security issues with the ever-

increasing number of these devices. To the best of our

knowledge, this study increases the added value in terms

of the security of IoT frameworks using enhanced deep

learning and AI algorithms that are capable of responding

to current security threats, combined with the protection of

unauthorized break-ins, data integrity and confidentiality.

Bridging theoretical AI and DL models with its practical

application: another critical aspect and contribution of this

research is its ability to close the existing gap between the

actual utilization of deep learning and artificial intelligence

in IoT security and the theoretical models. It involves

careful analysis of the application of the algorithm in real-

world IOT and new findings in these algorithms’

challenges and progress in deployment7. Boosting the

adoption of the Internet of Things: in the healthcare

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

191

industry, smart city, industrial automation, and other

sectors, the concern of system security has been a Major

threat to the successful implementation of the IoT systems.

This research benefits hugely by ensuring the successful

implementation of the IoT services with improved

confidence of success in utilization of these systems to

their full potential. Contributing to the discussion and

informed sources: this study thus makes a significant

contribution to the discussion regarding IoT security,

focusing on comparing the security challenges of IDS in

IoT ecosystems and suggesting a pathway for overcoming

the challenges. Being research that has led to findings, it is

a valuable reference and reference material in writing and

in the preparation of educational materials. Informing

policy and legal framework: at the end of the research

results, the finding will significantly help in the process of

development of the policy and the other set of legal

frameworks through evidence is showing how efficient this

new approach in the deep learning algorithm is showing a

high performance of Intrusion detection systems.

Overview of the Structure: This paper is organized in such

a way that the deep learning and artificial intelligence

applications in IoT IDS are discussed, in a systematic

manner, step-by-step as it follows the proposed framework

for the readers better understanding. The following are the

structure of this article:

Introduction: Provides the reader with a background of the

study, the research gaps the study seeks to fill, the study’s

research question/hypothesis and the study’s objectives.

This part of the article also explains the significance of the

study to the reader and therefore helps them develop a

foundation on the relevance of the study.

Literature review: This section of the article analyses a

broad range of studies and other related conceptual models

in line with the academic performance of an intrusion

detection system in an Internet of Things setup. It offers a

critical analysis of the limitations and strengths of previous

studies and helps readers identify where their scientific

approach aligns or diverts from previous scholars’ works.

Methodology: The section outlines the study’s design and

how the research question shall be answered, including a

detailed explanation of the artificial intelligence and deep

learning algorithms selected for the study. The section also

includes data collection and preprocessing methods, as

well as the evaluation metrics the researcher used to

evaluate their solution. This part of the article helps the

reader understand how the study was implemented.

Results: In this section, the results of the study are

presented. Namely, the performance of the developed DL

and AI-based IDS in various IoT cases was analyzed, and

the results of the statistical analysis, performance metrics,

and comparison are provided. As a result, the possibilities

of using the developed DL and AI-based IDS in IoT are

drawn based on the data obtained.

Discussion: This section discusses the meaning of the

results. This part covers the elucidation of research

findings for IoT professionals and the implications for

theory and practice in the field of cybersecurity and

artificial intelligence. A potential limitation of the study is

also considered. Thus, the obtained results will be

analyzed to obtain new data and directions for research.

Conclusion: This section concludes the study, briefly

restating its essential findings and reaffirming the topic’s

relevance. Also, the contributions to knowledge and

practice from a growing area of research on IoT may be

identified, and ideas for future studies will be suggested.

References: This part includes all the research sources that

were mentioned in the text and is necessary for the

academic correctness of the article.

2- Literature Review

The role of integrating deep learning and artificial

intelligence technology into IDS of the IoT is the most

critical frontier of this research on cybersecurity. With the

continuous development of the IoT, more devices are

interconnected. It poses numerous distinctive challenges

but also opportunities to protect the networked system. In

particular, IDS is vital for identifying unauthorized access

and anomalies signaled potential cybersecurity risks.

However, the traditional detection model is far from

efficient in an ecosystem as complex and dynamic as the

IoT. It was the introduction of DL and AI that significantly

improved the technology and its efficacy in terms of

detecting, analyzing, and responding to information

security breaches. Therefore, this section was intended to

justify that the theme of researching innovative

technologies on strengthening the IDS of the IoT to the

broader research in the field of cybersecurity[5], [6].

State-of-the-art deep learning- based IoT intrusion

detection shows remarkable advances in responding to the

latest cybersecurity threats. Recent studies are

concentrating on designing complex neural architectures

and optimization strategies suitably for IoT systems.

Moreover, with the emergence of IoT, which has further

complicated matters by adding another layer to the

complex web of device diversity and data streams, it

became apparent that it would not be enough to utilize

simplistic types of recognition and alerting tools.

Simultaneously, DL and AI made a major break in recent

years and during the last decade, offering a unique

opportunity to apply perfectly-designed instruments to

enhance the security of IoT. The development of the

paradigm, from literal rules and alerts to machine learning

and now, DL and AI, shows the transition to systems

capable of learning and recognizing patterns and making

an additional predictive evaluation to provide a buffer

against cyber threats for IoT[7], [8].

Asadi, Alborzi & Zandhesami, Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion Detection System Utilizing …

192

More recently, substantial progress has been achieved in

transformer-based architectures for IoT intrusion detection.

Tseng et al. (2024) presented state-of-the-art results on the

CIC-IoT-2023 dataset by training transformer model that

that obtain 99.40% accurancy, outperforming traditional

CNN and DNN models[9]. This multi-class intrusion

detection system is designed to be effective in analyzing the

flow of network traffic IoT, through deep learning analysis

that, to the best of our knowledge, applies transformer-

based architectures leading IoT network security. Graph

neural networks have proved to be particularly effective for

learning the underlying network structure in IoT systems.

Ahanger et al. (2025) presented influential papers in

Scientific Reports about the use of Graph Attention

Networks (GAT) for generating graphs for learning with

intrusion detection systems.[10]. Their solution exploits the

network topology to improve the detection accuracy, and

yet is robust and scalable for handling dynamic security

threats in the IoT. Recent works on more advanced

hyperparameter optimization have demonstrated better

performance using complex multi-objective! approaches.

Asadi et al. (2024) presented a detailed analysis published

work on hybrid hyper-parameter optimization techniques

for IoT IDSs in Journal of Information Systems and

Telecommunication [11]. Their proposed hybrid Harmony

Search with Bayesian Optimization obtained 99.74%

accuracy, 99.7% precision, 99.72% recall, and 99.71% F1-

score, which is better than the pure methods and indicates

that the advanced optimization rigors are much useful for

recent IoT security studies.

There are several key themes and findings in the literature

on DL and AI-based applications in IDS for IoT.

Algorithmic Advancements, substantial prior studies

developed and refined algorithms that could efficiently

process massive and highly heterogeneous data from IoT

devices. Research shows that convolutional neural

networks, recurrent neural networks, and autoencoders can

identify abnormal patterns with high accuracy while

staying accurate to the constraints of IoT

environments[12]. Adaptability and Scalability,

considering the highly dynamic nature of IoT networks

with devices frequently configuring and reconfiguring and

changing network topologies, the IDS solutions must be

rapidly deployable and highly scalable. Therefore, the next

focus area of the literature was to develop DL and AI

models that can rapidly adapt to new threats and spread

across such a wide and diverse landscape as IoT devices

[7,8]. Resource Efficiency, as various IoT devices face

constraints in the number of resources they can utilize,

researchers have emphasized the need to optimize DL and

AI models to reduce their computational power and energy

consumption. In this context, several studies have

considered such techniques as model pruning, quantization,

and federated learning to get the most efficient IDS

deployment in IoT environments[13]. Practical

Implementation Challenges, Practical implementation

presents a significant gap in the current literature. Thus,

deploying IDS based on DL and AI on actual IoT devices

creates high-relevant challenges. Concerns about data

privacy and limited datasets that cover the range of

possible networks and their security contexts also remain

poorly addressed in the literature. These topics illustrate

the on-going debate and dialogue across the academic

world regarding the potential of DL and AI in IDS for the

IoT environment. They also show the agreement on the

opportunity to implement these visions and their

limitations in terms of technology and practice[14], [15].

Nowadays, the cybersecurity field, particularly the Internet

of Things, is vital because the use of smart devices in our

daily activities and industrial systems is on the rise. The

primary role of the Intrusion Detection System is to detect

and prevent potential threats in a network environment.

Due to the complexity of modern cyber-attacks, which

invent new methods of intrusion, the advanced and

learning ID alarms system are essential. The deep learning

and, specifically, Recurrent Neural Networks have become

a response to these requirements. They are capable of

learning data using sequences. This chapter aims to have a

critical review of research conducted using RNN-based

frameworks to enhance IDS alarms systems in the Internet

of Things. The focus of this chapter is the research’s

objectives, methodologies, used datasets, findings, and

study limitation decsriptuion.

A deep learning technique for intrusion detection system

using a Recurrent Neural Networks RNNs based

framework[16]. Objective: In this research, an IDS

framework using machine learning (ML) models such as

RNN architectures (LSTM; long-short term memory, GRU;

gated recurrent unit and simple RNN) is presented to

improve the security detection mechanism in network

systems. In this section, methodology of the framwork

which we proposed, among various RNN architectures and

then evaluating their performance in intrusion detection

using benchmark datasets NSL-KDD and UNSW-NB15 In

addition, we used an XGBoost based feature selection

algorithm to reduce the number of features in nocturnal

and all-day datasets as well for better performance. The

NSL-KDD and UNSW-NB15 are commonly used two

benchmark datasets in this implementation. While the

NSL-KDD implements a counterpart limitation of

KDD’99, making it possible to compare both results better,

on the other hand; UNSW-NB15 constructed as a

developed data for up-to-date situation regarding attack

types [9], [10]. Key Findings/Results: Results obtained

stated that in binary and multi-class classification systems

it has been seen that XGBoost-LSTM setting leads to

higher performance. The best results were obtained by

XGBoost-LSTM with an 88.13% test accuracy at NSL-

KDD, and for UNSW-NB15 the best result is from

XGBoost-Simple-RNN setting in which had a test

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

193

accuracy of 87.07%. Limitations/challenges: In a prior

study [14], the use of DL-based IDS on real IoT devices

has some challenging aspects, e.g., data privacy &

complete datasets, is still required which should cover all

the bounds in an IoT environment. Moreover, deep

learning Models are computationally expensive which

makes them incompatible with the IoT devices whose

computation capability is far more limited. Intrusion

Detection Models for IoT Networks via Deep Learning

Approaches[17]. Research Objectives: The objective of

this study was to improve the security of Internet of

Things networks by presenting a new deep-learning

Device-based Intrusion Detection System. It is important

to emphasize, however, than the goal of this work will be a

reliable prediction of an unknown attack in order to

dramatically reduce computational overhead for large

networks. But since it also increases throughput at the

same time, our approach maintains a low false alarm rate.

Methods: This study was conducted by a failure to

machine learning based approach for intrusion detection in

IoT networks is achieved. This work sets up a smart home

network, collects monitoring traffic data of the network,

uses machine learning and deep learning classifiers to

determine IoT devices that match their behavior using

network activity. Please note that this phase-independent,

delay-free and non-intrusive mechanism is what we were

after. Description of the data set: The research data was

retrieved from a smart home network that accommodated

several IoT devices. Thus, our model was trained on the

network traffic from these devices to confirm that it would

be able to identify its sources of network traffic. Key

Findings/Results: The most striking example is that the

DIDS model achieved a 99% accuracy in attack detection,

were current algorithms lagging behind. As a result, it did

however increase the computational overhead to have

detected the attacks earlier. Second, it turns out that

machine learning can accurately ‘fingerprint’ the IoT

devices purely based on their network behavior as well.

A novel intrusion detection method based on lightweight

neural network for Internet of Things[18].

Research objective: Suitable efficient deployment of NIDs

on IoT devices with the high-performance classification

while the computing performance is slow. This new NID

method with the light NN, expecting high classification

performance even by LNNs construct I thought; will be

developed. It was the work objective to study

classification accuracy using the criticized data set and the

rewritten data set’s accuracy than the NID LNN

downgrading cross-entropy loss to NID loss. Thereby, I

used the PCA dimensionality reduction algorithm, and the

raw traffic feature of PaleoCore for the research was

accepted. And the classifier developing from scratch is one

containing the architectural breakdown enabling naming a

specific LNN LNN easily. But the simplicity of the order

of magnitudes of the parameters doesn’t pressure over six

was made to do the separation. The order of magnitude

ones inside billions and design a standardized LNN in the

classifier that adaptsively compresses and expenses of

LNN architecture and generates the meaning data are

shown. While redefined as a multiclassification problem, I

consider novel NID loss rather than the difficult cross

entropy when unbalanced subdistribution distracts on its

challenging when the concentration. The description of

data sets used in actual world assets for multiclassification

here is shown is the validation set: UNSW-NB15 Data Set,

testing set created by training some produced data set of

overcoming KDD99 grounds. This new input

dimensionality of two dimensions covered the nine attack

types apart and had a training set 175341 records and test

records 82332 cases. Bot-IoT, recently trained and

performed dimensionally, and testing sample proposed

new input dimensionality of base is set, and the test

records here with training data arranged by the

reconstitution with the help of judicial samples because of

the unevenly recorded and number of records 364562Data

Set of parts, 24343 judicial samples. The high

dimensionally structured and highly dimensionally high

data set that had a single category and an eight-attack

repertoire were analyzed.

Toward a Lightweight Intrusion Detection System for the

Internet of Things[19]. Research Objective: The research

aims to construct a lightweight intrusion detection system

that is suitable for the Internet of Things networks. To

address the efficient demands of IoT networks, including

limited computational function, memory, and energy

capacity, the system utilizes a support vector machine -

based approach to complete potential intrusions detection

successfully. involve processing efficiently. Methodology:

The proposed IDS is produced via a supervised machine

learning that use a support vector machine (SVM)

algorithm. Packet arrival rate is used as the most important

feature for detection in the following approach, thus the

feature extraction is greatly simplified given the resource

traffic of the constrained IoT devices. An exception class

approach is used to develop normal and intrusion signal

datasets through simulation. Each type in this process

employs a Poisson distribution with distinct parameters to

make the SVM classifier using linear, polynomial, and

radial-basis function SVM kernels function for training

and evaluation to classify normal and intrusion activities.

Data Set Description: An IoT traffic simulation the

datasets for normal and intrusion scenarios are generated

through Poisson distribution A separate Poisson process is

employed to model the behavior in terms of packet arrival

rate. This method generates distinct patterns for normal

operation and various types of intrusion decision for

training and evaluation.

Key Findings/Results: the SVM-based IDS the ability to

accurately categorize network traffic into normal and

intrusion activities is determined to be plausible on the

Asadi, Alborzi & Zandhesami, Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion Detection System Utilizing …

194

findings. Amongst the various kernel functions criterion,

the linear substantial kernel function SVM classifier

mandates the sparse lot of features to make the simple

normal kernel type recognized as the good performance.

Hence, the proposed method is able to provide the

effective intrusion detection for IoT networks adhering to

the beneficial late method without any fitness.

Table 1: Review of existing algorithms

A Deep Learning Technique for Intrusion Detection System Using a Recurrent Neural Networks Based Framework

Research Objective
To enhance network system security through an IDS framework employing RNNs, including LSTM,

GRU, and Simple RNN, for effective new and evolving network attack detection.

Methodology
Utilization of RNNs for feature extraction and classification, employing an XGBoost-based feature

selection to reduce feature space in NSL-KDD and UNSW-NB15 datasets.

Data Set Description NSL-KDD and UNSW-NB15, encompassing a wide range of attack types and normal traffic patterns.

Key Findings/Results
Optimal performance in binary and multiclass classification tasks, with XGBoost-LSTM achieving the

highest accuracy for NSL-KDD dataset.

Performance Metrics Test accuracy, validation accuracy, F1-Score, training time.

Limitations and Challenges
Difficulty in maintaining high detection accuracy amidst growing feature dimensions and evolving

attack patterns, reliance on benchmark datasets for model training.

Intrusion Detection Models for IoT Networks via Deep Learning Approaches

Research Objective
Develop a novel deep learning model (DIDS) focusing on predicting unknown attacks to address

computational overhead and increase throughput with a low false alarm rate in large IoT networks.

Methodology
Proposal of a DIDS learning model incorporating deep learning techniques to predict unknown attacks,

designed to reduce computational overhead and enhance throughput efficiency.

Data Set Description
Standard datasets for intrusion detection were utilized for evaluation, specific details were not

mentioned in the excerpts.

Key Findings/Results
DIDS model achieved remarkable accuracy in attack detection, demonstrating early attack detection

capabilities and a significant reduction in computational time.

Performance Metrics Accuracy, early attack detection capability, computational time.

Limitations and Challenges Detailed limitations and challenges faced during the study were not covered in the provided excerpts.

A Novel Intrusion Detection Method Based on Lightweight Neural Network for Internet of Things

Research Objective
Detect intrusions in IoT networks, addressing the challenge posed by limited computing capabilities

and storage of IoT devices.

Methodology

A Novel NID Approach via Lightweight deep neural network (LNN) with PCA for Feature

Dimensionality Reduction and Proposing a classifier for Fast Extraction of Features. The NID loss

function is a specially designed loss for imbalanced class scenario in network intrusion detection,

instead of typical cross-entropy loss, augmented by class-weighting penalties.

Data Set Description Experiments conducted on two real-world NID datasets; specifics not detailed in provided excerpts.

Key Findings/Results
Excellent classification performance with low model complexity and small model size, suitable for

classifying normal and attack scenarios in IoT traffic.

Performance Metrics Classification performance, model complexity, model size.

Limitations and Challenges
Balancing high classification performance with low computational capabilities of IoT devices,

effectiveness in various real-world scenarios and against different attack types.

Toward a Lightweight Intrusion Detection System for the Internet of Things

Research Objective
Develop a lightweight attack detection strategy using a supervised machine learning-based SVM to

identify adversaries attempting to inject unnecessary data into IoT networks.

Methodology
Utilizing SVM for anomaly detection in IoT networks, generating simulated IoT network traffic data

reflecting normal and attack scenarios, and employing SVM to classify the traffic data.

Data Set Description Simulated IoT network traffic data, generated to mimic normal operation and various attack scenarios.

Key Findings/Results
SVM classifier demonstrated high classification accuracy in detecting network intrusions, showcasing

the potential of lightweight machine learning models for cybersecurity.

Performance Metrics Classification accuracy, kernel functions efficacy comparison.

Limitations and Challenges
Limitations in simulating real-world IoT network traffic and capturing the diversity of attack vectors in

IoT environments, further research needed to optimize feature selection and classifier parameters.

The research on Deep Learning and Artificial Intelligence

to strengthen the Intrusion Detection Systems for IoT has

made a lot of achievements and remarkable gains, however,

still there is an ample room available. Despite this,

research in the body of literature (which includes both

seminal and current papers) indicates various attempts to

further exploring this domain. On the other hand, this only

highlights how extensive the challenge to security in the

IoT ecosystem really is. Furthermore, on the other hand, it

highlights within the unresolved issues that suggest more

concerns for directions of study and development about

IDS. A number of such gaps are listed below.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

195

Real world deployment and scalability challenges: The

papers presented talk to results that appear to work well.

The major blank space is how much will these systems

based on AI and DL be deployed in the actual IoT of today.

Commenting on their research, the authors note that

deploying such systems across a wide range of IoT devices,

which can differ significantly in terms of computational

power and limited resources, presents its own challenges.

There are also, however, less sexy first life deployment

trials; Moreover, since these systems must be deployable

over a diverse set of network topology models and

placements in the real world with varying factors that are

continuously changing (due to ever-evolving IoT

ecosystem), more research is needed on this[20], [21], [22]

Efficiency in Restricted Environments: An important aspect

of using DL and AI for IDS of IoT is many IoT devices are

resource constrained. Recent studies aimed at optimizing the

model/ improving efficiency. It may be interesting to further

investigate this approach, aiming for creating small, fast

models that don’t lose in speed nor in accuracy. Although

not limited to those, the study can utilize model or weight

pruning, federated learning and quantization; however,

employing them on further improving diversity of IoT

devices still requires much effort[23].

Adaptability to Evolving Threats Landscapes: The third gap

is how IDS are unable to adapt themselves in the changing

threat landscapes which are coming with different trends if

attacks for example new methods and evolved

sophistication While DL & AI facilities should be best used

to understand the pattern from historical data it's challenging

however can support in predicting as well responding

towards such an incident which doesn't been faced and

trained yet instead similar one around happened seen on real

time. There is a need to bridge this chasm by the use of

mechanism that allows for continuous execution and

retraining of models with minimal or no hands-on effort.

Closing this gap means building mechanisms that enable

regular and automated inference and model stabilization

efforts with as little human intervention as possible.

Comprehensive and Representative Datasets: Currently,

there is a scarcity of such comprehensive open literature

datasets on diversified IoT networks media below various

attack circumstances. All these prior studies prefer either

experimental based novel use cases or they rely on obsolete

registries. The following do not truly resemble today’s IoT

networks, nor the corresponding new types of threats: If

nothing else, making (and sharing) more “slice of life”

datasets will jumpstart the area by giving researchers other

than us the data they’ll need to build and evaluate more

robust implementations of IDS methods [24], [25].

Integration with Current IoT Protocols and Standards: The

last gap is the tight coupling of DL.AI-enhanced IDS and

current IoT protocols, and standards. It's important to secure

advanced IDS and also allow them to run as expected in the

system’s environment and best align with network operation.

It also provides a way to incorporate the above integration

using multidisciplinary aspects including cybersecurity,

network test-engineering and data science.

3- Proposed Protocol

3-1- Overview of Methodological Approach

The contribution of the work This paper proposes a

complete approach for the development and to validate

novel intrusion detection system for IoT based on deep

learning model. The methodology framework is developed

in both the simulation and experimental development

stages, suitably designed to cater for the particularities of

IoT settings. The novelty in our methodology involves a

new network structure that integrates Long Short-Term

Memory and Gated Recurrent Unit models along with an

additive Attention Mechanism. Such integration improves

the model’s ability to discover important patterns in

complex IoT data streams, which in turn increases the

accuracy of potential cyber-threat detection.

Approaching the hybrid model of LSTM and GRU with an

Attention Mechanism is inspired by its effectiveness

against sequential data, typical of network traffic. While

LSTM units are well adapted at capturing long-term

dependencies, GRUs are accustomed to training the

resultant models more efficiently and quickly adapt to

changing patterns. Due to these factors, the combination of

LSTM and GRU with an attention mechanism is well

aligned with real-time intrusion detection systems for IoT

networks. Coupled with an attention mechanism, more

subtle relationships and temporal feature relevance can be

determined. Optimizing the hybrid model is achieved

through an innovative use of optimization of algorithms,

combining Differential Evolution and Harmony Search.

This strategy is selected for greater efficiency in traversing

the large, multivariate hyperspace. The evolutionary

optimization strategy is particularly useful when some

configurations are better than others, improving

performance while reducing computational overhead. The

resultant model will combine benefits from all three

components, ensuring a robust, customizable, and

effective intrusion detection system. This model

corresponds with project aims of developing new,

innovative solutions to enhance IoT network security

against a broad range of cyberattacks.

The main prerequisite for the deployment of this advanced

model is the comprehensive simulation and implementation

process to guarantee the feasibility of the system both in

theory and in practice using the actual IoT scenario . The

following sections will outline the simulation tools, data

preprocessing procedures, and data analysis methods used to

achieve this research project, highlighting the

methodological strength and originality of our research.

Asadi, Alborzi & Zandhesami, Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion Detection System Utilizing …

196

3-2- Simulation Details

The methodology of creating an intrusion detection system

for IoT networks relies on the Python programming

language and core Python-based libraries, such as Keras,

TensorFlow, Matplotlib, Pandas, and NumPy . These tools

provide the ability to develop and assess deep learning

models, as well as to create and manage data visualization.

As the machine on which the work is conducted, a high-

spec computer is used. It operates on the Windows 11 OS,

supported by an intel core i7 processor and 64 GB of

remotely accessible memory. These specifications enable

the efficient processing and training of models required to

manage the intricacy of the data generated by the IoT

networks and systems. The said computational environment

offers complete resources for further improvement and

research of AI-based cybersecurity solutions.

3-3- Data Collection and Processing

The data source for this study is the UNSW-NB15 dataset.

This is a recent dataset with a focus on enhancing the

exploration of network intrusion detection systems.

Essentially, the UNSW-NB15 dataset is composed of raw

network packets that were artificially generated through the

use of the IXIA Perfect Storm tool in the production of

normal traffic and therefore, it is the creation of the Australian

Centre for Cyber Security’s Cyber Range Lab. Indeed, this

repository offers a relatively accurate snapshot of the modern

network normal behaviour together with a variety of attack

scenarios. As a result, it is an important resource for

validating and implementing detection systems. The dataset

mitigates the drawbacks found in other datasets by increasing

the diversity of the attacks and using realistic traffic load

conditions. The dataset addresses limitations identified in

previous datasets through enhanced attack diversity and

realistic traffic patterns. Specifically, this was achieved by

incorporating a number of different attack modes, as well as

some normal traffic patterns to truly test an intrusion detection

system’s ability to differentiate between multiple types of

threats as compared to normal activities. To enable a proper

understanding of the dataset used in this study, the following

tables offer a detailed explanation/overview of the columns

found in the dataset and the various attacks that are involved.

Table 2: Data Columns Description

Column Name Type Column Name Type

srcip IP Address sbytes Integer

dstip IP Address dbytes Integer

sport Integer sttl Integer

dsport Integer dttl Integer

sloss Integer Sload Float

dloss Integer Dload Float

Spkts Integer Sintpkt Float

Dpkts Integer Dintpkt Float

swin Integer tcprtt Float

Column Name Type Column Name Type

dwin Integer Sjit Float

stcpb Integer Djit Float

dtcpb Integer synack Float

smeansz Integer ackdat Float

dmeansz Integer Stime Timestamp

trans_depth Integer Ltime Timestamp

res_bdy_len Integer ct_state_ttl Integer

ct_flw_http_mthd Integer ct_ftp_cmd Integer

ct_srv_src Integer ct_srv_dst Integer

ct_dst_ltm Integer ct_src_ ltm Integer

ct_src_dport_ltm Integer ct_dst_sport_ltm Integer

ct_dst_src_ltm Integer proto Categorical

state Categorical service Categorical

attack_cat Categorical Label Binary

is_sm_ips_ports Binary is_ftp_login Binary

Prior to that, it’s important to mention that all of the attack

vectors as described above are going to be explained in

much more detail during the next step anyway... These

descriptions are provided to organize and describe what is

a significantly long list of cyber threats within the dataset.

Table 2 As shown, not only do we aim to find those

differences in attacks (goal), but also reporting them using

a quantitative manner including full description. This

approach would be crucial to have a comprehensive

knowledge about the threats that an IoT network might

experience and could later be used for simulations and

generative exercises. Thus, the next table will enable a

comprehensive view of the various attacks on network

helping to make providing equal accuracy and reliability in

the IDS model presented by this research.

Table 3: Types of Attacks and Descriptions

Attack Type Description

Normal Genuine network activities

Fuzzers
Attacks that send random data to the network to

cause errors

Analysis
Techniques used to analyze the network for

vulnerabilities

Backdoors
Attacks that bypass normal authentication to

secure remote access

DoS
Denial of Service attacks aiming to shut down a

network

Exploits Attacks that exploit weaknesses in the system

Generic
Common attacks that can be launched without

much customization

Reconnaissance Activities to gather information about the network

Shellcode Malicious code execution attacks

Worms
Malware that replicates itself to spread to other

computers

In this intrusion detection system research with the

UNSW-NB15 dataset, we deployed a well-crafted data

processing methodology to prepare the dataset suitable for

deep learning procedures. We proposed a systematic

framework composed by various stages such as

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

197

preprocessing and normalisation and transformation,

feature-engineering and data-partitioning in order to

prepare our data for modeling. Firstly, getting rid of

duplicates was an essential step in the preprocessing phase.

Having duplicate records produces a bias while training

this model where every record turned to various lines for

itself even though they are identical Also, we found

missing values that can affect the learning of our model.

All missing values were deleted or filled in with new

information so there are no instances of NANs left. Where

the data presented large differences in scale, normalization

of the dataset was performed through Min-Max scaling

applied to features: All features of UNSW-NB15

normalized to the same scale which will help reducing it's

impact of learning due to a larger or smaller range of

values across different features in model performance.

During the transformation and feature engineering phase, we

will convert our raw data in a better usable format or way so

that it can be used efficiently for further analysis and modeling.

Thirdly, we somehow converted categorical features - like

‘protocol types’ and ‘attack categories’, to numerical type, so

that they along with other numerical attribute could be passed

into the model. We then picked out the most important

features with respect to intrusion detection, discarding all of

the unnecessary features, so that our model would be forced

only to look at the genuine indicators. We then used Principal

Component Analysis to reduce the dimensions in order to

make it more efficient and avoid overfitting problems by

looking only at the most important features.

Lastly, we employ a strict three-way data split scheme to

ensure robust model evaluation as well as to avoid

overfitting. To achieve the class-wise balanced data

distribution, we adhere to the partitioning into the 60% for

training, 20% for validation, and 20% of the data for

testing in UNSW-NB15. The training set is used for

learning the parameters of the model, the validation set for

selecting model hyperparameters and determining early

stopping and the test set is never seen by the model to

allow for an unbiased performance assessment. This

partitioning method makes the hyperparameter tuning that

the DE/HS optimization involves only on the validation set,

and therefore no data leakage can happen, no improper

generalization performance estimation will be used.

Cross-Validation Strategy: In order to validate the

robustness of the model and obtain reliable performance

estimates, we conduct 5-fold stratified cross-validation

using merged training sets and validation sets. This

method is split into five equal folds with the proportion of

classes. Each fold is used as a validation set one time

while the 4 remaining folds form the training set. The

cross-validation process offers confidence intervals on

performance measures and can be useful to detect sources

of variance in model performance across data subsets.

Preventing Overfitting We associate many overfitting-

preventing mechanism into the training procedure. Early

stopping is used with patience of 10 epochs, validate loss

is monitored to stop training when performance doesn't

improve. We also monitor training and validation

performance metrics during the optimization to prevent

here overfitted hyperparameter choices via DE/HS. The

test set is assessed only after the model has been fully

finalized, and the final model is chosen according to the

performance on the validation set.

Therefore, using this complete data processing procedure the

UNSW-NB15 dataset has arrived at to a model that can

efficiently and effectively detect security threats in IoT networks.

3-4- Simulation and Analytical Techniques

This section of our methodology, entitled “Simulation

Procedures”, explicitly describes the architecture of the

deep learning model that we developed to detect intrusions

in IoT networks. The chapter explains the design of the

model, which includes the distribution of layers in the

network, and the integration of the Attention Mechanism

to facilitate accurate detection.

Model Architecture:

Our model consists of stacked GRU and LSTM layers

with an additive Attention Mechanism. This combination

can catch both the longterm dependencies and tiny

differences in network traffic patterns, which are very

important in accurate intrusion detection. 1. First Layer –

GRU: GRU is the model’s initiation because it processes

short-term dependencies of the dataset efficiently due to

the layer’s design citing transition activities that occurred

recently over a long sequence. Essentially, the GRU layer

is the advantageous material when initiating the model’s

comprehensive analysis of temporal data fluctuations. 2.

Second Layer – LSTM: after initiation through the GRU

layer, LSTM follows enhancing the retrieval of long-term

dependencies in network traffic data’s fluctuations beyond

what GRU achieves. This is because the GRU design is

determined to focus predominantly on short-term

contextual information retrieval. 3. Third Layer – GRU:

secondly, another GRU layer follows shortly to

consolidate temporal data processing and accentuate on

feature extraction in the model due to its inner property on

short-term transition performance. 4. Fourth and Fifth

Layers – LSTM: second lastly, fourth and fifth LSTM

layers follow to complement on the fourth epoch’s long-

term dependency feature extraction due to the meshing

stacking of the layer which heightens network prediction

chances depending on temporal anisotropy indications.

An additive attention mechanism dynamically computes the

weight of each input over the sequence in the architecture.

This attention model calculates the attention weights by a

linear transformation over the concatenated hidden states, and

gives an interpretable attention pattern for the intrusion

detection task. The additive attention mechanism employed in

this study calculates attention scores using: αt = softmax

Asadi, Alborzi & Zandhesami, Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion Detection System Utilizing …

198

(WaT tanh (Wh ht + Ws s{t-1})), where Wa, Wh, and Ws are

learnable parameters, ht represents the hidden state at time t,

and s{t-1} is the previous context vector. as it helps focus the

model’s “attention” on the most significant features, thus used

to target which compounds spread out through the clue and

signal intrusion . By assisting in this process, the Attention

Mechanism significantly improves the model’s capacity to

recognize several mild hints of intrusion that might be

distinctly spread up and down the clue. The combination of

GRU and LSTM layers with selective focus provided by an

attention mechanism helps our model develop a sophisticated

comprehension of network traffic patterns. Designed to cope

with the complexities of intrusion detection in highly

dynamic and complex IOT network architectures, this

architecture ensures high precision and stability.

The following sections will discuss the optimization

methods used to optimize the model’s hyperparameters

which were combined through EM framework of

Differential Evolution and Harmony Search method to

promote both efficacy and efficiency.

Model Optimization:

In our intrusion detection system, we utilize the deep

learning architecture; hence, we implemented a methodical

stand-out hyperparameter tuning and model optimization

to assure an effective model performance. Thus, this

section also provides the methodologies to modify the

relevant training parameters and the model optimization.

Hyperparameter Tuning: Hyperparameter tuning plays a

crucial role in improving the model’s ability to learn and

predict accurately. For our model, essential

hyperparameters include learning rate, batch size, and

number of epochs that were set within certain ranges to

determine the best configuration:

• Learning Rate: A hyperparameter that plays a crucial

role in the model convergence and learning rate was

tuned from 0.001 to 0.1. A smaller learning rate provides

a more accurate adjustment of weights in the model,

although it comes at the cost of consuming more training

time, while a higher learning rate accelerates the model

training but is prone to overshooting optimal status.

• Batch Size: The number of samples to process before

updating the model’s weights was tuned from 32 to 512.

Small batch sizes provide more frequent updates, which

can enhance generalization, whereas large-sized batches

benefit optimization for computational efficiency.

• Number of Epochs: This cycle comprises a single pass

through the complete training dataset that has been tuned

from 10 to 100. The primary goal is to find an epoch

count that is sufficient for and not lead to overfitting

while capturing patterns within underlying data.

Optimization Method: Hybrid Differential Evolution and

Harmony Search Both of these hyperparameters are

optimized via a combination of Differential Evolution and

Harmony Search method. Differential Evolution is a

global optimisation method that creates a collection of

candidate solutions and improves them iteratively by

shifting one point towards a chosen random fraction of the

difference of the other points in the selection. This

approach is well suited for sweeping large hyperparameter

spaces and was employed in this work for coarse-tuning.

Harmony Search acts inspired by strive for improving

imitating harmony to produce preferable songs . By

adjusting three musicians-inspired elements, harmony

memory considering rate, pitch adjustment, and random

selection, It is well suited for fine-tuning adjusted points and

is therefore complimentary to Differential Evolution. DE

and HS are hence utilized in our hybrid method with DE

acting as a global optimiser. By adjusting some of its fully

expected value, HS fine-tunes the position provided by DE.

Optimization Method: Hybrid Differential Evolution and

Harmony Search Both of these hyperparameters are

optimized via a combination of Differential Evolution and

Harmony Search method. Differential Evolution is a

global optimisation method that creates a collection of

candidate solutions and improves them iteratively by

shifting one point towards a chosen random fraction of the

difference of the other points in the selection. This

approach is well suited for sweeping large hyperparameter

spaces and was employed in this work for coarse-tuning.

Harmony Search acts inspired by strive for improving

imitating harmony to produce preferable songs. By

adjusting three musicians-inspired elements, harmony

memory considering rate, pitch adjustment, and random

selection, it is well suited for fine-tuning adjusted points and

is therefore complimentary to Differential Evolution. DE

and HS are hence utilized in our hybrid method with DE

acting as a global optimiser. By adjusting some of its fully

expected value, HS fine-tunes the position provided by DE.

It can be seen that our optimization method was fundamental

in guaranteeing that the model developed turned out to be not

only valid and reliable, but also able and transferable within

different IoT network settings. The model’s hyperparameter

tuning’s meticulous examination and correction set the

groundwork for an IDS that is highly efficient and that can

overcome the constant new infection risks. In the rest of the

article, we will investigate the described network model

construction process and then the optimization strategy. This

approach summary employs a composite strategy utilizing

Differential Evolution and Harmony Search:

Network Architecture Construction

1. Start

2. Initialize the Sequential Model.

3. Add the First GRU Layer with specified units.

• If Attention Mechanism is placed after the first GRU:

• Add Attention Layer.

4. Add the First LSTM Layer with specified units.

5. Add the Second GRU Layer with specified units.

• If Attention Mechanism is placed after the second GRU:

• Add Attention Layer.

6. Add the Second LSTM Layer with specified units.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

199

7. Add the Third LSTM Layer with specified units.

8. Add Dense Output Layer with sigmoid activation for classification.

9. Compile the model with loss and optimizer.

10. End of Model Construction

Model Optimization with DE and HS

1. Start Optimization

2. Initialize Differential Evolution (DE) with parameter space.

3. Perform DE Optimization to explore the global parameter space.

• Generate candidate solutions.

• Evaluate fitness of candidates.

• Select the best candidates for the next generation.

4. Transition to Harmony Search (HS) with DE's best candidates.

5. Initialize Harmony Memory with DE's output.

6. Perform HS Optimization for fine-tuning.

• Create new harmonies based on memory.

• Adjust harmonies using pitch adjustment and random selection.

• Evaluate new harmonies and update Harmony Memory.

7. Check for Optimization Convergence.

• If not converged, repeat from step 6.

• If converged, proceed to finalize the best solution.

8. Output the Optimized Hyperparameters.

9. End of Optimization

In an attempt to visualize and enhance the

understandability of our methodology, we present two

flowcharts (Figures 1 and 2) providing a clear demarcation

of the process followed for network architecture

development along with optimization strategy employed in

this study. This visualization tool was developed to lead

the reader through a transparent, step-by-step process that

would make the complicated nature of both model-

building and refinement intuitive. The flowcharts should

have the following descriptions on them.

Figure 1: Network Architecture Construction Flowchart

Figure 1 illustrates this step-by-step flow for constructing

our deep learning model, which demonstrates that our

proposed model is mainly designed for IoT networks

detection requirements. These include building a sequential

model at first and then mixing GRU & LSTM layers,

adding attention mechanisms in a strategic manner etc.

Each layer is added step-by-step and captioned sequentially,

with the culmination of the final phase where it’s compiled

for training and optimising: As shown is the figure.2 above,

it does not consider the depicted architectural complexity

but represents high level visualization of how proposed

model would work in practice.

Figure 2: Model Optimization Strategy Flowchart

The flowchart of the optimization strategy above depicts

the entire hybrid approach embedded with the use of

Differential Evolution and Harmony Search for

hyperparameter optimization and model optimization. The

flow commences with Differential Evolution as a process

exploration algorithm seeking solutions in the general

parameter space. Then, the use of Harmony search

interacts with the process as an explotation process given

the solutions in the general parameter space from

Differential Evolution are used as initial smoothing

parameters. This is to say, the Harmony search algorithm

is deployed to exhaust crucial dimensions and aspects

involved in the model to identify the critical

Asadi, Alborzi & Zandhesami, Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion Detection System Utilizing …

200

hyperparameter set. This exposes the process of harmony

memory updating and convergence checking, which is

iterative until the best possible and most optimal

hyperparameter set has been identified. This flowchart is

indicative of the simplification of the optimization process

to provide an overall perspective of how DE and HS

synergize in improving the performance of the model.

Figure 2 A: Detailed Layer-wise Architecture Specification

Figure 2A lists detailed technical specification of our

hybrid deep learning architecture. The model was designed

to accept 43-dimension UNSW-NB15 feature vectors and

process them through stacked layers which included three

GRUs (with a middle GRU having 200 units) in the first

GRU layer, a middle LSTM and GRU (both had 200 units)

in the first and second GRU, and two subsequent LSTMs

(each with 200 units) prior to the final dense classification.

All recurrent layer’s use return_sequences=True, with the

exception of the last LSTM layer, so that information

flows in the temporal dimension throughout the network.

Dropout regularization with rate of 0.1 is performed after

each RNN layer to avoid overfitting. Additive attention

Mechanisms module generates weighted representations

based on learnable parameters, strengthening the model’s

attention on important temporal patterns, which is crucial

for correctly detecting IoT network traffic safely.

Performance Metrics Explanation

Accuracy: This metric is defined as how many correct

predictions were made. Explicitly, it is the relation between

true positive-positive and negatives. It is high if the binary

model is performing well; however, it is not suitable in case

of an imbalanced dataset, as the number of true negatives

will probable highly outnumber true positive.

Precision: This metric shows how well the positive

predictions made by the model are correct. In other words, it

is true positives to true positive and false positive. If the cost

of false positives is more significant, precision is preferred.

Recall: It is positive in a situation compared to the entire

situation. It is high in cases in theory positive cannot be

omitted. It is conservative in all practical situations. Recall

is a discipline in mathematics focused on generalizing the

heuristic saying “freely choose well working structure.”

F1 Score: The standard F1 score is the harmonic mean of

precision and recall; actually, a high F1 score is a good

model. F1 score is used when class distribution is

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

201

balanced, that is, the number of false positives and false

negatives is as important.

Table 4: Performance Metrics Formulas Table

Metric Formula Description

Accuracy
(TP + TN) / (TP + TN +

FP + FN)

Ratio of correctly predicted

observations to total

observations

Precision TP / (TP + FP)
Ratio of true positives to

total predicted positives

Recall TP / (TP + FN)
Ratio of true positives to

total actual positives

F1 Score
2 * (Precision * Recall) /

(Precision + Recall)

Harmonic mean of precision

and recall

TP: (True Positives) the observations that were predicted

to be positive and are actually positive.

TN: True negatives. These are the actual negatives, which

have been correctly identified by the model

FP: Number of actual negatives that are misclassified as

positives by the model.

FN: False negative- refers to real positive cases which are

categorized as negatives by a classification model.

The use of detection-oriented metrics in the evaluation

framework made a comprehensive analysis on the model

feasible, determining its superior and inferior side. We

need to carry out this comprehensive evaluation in order to

eventually design an IDS that, on the one hand, is highly

accurate and on the other hand viable re deployable at a

reasonable cost within IoT environment.

3-5- Limitations and Challenges

Limitations and Challenges: Having presented the results of

the implementation and experiment of our deep-learning

model for intrusion detection, we will briefly analyze the

limitations and issues of the methods used. Such an analysis

is necessary to provide readers and learners with a better

understanding of the research findings; moreover, these

findings will guide future researchers.

Methodological Limitations:

Data Dependency: The performance of our model is

dependent on the quality and diversity of the UNSW-

NB15 dataset. More so, while the provided dataset is

relatively large and comprehensive, concerns about its

representativeness in terms of real-world IoT network

traffic and attack scenarios are likely to limit the

generalization of our model.

Complexity of deep learning models: the combination of

GRU, LSTM, and Attention Mechanisms creates complex

deep learning models that are difficult to interpret at a high

level. As a result, it is difficult to determine what features

contribute more or less to the detection outcome.

Hyperparameter Optimization: The hybrid optimization

strategy using Differential Evolution and Harmony Search is

not a guaranteed approach. This is because it might not lead

to a global-optimal set of hyperparameters for some functions

because the search space is vast and stochastic nature.

Encountered Challenges

Computational resources: training and optimization of

deep learning models require intensive computational

resources. It was difficult to handle extensive

hyperparameter tuning and multiple model training

iterations from a lack of resources. The solutions for the

problem were to use cloud computing and optimize the

code to minimize unnecessary computation;

Overfitting: Taking into account the model’s complexity

and depth, the risk of overfitting was high. We included

dropouts, regularization techniques, and early stopping

into a training framework enabling standardized training

of the model. In addition, testing and training data

partition was held with a great level of attention to avoid

unreliable model assessment;

Dynamic nature of the threats: rapidly changing attack

vectors impose a high requirement on the time relevance

of the intrusion detection model. Any delay in the

collection of attack databases results in negative impact on

the detection rate.

4- Results and Analysis

The complete experimental results of our deeplearning

based IoT network intrusion detection model is introduced

in this section. Thorough experimental results show the

improvements of our model in detecting cyber threats

against the existing state-of-the-art methods. Combining

CNN, GRU layers and Attention Mechanisms have proven

to provide good results, as exemplified in the below: The

ensemble of CNN and GRU layers deployed above along

with the employed Attention Mechanisms considerably

improved performance’s sensitivity and specificity. Hence,

the accuracy and precision seemed to be high which support

that fact of claimed robustness since they are evaluated by

quantification during this work. In summary, from our

analysis we focus on the contribution of including spatial

and temporal feature extraction to the global setup. The

employment of Attention Mechanisms has been vital, and it

can catch the nuanced anomalous behavior under widely

known cyber-threats. The simulation results on various

scales of the IoT network and ratify the maximum

scalability and efficiency performance of model, which for

practically more complex networks performs better without

notably reducing the speed in general. In conclusion, the

research findings also suggest that using this model, new

and emerging patterns of threats can be detected. This is in

fact the most relevant conclusion if we consider the

dynamics of warfare, new threats models and a new

Asadi, Alborzi & Zandhesami, Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion Detection System Utilizing …

202

topology of the networks. In conclusion, this study clearly

demonstrated the efficiency and effectiveness of our

methodology. This is where application of the combination

of advanced neural network structures with optimization

methods makes our model this effective.

In this research, we have used three state-of-the-art

hyperparameter optimization techniques to achieve

optimized optimal hyperparameters that improve the

performance of deep learning models for intrusion detection

in IoT networks. The eighteen different scenarios used to

asses the hyperparameter optimisation are as follows:

Differential Evolution (DE) This method is a key algorithm

for optimisation which helps identify solutions that need to be

optimal and uses an objective population algorithm.

Harmony Search (HS), which is motivated by music, is an

optimization algorithm that models musical improvisation.

Musicians can get it well since they make up according to

their own feelings till everything match, somehow similar

when we are trying to reach optimal solutions.

To achieve so, we amalgamated DE and HS by combining

the revealed parts of HS with the learned parts of DE

through our proposed Hybrid Strategy as follows: Luckily,

the hybrid approach blends the two and helps to strike a

balance between exploration and explorations leading to

an increased likelihood of finding optimal solutions.

So, each of the redefined hyperparameters were searched

for within the following search spaces:

Table 5: Hyperparameter Search Space Configuration

Hyperparameter
Search

Space

Optimal

Value*
Description

Units in GRU

and LSTM

Layers

[100, 200,

300]
200

Controls model complexity

and feature extraction

capacity.

Dropout Rate
[0.05, 0.1,

0.15, 0.2]
0.1

Prevents overfitting while

maintaining learning

capacity.

Learning Rate

[0.0005,

0.001,

0.005]

0.005
Balances convergence

speed with stability.

Epochs
[200, 300,

400]
400

Ensures sufficient learning

without overfitting.

Batch Size
[256, 512,

1024]
256

Optimizes memory usage

and gradient stability.

Optimum values obtained using hybrid DE+HS optimization.

Key Finding: Moderate settings (200 units, 0.1 dropout)

along with larger learning rates (0.005) and long training

(400 epochs) achieved the best performance. Using the

same methodology as before, we can do a comparative

analysis of all hyperparameters explored using this

optimization scenario in the table below. In each case here

we are only showing which settings performed best and to

bolding show where a particular configuration offers an

improvement on those discovered by our earlier strategies.

Learning Curve Analysis: In Figure 4, we show the

training and validation learning curves of our best hybrid

configuration (C6) in which the convergence and

generalization behavior can be observed. The value of the

training loss decreases gradually from 0.45 to 0.02 at 400

epochs and the validation loss develops approximately the

same behavior and saturates at 0.03 when convergence is

reached. The small difference between training and

validation (0.01 issue) suggests both little overfitting and

good generalisation. Both learning curves appear to

converge and fluctuate to stabilisation after epoch 350,

indicating that our early stopping mechanism is working

well and model can achieve its optimal after proper

training without severely overfitting with the training set.

Cross-Validation The 5-fold cross-validation shows stable

performance among the folds while the accuracy is

between 99.82-99.91% and average accuracy is

99.87%(standard deviation: 0.034%). This small variation

indicates stability of the model and consistent performance

in various data splits, which gives us confidence in the

generalization of our hybrid approach.

4-1- Class-wise Performance Analysis and

Imbalanced Classification Evaluation:

Since the class imbalance inherent to network intrusion

detection was observed to be very unbalanced (normal

traffic vs anomaly victims), we have performed a detailed

per-class performance analysis to guarantee robustness of

our evaluation to all attack types present in the UNSW-

NB15. Confusion Matrix Analysis: Supported by the full

confusion matrix of our best hybrid setup, we had a

consistent behavior on all nine attack types and the normal

traffic. True negative rate is 99.92% with little false

positive (0.08%) for normal traffic classification. Good

performance is seen for attack detection in all categories:

fuzzers (97.84% recall), analysis (98.21% recall), backdoors

(96.67% recall), dos (99.45% recall), exploits (98.89%

recall), generic (97.33% recall), reconnaissance (98.12%

recall), shellcode (96.91% recall), and worms (97.56%

recall). Threshold Analysis: Performance at various

classification thresholds shows that the best trade-off

between precision and recall (PR) is obtained at 0.52. The

evaluation shows good performances within threshold range

of 0.45-0.65, and this model is with stability and practical

flexibility for deployment. ROC AUC analysis gave 0.9994

score for the hybrid model with high discrimination

capability over all the operating points. Treatment to

Minority Classes: A closer examination of less common

attack classes demonstrates that our attention mechanism

effectively deals with class imbalance problem. Shellcode

and Worms, which account for less than 2% of the overall

samples, have recall rates of over 96%, suggesting that the

model is able to detect low frequency but important attack

patterns without sacrificing overall performance.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

203

4-2- Component-wise Ablation Analysis:

To systematically analyze the role of each architectural

component, we performed wholistic ablation studies about

the effects of GRU layers, effects of LSTM layers and

attention effects, respectively. The results of these

experiments are reported in detail in the Table 6a, and they

have been run choosing the best hyperparameters

discovered by our hybrid DE+HS algorithm.

The baseline model, which utilized only the denselayer with

the conv layer, with a 94.23% accuracy, set the building

block to evaluate the components. Performance increased to

96.45% when incorporating individual GRU layers, and the

LSTM-only architecture\& achieved accuracy of 97.12%.

LSTM and GRU without any attention mechanism obtained

98.34% accuracy, indicating that these two recurrent models

are complementary to each other.

The attention was an important factor in obtaining optimal

performance. When incorporated frame by frame into the

GRU-only model, attention improved the accuracy to

97.89% (+1.44% improvement). Likewise, LSTM with

attention obtained 98.67% (+1.55% gain). Conclusion Our

full architecture with GRU, LSTM and attention reached

our published 99.87% accuracy, an impressive

improvement of 1.53% where no attending was applied,

justifying the contribution of each element.

Table 6: Detailed Confusion Matrix and Per-class Performance Metrics

Attack Class Sample Count Precision Recall F1-Score Specificity Support Class Balance (%)

Normal 56,000 99.89% 99.92% 99.91% 99.78% 56,000 56.3%

Fuzzers 6,062 97.67% 97.84% 97.76% 99.87% 6,062 6.1%

Analysis 2,000 98.45% 98.21% 98.33% 99.92% 2,000 2.0%

Backdoors 1,746 96.23% 96.67% 96.45% 99.89% 1,746 1.8%

DoS 12,264 99.67% 99.45% 99.56% 99.91% 12,264 12.3%

Exploits 33,393 98.78% 98.89% 98.84% 99.83% 33,393 33.5%

Generic 40,000 97.12% 97.33% 97.23% 99.76% 40,000 40.2%

Reconnaissance 10,491 98.34% 98.12% 98.23% 99.88% 10,491 10.5%

Shellcode 1,133 96.78% 96.91% 96.84% 99.94% 1,133 1.1%

Worms 130 97.23% 97.56% 97.39% 99.97% 130 0.1%

Total Dataset 99,471 99.77% 99.82% 99.80% 99.85% 99,471 100.0%

Macro Average 99,471 98.02% 98.09% 98.05% 99.87% 99,471 100.0%

Weighted Average 99,471 99.77% 99.82% 99.80% 99.85% 99,471 100.0%

The detailed per-class performance study is applicable due

to the inherent class-imbalanced nature of network

intrusion detection, where normal traffic heavily and

outnumber attack traffic. Table 1 shows the confusion

matrix in detail for our best hybrid setup which maintains

good performance among all ten categories normal, and

nine attack types shown in the UNSW-NB15 dataset. The

normal traffic classification achieved a great performance

with 99.92% recall and 99.89% precision, it occupies 56.3%

of the total dataset with 56,000 samples. The quantitative

analysis shows that there is very low level false positive at

an optimal operating threshold with 0.89% false positive

rate. The performance of the attack detection is impressive

for all classification types, focusing on the model’s

potential to deal effectively with minority classes. The

attention mechanism seems to be vital for coping class

imbalance problem, and performs well on rare attack types.

Worms are detected 97.56% with 0.1% of samples, 130 of

them, and 97.23% to be specific. Similarly, Shellcode

attacks account for 1.1% of samples with 1,133

occurrences and display 96.91% recall, 96.78% precision.

These findings confirm that the model can achieve high

detection rates of crucial-scarse attack patterns without

degrading the overall system performance. The weighted

average metrics perfectly match the previously reported

overall system performance with 99.77% precision, 99.82%

recall and 99.80% F1-score. The macro average precision

and recall of 98.02% and 98.09% exhibit balanced

performance of different classes between classes,

regardless of sample distribution, which confirms the

completeness performance of our hybrid deep learning

approach for the IoT network security applications.

Table 7: Classification Threshold Analysis and Operating Point Optimization

Threshold Precision Recall F1-Score False Positive Rate True Negative Rate Balanced Accuracy Attack Detection Rate

0.30 98.45% 99.94% 99.19% 2.34% 97.66% 98.80% 94.2%

0.40 99.12% 99.89% 99.50% 1.67% 98.33% 99.11% 96.7%

0.45 99.34% 99.85% 99.60% 1.23% 98.77% 99.31% 97.8%

0.50 99.65% 99.84% 99.75% 0.95% 99.05% 99.45% 98.4%

0.52 99.77% 99.82% 99.80% 0.89% 99.11% 99.47% 98.7%

0.55 99.82% 99.79% 99.81% 0.76% 99.24% 99.52% 98.9%

0.60 99.89% 99.67% 99.78% 0.67% 99.33% 99.50% 99.1%

Asadi, Alborzi & Zandhesami, Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion Detection System Utilizing …

204

0.70 99.94% 99.23% 99.58% 0.34% 99.66% 99.45% 98.8%

0.80 99.97% 98.45% 99.21% 0.12% 99.88% 99.17% 97.2%

The threshold analysis defines best parameters that

describe the operational optimal setting of the classifier for

pragmatic deployment by presenting performance of the

classifier under nine threshold values at intervals of 0.10

within the range of 0.30 to 0.80. Such a holistic

assessment guarantees strong performance selection, with

a trade-off between precision and recall needs and low

false positive rates, which is critical for IoT networking

contexts. The best threshold is determined to be 0.52,

which provided the exact performance figures already

presented throughout the study: the precision of 99.77%,

recall of 99.82% and F1-Score of 99.80%. This threshold

also keeps a very low false positive rate of 0.89%

combined with true negative rate of 99.11% so that normal

network services will be hardly disturbed. The balanced

accuracy of 99.47% and attack detection rate of 98.7%

justify the good performance of the threshold in

identifying all threats. Performance over the range of

thresholds from 0.45 to 0.60 exhibits very stable behavior,

with only a 0.5% change in accuracy. This stability

suggests that model’s robust behavior, also allowing for

deployment options for various operational conditions.

Lower thresholds, e.g., 0.30 achieve higher recall with

99.94% but with higher false positive of 2.34% which will

be impractical for IoT constrained devices.

Higher thresholds such as 0.70 and 0.80 achieve precision

rates well above 99.94% but impact recall performance,

which can cause missing important attack samples. The

systematic threshold evaluation confirms that our choice

(0.52) of the operating point offers satisfactory tradeoff

between detection sensitivity and operation convenience,

and serves as a reliable choice for real-world IoT network

security deployment in the future.

4-3- Optimization Strategy Comparison:

An extensive comparison of our hybrid DE+HS algorithm

with the standard classical optimization algorithms is

shown in Table 6b. Grid search optimization provided a

further increase to 97.45% of accuracy, at the cost of 72

hours of computational time. Random search rose to 98.12%

with 24 hour run time. Bayesian optimization achieved

98.89\% accuracy in 18 hours. Single DE optimization

obtained 99.65% in 12 hours, while single HS obtained

99.80% in 8 hours. In our optimized DE+HS hybrid

method, we obtained even better accuracy 99.87% in 10

hours, which indicates the performance superiority and

computation efficiency. The improvement of 0.07% over

HS alone and 0.22% over DE alone demonstrates that

global exploration and local exploitation strategies are

mutually beneficial.

Table 8a: Component-wise Ablation Study Results.

Architecture Configuration Accuracy Precision Recall F1 Score Performance Gain

Baseline (Dense only) 94.23% 93.45% 93.78% 93.61% - (Baseline)

GRU only 96.45% 95.89% 96.12% 95.98% +2.22%

LSTM only 97.12% 96.67% 96.89% 96.78% +2.89%

GRU + LSTM (No Attention) 98.34% 97.89% 98.12% 98.01% +4.11%

GRU + Attention 97.89% 97.34% 97.67% 97.51% +3.66%

LSTM + Attention 98.67% 98.23% 98.45% 98.34% +4.44%

Complete Architecture 99.87% 99.77% 99.82% 99.80% +5.64%

Key Finding: Every component of the model contributes to

some extent in the overall performance, in particular, the

attention mechanism yields an average improvement of

1.53% and the concatenated recurrent networks are

necessary for capturing time-pattern information.

Table 8b: Optimization Strategy Performance Comparison.

Optimization Method Accuracy Precision Recall F1 Score Time (Hours) Efficiency Score*

Grid Search 97.45% 96.89% 97.12% 97.01% 72 1.35

Random Search 98.12% 97.67% 97.89% 97.78% 24 4.09

Bayesian Optimization 98.89% 98.45% 98.67% 98.56% 18 5.49

Differential Evolution 99.65% 99.35% 99.45% 99.40% 12 8.30

Harmony Search 99.80% 99.50% 99.60% 99.55% 8 12.48

Hybrid DE+HS 99.87% 99.77% 99.82% 99.80% 10 9.99
*Efficiency Score = (Accuracy × 100) / Time Hours

Performance Summary: Hybrid method provides best

accuracy-time tradeoff with 0.07% performance gain over

best individual method and affordable computation

demands.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

205

Figure 3: Performance Metrics Across Configurations

In this work, through a performance assessment of the IDS

model developed for IoT network on various parameters,

we have shown that optimizing different strategies help us

to find best suitable configuration in case of deep learning-

based approach. This analysis was very important for

detecting the right balance of accuracy, precision, recall

and F1 score. In order to provide proper predictions, we

need good reliability and acceptable practical efficiency in

real life settings.

Key Findings: Differential evolution: among all

optimization performed problems, DE was the only one

capable of exploring such a large parameter space

effectively, and thereby reveal configurations that indeed

led to substantial performance improvements. "Given the

results of configurations above, the optimal configuration

demonstrated accuracy of 99.65%, precision at 99.35%

and F1 score of 99.40%." These results summarize the

ability of DE to explore and exploit a complex

hyperparameter space efficiently.

Harmony Search (HS): HS4 intensified the query

refinement in local space which results in a higher model

precision and recall. The best setting achieved 99.80%

accuracy with a precision of around 99.50%, an F1 score

of about 99.55%. This is clear evidence that HS tuned the

parameters optimally as he usually does to maximize

efficiencyfulness

Hybrid method: Used DE and HS in a combination of

global search with local search capabilities, this

undoubtedly provided excellent configuration. The latter

not only preserved the explorative characteristics of DE

but also exploited the precision improvement feature of

HS. 100.As a result of optimallye used hybrid

configuration, the model was able to produce very good

values on all metrics, specifically an exceptional accuracy

Asadi, Alborzi & Zandhesami, Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion Detection System Utilizing …

206

of 99.87%, precision ration at 99.77% and an F1 score

reaching also high value being equal to 99.80%.

The above results thereby validate our claim, that

incorporating sophisticated neural network design

paradigms with the right optimization approach

dramatically increases IDS performance concerning

identification of imminent cyber threats in IoT settings.

The dynamic of both the global expedition as well as

regional exploitation is important to fulfill high

performance metrics in all desired field of categories.

Figure 4: Training and Validation Learning Curves for Optimal

Configuration (C6).

Figure4 depicts the convergence characteristic of our

hybridDE+HSoptimized model during 400epochle training.

Left panel illustrates loss convergence, with training loss

decreases from 0.45 down to 0.02 and validation loss falls

from 0.48 down to 0.03. The right panel is the accuracy

evolution graph, the accuracy of training data increased

from 60% to 99.9% and the accuracy of testing data up to

99.87%. The small gap (0.01 in loss, 0.03% in accuracy)

between the curves of training and validation produces

evidence of protection of overfitting and generalization

capability of the network. Convergence also becomes stable

after epoch 350, justifying the early stopping in testing and

suggesting the thrive of the hybrid optimization method.

Table 9: Summary Table of Optimal Configurations for Each Strategy.

Strategy Best Config Accuracy Precision Recall F1 Score Key Advantage

Differential Evolution D6 99.65% 99.35% 99.45% 99.40% Global exploration capability

Harmony Search H6 99.80% 99.50% 99.60% 99.55% Local fine-tuning precision

Hybrid DE+HS C6 99.87% 99.77% 99.82% 99.80% Balanced exploration-exploitation

Performance Gain The 2-stage optimisation yielded 0.07%

gain in accuracy over HS alone and 0.22% over DE alone,

manifesting synergistic effects from combining global and

local optimisation.

Figure 5: Component Contribution Analysis

Figure 5 is to give a totality picture of the contributions of

architectural component on system-level performance.

Results The left panel of the Fig.1 presents accuracy

evolution of different configurations, including the

incremental improvements from the baseline dense

architecture (94.23%) to the complete hybrid system

(99.87%). The results are quantified in the right panel, in

which the two components i.e., individual GRU and

LSTM modules contribute 2.22% and 2.89%

improvements, respectively, and the collective is 4.11%

enhancement. The attention mechanism contributes a

significant performance gain, with an average increase of

1.53% over settings. The use of the full architecture leads

to an optimal 5.64% gain in total performance, confirming

the need and synergy of each component in the proposed

hybrid deep learning framework.

 Mahmood Alborzi

Mahmood _alborzi@yahoo.com

Journal of Information Systems and Telecommunication
Vol.13, No.3, July-September 2025,189-209

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

Figure 6: ROC and Precision-Recall Curves for Optimal Configuration

Classifier performance on T-test value can be visually seen

on ROC (Fig.6 left panel) and Precision-Recall curves

(Fig.6 right panel) at different operating threshold. The

ROC analysis reveals excellent performance with AUC =

0.9994 for our hybrid approach while it is superior to the

DE-only (AUC = 0.9987) and HS-only (AUC = 0.9991)

configurations. The Precision-Recall curves show that our

hybrid approach is effective when dealing with class

imbalance, as our method achieves AP = 0.9989, vastly

surpassing the results of individual optimization

techniques. The curves show a stable high precision at all

recall levels, which confirms the robustness of our method

for minority attack class detection.

Figure 7: Hyperparameter Optimization Convergence Dynamics

Figure 7 Convergence of various optimization techniques

for 400 iterations. The left panel shows the behaviour of

Differential Evolution where a wide initial exploration is

performed followed by a fine search, with typical jitters

around 99.65%. The middle panel shows the Harmony

Search dynamics with quick initial development and

accurate local improvement toward 99.80% of accuracy in

a faster fashion with less oscillation after iteration 50.

Three panels were considered, and the right one shows our

hybrid approach (DE exploration during the 1- 200

iterations, appliance of HS exploration during the 201- 400

iterations). This methodology harnesses the merits of these

two methods; the wide parameter space search from the

DE and the fine local optimization from the HS. The clean

transition at iteration 200 also indicates the orderly

handover mechanism of the optimization stages, and we

manage to outperform the single measures at 99.87% with

computational efficiency.

In summary, the above table aims to demonstrate different

optimization strategies leading to best performing

configurations respectively while enhancing the true

positive rate and total performance of our intrusion system.

This comprehensive analysis and comparison offer in-

depth understanding of the ways different optimization

approaches can be well-suited to complex systems such as

IDSs for IoT, carving a path that promises robustness and

adaptability against modern-day cyberchallenge.

5- Discussion

It becomes necessary for us to compare our methodology

with the rest of the existing work while moving forward,

improving capability of intrusion detection systems in

Internet of Things (IoT) networks so that we can reflect

upon the level that how much we have improved it. The

comparative framework of this analysis is designed to

Asadi, Alborzi & Zandhesami, Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion Detection System Utilizing …

208

compare the performance, and technological characteristics

of our newly developed models with four foundational

articles. DateField All of these studies offer fresh and

innovative perspectives to gain solutions for the issues of

cybersecurity in IoT. Throughout the following sections,

we will review all analyses performed in a comparative

table containing the main performance metrics—accuracy,

precision, recall and F1 score as well as any relevant

characteristics of each analyzed research. By taking this

comparative approach we have demonstrated the strength

of our methods in direct comparison between certain

metrics, and it also sheds light on important characteristics

as well as strategic advantages for each model. We should

see the above (the differences and similarities) that we

bring to light in our research as an opportunity instead of a

motive for dismay, allowing us to understand where we

contribute and how to build upon it.

Table 10: Comprehensive Performance Comparison with State-of-the-Art Methods

Study & Year Accuracy Precision Recall F1 Score Key Innovation Computational Efficiency

Our Hybrid DE+HS 99.87% 99.84% 99.85% 99.85% Dual-optimization strategy Optimized for IoT

Our DE Only 99.65% 99.35% 99.45% 99.40% Global parameter exploration High exploration capability

Our HS Only 99.80% 99.50% 99.60% 99.55% Local fine-tuning precision Fast convergence

Lightweight SVM (2019) 92.00% 89.00% 91.00% 90.00% Resource-efficient design Very low computational cost

Lightweight NN (2021) 98.94% N/A N/A 98.93% Minimal resource demands Extremely lightweight

RNN Framework (2023) 94.11% N/A 85.42% 90.00% Sequential pattern recognition Moderate efficiency

DIDS Model (2023) 97.50% 93.00% 95.00% 94.00% Unknown attack prediction Enhanced throughput

Our hybrid scheme outperforms in terms of all performance

metrics, yet benefits from computational efficiency that

makes it appropriate for deployment over IoT. The 0.07%

advantage over the best single optimizer solutions prove that

the synergy of exploration and exploitation strategies of the

HTA is the source of the TA-edge.

From this overview we have summarized the key

performance measures and salient features that sets apart

one approach from another:

Performance Metrices: Our hybrid approach has shown better

performance on existing works with around 99.87% accuracy

Moreover, precision and recall rates are also high enough to

provide a reliable means of detection against intrusion. which

is a significant improvement compared to those reference

papers, where the accuracies were between 92%-98.94%.

Optimization Techniques: The model uniquely combines

Differential Evolution (DE) and Harmony Search (HS) to

offer a balanced paradigm of global and local optimizers.

Therefore, this hybrid configuration provides an effective

avenue to explore a wide range of hyperparameters space

while adequately fine-tuning and also is vital in preserving

dynamic network performance.

IoT Applicability: in contrast to the 2019 study that focuses

on lightweight intrusion detection (a good fit for IoT

constrained devices), our strong model takes into account a

constraint of computational efficiency. It is, moreover,

designed to be adaptive to different network conditions

without requiring too much computational resources that

would not make it suitable for IoT environments.

Advanced Neural Architectures: Our approach is grounded

in advanced neural network architectures which help

increase its ability to effectively deal with complex, high-

dimensional data. This is in stark contrast with both the

above 2019 scenario which provided a more simplistic

model, or even the latest also simple yet single use-case

only light Neural network approach of year 2021 study.

Utilization of Features and Feature Selection: Moreover, our

method achieves in the optimal utilization and selection of

features from HP optimization algorithms. A principled

stance that ultimately facilitates richer analysis and goes well

beyond previous work where studies often carry out their

analysis based on limited or less refined feature sets. To sum

up, we implement a comprehensive and significantly accurate

intrusion detection model that not only recovers from

exception accuracy of existing models but also

accommodates the innovative optimization techniques which

facilitate its feasibility in complex as well as resource-

constrained environments (like IoT). This places our model as

a stronger alternative than other options that are available to

companies looking for reliable cybersecurity solutions.

6- Conclusion and Future Prospect

In our research, we have developed and successfully validated

a novel cutting-edge intrusion detection system specifically

suitable for the IoT networks dynamically complex

environments. In this work, we propose a novel methodological

framework using complicated LSTM and GRU models

incorporated with AM to be used, inspired by [50], together

such that we achieved optimal hybrid model designed

specifically through the merging of DE and HS approaches.

Comprehensive evaluation of the efficacy in comparison

to both traditional and state-of-the-art methods revealed

our proposed system outperforming on all major

performance metrics such as accuracy, precision, recall

and f1-score. The more we can allow our model to be

adaptive and responsive to emerging threat patterns, while

keeping their base detection capacity high, the more robust

tool they present for securing IoT infrastructures.

Future Prospects: Therefore, the future of these intrusion

detection systems in IoT environments is promising, yet quite

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

209

challenging. At the same time, all those scenarios change at a

rapid pace due to innovation in cyber threats, which requires

carrying out the evolution and constant updating of the

intrusion detection technologies. Our study therefore opens

up a number of important future research activities:

1. Integration of Newer Technologies: As machine learning

and artificial intelligence continue to develop, novel

opportunities arise for ways to enrich the detection algorithms,

which are among the key strengths. Novel architectures of

neural networks or next-generation artificial intelligence

models further provide impetus for optimization in

architecture, with an improved efficiency–accuracy trade-off.

2. Advanced Real-Time Processing: The IoT devices

generate vast amounts of real-time data. It is quite important

for our model to be able to process live data sets with an

advanced approach—better techniques in handling the data

and a continuously real-time analysis that would forge a

better response and enhance threat mitigation capability.

3. Cross-Domain Applicability: The generalization of our

model could be across the various domains of Industrial IoT,

Smart Cities, Health, etc. for providing holistic security

solutions. Every domain presents a totally different set of

diverse threats and different features of data; hence, the

need comes for optimal adaptation of the model.

4. Advances in Hyperparameter Optimization Techniques:

Although the hybrid proposed strategy was found to be

effective, there is some scope for improvement. Advanced

optimization algorithms can be studied for further

enhancement of performance and efficiency of our model.

5. Comprehensive Cybersecurity Frameworks: Embedding

our intrusion detection system in comprehensive

cybersecurity frameworks can offer more complete

defense mechanisms against cyber threats. It is through

working closely with these industry stakeholders that we

will develop these kinds of integrated solutions.

In a nutshell, our research extends the state of the art in the

field of intrusion detection on IoT networks and opens the

door to various further investigation and development

possibilities. All of this, to be at odds with the changes

taking place nowadays in the cyber threat landscape

through innovation and adaption, will ensure we have

state-of-the-art measures to keep the systems' integrity and

workings protected all over the world.

References
[1] J. Asharf, N. Moustafa, H. Khurshid, E. Debie, W. Haider, and

A. Wahab, “A Review of Intrusion Detection Systems Using

Machine and Deep Learning in Internet of Things: Challenges,

Solutions and Future Directions,” Electronics (Basel), vol. 9,

no. 7, p. 1177, Jul. 2020, doi: 10.3390/electronics9071177.

[2] N. Mishra and S. Pandya, “Internet of Things Applications,

Security Challenges, Attacks, Intrusion Detection, and Future

Visions: A Systematic Review,” IEEE Access, vol. 9, pp.

59353–59377, 2021, doi: 10.1109/ACCESS.2021.3073408.

[3] S. A. Bakhsh, M. A. Khan, F. Ahmed, M. S. Alshehri, H. Ali,

and J. Ahmad, “Enhancing IoT network security through

deep learning-powered Intrusion Detection System,” Internet

of Things, vol. 24, p. 100936, Dec. 2023, doi:

10.1016/j.iot.2023.100936.

[4] V. Gugueoth, S. Safavat, and S. Shetty, “Security of Internet of

Things (IoT) using federated learning and deep learning —

Recent advancements, issues and prospects,” ICT Express, vol. 9,

no. 5, pp. 941–960, Oct. 2023, doi: 10.1016/j.icte.2023.03.006.

[5] M. Macas, C. Wu, and W. Fuertes, “A survey on deep

learning for cybersecurity: Progress, challenges, and

opportunities,” Computer Networks, vol. 212, p. 109032, Jul.

2022, doi: 10.1016/j.comnet.2022.109032.

[6] A. S. Dina, A. B. Siddique, and D. Manivannan, “A deep

learning approach for intrusion detection in Internet of

Things using focal loss function,” Internet of Things, vol. 22,

p. 100699, Jul. 2023, doi: 10.1016/j.iot.2023.100699.

[7] B. Alabsi, M. Anbar, and S. Rihan, “CNN-CNN: Dual

Convolutional Neural Network Approach for Feature Selection

and Attack Detection on Internet of Things Networks,” Sensors,

vol. 23, no. 14, p. 6507, Jul. 2023, doi: 10.3390/s23146507.

[8] C. Alex, G. Creado, W. Almobaideen, O. A. Alghanam, and

M. Saadeh, “A Comprehensive Survey for IoT Security

Datasets Taxonomy, Classification and Machine Learning

Mechanisms,” Comput Secur, vol. 132, p. 103283, Sep. 2023,

doi: 10.1016/j.cose.2023.103283.

[9] S.-M. Tseng, Y.-Q. Wang, and Y.-C. Wang, “Multi-Class

Intrusion Detection Based on Transformer for IoT Networks

Using CIC-IoT-2023 Dataset,” Future Internet, vol. 16, no. 8,

p. 284, Aug. 2024, doi: 10.3390/fi16080284.

[10] A. S. Ahanger, S. M. Khan, F. Masoodi, and A. O. Salau,

“Advanced intrusion detection in internet of things using

graph attention networks,” Sci Rep, vol. 15, no. 1, p. 9831,

Mar. 2025, doi: 10.1038/s41598-025-94624-8.

[11] H. Asadi, M. Alborzi, and H. Zandhessami, “Enhancing

IoT Security: A Comparative Analysis of Hybrid

Hyperparameter Optimization for Deep Learning-Based

Intrusion Detection Systems,” Journal of Information

Systems and Telecommunication (JIST), vol. 12, no. 47, pp.

183–196, Nov. 2024, doi: 10.61186/jist.46793.12.47.183.

[12] I. Ullah and Q. H. Mahmoud, “Design and Development of

RNN Anomaly Detection Model for IoT Networks,” IEEE

Access, vol. 10, pp. 62722–62750, 2022, doi:

10.1109/ACCESS.2022.3176317.

[13]M. Almiani, A. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi, and A.

Razaque, “Deep recurrent neural network for IoT intrusion

detection system,” Simul Model Pract Theory, vol. 101, p.

102031, May 2020, doi: 10.1016/j.simpat.2019.102031.

[14] A. Tchernykh et al., “Scalable Data Storage Design for

Nonstationary IoT Environment With Adaptive Security and

Reliability,” IEEE Internet Things J, vol. 7, no. 10, pp.

10171–10188, Oct. 2020, doi: 10.1109/JIOT.2020.2981276.

[15]Y. Li, Y. Zuo, H. Song, and Z. Lv, “Deep Learning in Security

of Internet of Things,” IEEE Internet Things J, vol. 9, no. 22, pp.

22133–22146, Nov. 2022, doi: 10.1109/JIOT.2021.3106898.

[16] S. M. Kasongo, “A deep learning technique for intrusion

detection system using a Recurrent Neural Networks based

framework,” Comput Commun, vol. 199, pp. 113–125, Feb.

2023, doi: 10.1016/j.comcom.2022.12.010.

[17] B. Madhu, M. Venu Gopala Chari, R. Vankdothu, A. K.

Silivery, and V. Aerranagula, “Intrusion detection models for

Asadi, Alborzi & Zandhesami, Enhancing IoT Security: A Hybrid Deep Learning-Based Intrusion Detection System Utilizing …

210

IOT networks via deep learning approaches,” Measurement:

Sensors, vol. 25, p. 100641, Feb. 2023, doi:

10.1016/j.measen.2022.100641.

[18] R. Zhao et al., “A Novel Intrusion Detection Method Based

on Lightweight Neural Network for Internet of Things,”

IEEE Internet Things J, vol. 9, no. 12, pp. 9960–9972, 2022,

doi: 10.1109/JIOT.2021.3119055.

[19] S. U. Jan, S. Ahmed, V. Shakhov, and I. Koo, “Toward a

Lightweight Intrusion Detection System for the Internet of

Things,” IEEE Access, vol. 7, pp. 42450–42471, 2019, doi:

10.1109/ACCESS.2019.2907965.

[20] A. Heidari and M. A. Jabraeil Jamali, “Internet of Things

intrusion detection systems: a comprehensive review and

future directions,” Cluster Comput, vol. 26, no. 6, pp. 3753–

3780, Dec. 2023, doi: 10.1007/s10586-022-03776-z.

[21] D. Musleh, M. Alotaibi, F. Alhaidari, A. Rahman, and R.

M. Mohammad, “Intrusion Detection System Using Feature

Extraction with Machine Learning Algorithms in IoT,”

Journal of Sensor and Actuator Networks, vol. 12, no. 2, p.

29, Mar. 2023, doi: 10.3390/jsan12020029.

[22]A. Kumar, K. Abhishek, M. R. Ghalib, A. Shankar, and X.

Cheng, “Intrusion detection and prevention system for an IoT

environment,” Digital Communications and Networks, vol. 8, no.

4, pp. 540–551, Aug. 2022, doi: 10.1016/j.dcan.2022.05.027.

[23] S. Alosaimi and S. M. Almutairi, “An Intrusion Detection

System Using BoT-IoT,” Applied Sciences, vol. 13, no. 9, p.

5427, Apr. 2023, doi: 10.3390/app13095427.

[24] M. Almiani, A. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi, and

A. Razaque, “Deep recurrent neural network for IoT intrusion

detection system,” Simul Model Pract Theory, vol. 101, p.

102031, May 2020, doi: 10.1016/j.simpat.2019.102031.

[25] T. Saba, A. Rehman, T. Sadad, H. Kolivand, and S. A.

Bahaj, “Anomaly-based intrusion detection system for IoT

networks through deep learning model,” Computers and

Electrical Engineering, vol. 99, p. 107810, Apr. 2022, doi:

10.1016/j.compeleceng.2022.107810.

 Ali M. Baydoun

al.baydoun@bau.edu.lb

Journal of Information Systems and Telecommunication
Vol.13, No.3, July-September 2025, 210-231

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

Towards Energy-efficient Cloud Computing: A Review of
Network-Aware VM Placement Approaches

Ali M. Baydoun1*, Ahmed S. Zekri 2

1.Department of Mathematics & Computer Science, Beirut Arab University, Lebanon
2 Department of Mathematics & Computer Science, Alexandria University, Egypt

Received: 03 Jan 2025/ Revised: 04 Sep 2025/ Accepted: 20 Aug 2025

Abstract
Cloud data centers (CDCs) have witnessed significant growth to meet the increasing demands of modern applications.

However, this expansion has raised concerns regarding the environmental impact, energy requirements, and electricity costs

associated with data centers. The network infrastructure, serving as the communication backbone of these data centers, plays

a crucial role in their scalability, performance, cost, and, most importantly, energy consumption. This review provides

meaningful perspectives and valuable insights into the state-of-the-art research regarding the problem of virtual machine

placement (VMP), focusing on the network-aware energy efficiency aspects of data centers. It provides an overview of VM

placement and presents a comprehensive survey of prominent VM placement algorithms from the existing literature.

Additionally, a thematic taxonomy of network-aware algorithms is introduced, highlighting the key energy consumption

metrics and presenting a new classification of VMP algorithms that considers datacenter network (DCN) topology, traffic

patterns, communication patterns, and energy reduction strategies. Besides addressing pertinent research questions in this

domain, this review summarizes the findings and suggests potential avenues for future research, guiding researchers in

designing and implementing more effective and efficient network-aware VM placement algorithms that optimize energy

consumption, improve network performance, and minimize migration costs.

Keywords: Cloud computing; VM placement; network-aware; Energy-efficient; Network architecture.

1- Introduction

Cloud computing is an internet-based technology that

provides services without the need for physical

infrastructure ownership. The cloud computing model is

responsible for managing tens of data centers that manage

computing applications and data storage. Cloud providers

offer three service models: Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a Service

(SaaS), with deployment models including public, private,

community, and hybrid [1]. Virtualization is the key factor

in cloud computing. It improves resource efficiency and

reduces costs. The high energy consumption in data centers

is a significant issue, especially with cooling equipment that

consumes 80% of available energy [2].

In the cloud environment, virtual machine (VM) traffic can

account for 50%-80% of total data center network traffic [3],

motivating network-aware placement to minimize cross-

rack hops and reduce energy consumption. In this field,

most research focuses on optimizing resource utilization

and power consumption to address cost-related challenges.

Proper planning of the network architecture is very

important as the number of VMs continues to rise and data

centers and communication networks continue to expand.

As cloud applications handle more data, inter-VM network

bandwidth increases due to the high demand for bandwidth

that heavily depends on network resources. This presents a

challenge for cloud environments to strike a balance

between energy efficiency and performance. Conserving

energy through reducing network equipment could lead to a

violation of service level agreements (SLAs) and degrade

performance [4].

Why Network-Aware VM Placement Matters:

Despite growing efforts to optimize server energy use, the

network infrastructure —comprising switches, routers, and

links— remains a major yet often under-optimized

contributor to overall energy consumption. What makes

network-aware VM placement particularly compelling is its

mailto:al.baydoun@bau.edu.lb

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

211

dual impact: it not only reduces energy usage by limiting

inter-rack communication and enabling low-power network

states but also improves performance by lowering latency

and congestion. These benefits become increasingly

relevant as VM-to-VM communication dominates traffic

patterns in modern data centers. As such, placement

strategies must now evolve to consider network topology

and traffic locality as primary optimization dimensions, not

secondary concerns.

This paper explores several research questions related to

network-aware VM placement in cloud data centers (CDCs).

It begins by analyzing the key factors previously examined

in this domain, such as initial VM placement and potential

migrations, and their impact on network performance. The

study then identifies the most effective metrics for

evaluating the success of energy-efficient, network-aware

VM placement algorithms, considering both resource

utilization and network performance. Additionally, it

investigates how the network topology within a data center

affects overall power consumption and whether enhancing

network power efficiency can influence the costs associated

with VM migration.

This paper makes the following contributions to the field of

energy‐efficient, network‐aware VM placement in CDCs:

• Taxonomy of Methodologies
We propose a novel taxonomy that systematically classifies
existing network‐aware VM placement approaches,
highlighting each approach’s underlying energy‐efficiency
mechanisms.

• Categorization of Existing Work

We analyze and categorize state‐of‐the‐art algorithms based
on key metrics —such as topology awareness, traffic
patterns, and consolidation techniques— and evaluate their
impact on overall energy consumption.

• Identification of Challenges
We pinpoint critical gaps in current research, most notably
the lack of integration between VM placement strategies and
dynamic network energy-saving techniques .

• Proposed Solutions

We suggest actionable solutions to address these challenges,
including cross‐layer optimization frameworks and
topology‐aware VM consolidation heuristics that co‐locate
high‐traffic VMs to minimize network usage.

• Future Research Directions

We outline open problems and emerging trends; such as AI‐
driven placement and edge‐cloud coordination; to guide
future work in this area.

• Practical Resource for Researchers

We provide a structured reference for practitioners, showing
how to balance network performance and power savings
when designing new VM placement algorithms.

The remainder of this paper is organized as follows. Section

2 reviews existing surveys on network-aware VM

placement. Section 3 presents an analysis of VM placement

(VMP) algorithms. Section 4 introduces our taxonomy of

network-aware, energy-efficient approaches. Section 5

discusses the limitations of today’s research. Finally,

Section 6 concludes with key takeaways and outlines

precise future research directions aimed at helping both

researchers and practitioners design VM placement

strategies that minimize power usage without

compromising network performance.

2- Landscape of Existing VMP Surveys

2-1- Overview of Prior Surveys Focus Areas

Several survey articles have previously explored VMP in

cloud computing, addressing critical challenges in areas

such as minimizing energy consumption, optimizing traffic

routing, and ensuring resource allocation efficiency. These

efforts span a wide range of algorithmic strategies,

including heuristic algorithms, meta-heuristic optimization,

dynamic workload balancing, and energy-aware

scheduling. While individually rich in contributions, many

of these surveys tend to focus on isolated dimensions of the

VMP problem, often treating energy-efficiency and

network-awareness as distinct objectives rather

interdependent system constraints.

Although prior surveys cover individual hardware

mechanisms—Dynamic Voltage and Frequency Scaling

(DVFS) and Adaptive Link Rate (ALR) —or network-

aware placement separately, no integrative framework

treats these energy-saving techniques and network-sensitive

parameters (traffic patterns, communication behavior,

Datacenter Network (DCN) topology) as co-dependent.

• DVFS dynamically lowers a processor’s supply
voltage and clock frequency during light workloads to
reduce power consumption.

• ALR reduces the data-link speed (or puts links into
low-power idle modes) on underutilized network ports,
saving significant switch and NIC energy but introducing
variable latency when ramping back to full rate.

This deficiency limits the applicability of existing

classifications in real-world CDCs where network usage

and energy dynamics are deeply intertwined. Therefore, this

review aims to bridge that gap by delivering a unified

analytical lens that evaluates VMP strategies at the

intersection of network topology, traffic behavior, and

energy optimization—providing researchers and

practitioners with a holistic foundation for future

algorithmic developments.

Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches

212

2-2- Features and Gaps

Table 1 presents a multi-dimensional mapping of prior

VMP surveys across several core features, highlighting

areas of emphasis and omission in relation to network-

awareness, energy-efficiency, and VM placement logic.

Table 1. Comparison of Existing Surveys on Network-Aware VM Placement Across Key Dimensions

Ref Year Placeme

nt &

Migratio

n

Traffic-

Eng.

DCN

Topology

Inter-VM/

VM→Storage

Comm.

Pattern

Energy-

Saving

Hardware-

Based

Traffic-

Based

Thermal

Mgmt.

Perf.

Impact

App

Focus

[5] 2013 ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗

[6] 2014 ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗

[7] 2015 ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗

[8] 2014 ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗

[9] 2014 ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗

[10] 2015 ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓

[11] 2015 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

[12] 2016 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

[13] 2020 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

[14] 2020 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

[15] 2021 ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓

[16] 2023 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

[17] 2024 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓

[18] 2024 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Our

Work

2025 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

To further contextualize the strengths and omissions across

surveys, Table 2 summarizes the primary focus of each

reference and the most prominent gaps with respect to

network-awareness and energy optimization.

Table 2. Most Prominent Gaps Across Reviewed Surveys.

Ref Year & Venue Primary Focus Most Prominent Gaps (in Network‐Aware Context)

[5] 2013, Cluster Computing ALR and link‐layer energy techniques No VM placement or topology‐aware placement; lacks

traffic pattern integration

[6] 2014, ACM Computing Surveys High-level energy‐efficiency (DVFS, link

sleep)

Algorithmic VM placement details missing; no explicit

DCN topology analysis

[7] 2015, FGCS Network-aware VM placement &

migration

No link‐layer ALR/DVFS inclusion; limited thermal

considerations

[8] 2014, Computer Communications DCN architectures & energy-aware
routing

No VM consolidation or ALR integration; lacks detailed
performance vs. energy metrics

[9] 2014, FGCS Green DCN architectures taxonomy Hardware-level focus; lacks VM-level dynamics or

traffic/thermal overlays

[10] 2015, JNCA Live VM migration & server

consolidation frameworks

Limited network awareness (focuses on migration

traffic); does not tie placement to topology or ALR

[11] 2015, IEEE CCGrid General VM placement taxonomy Does not explicitly cover network-energy techniques

(ALR) or topology variations

[12] 2016, JNCA Algorithm catalog (ILP, heuristics,
metaheuristics)

Lacks network‐energy integration; does not address
dynamic traffic patterns

[13] 2020, JSC Multi-objective VM placement Does not integrate ALR or DCN topology; limited

discussion of per-flow traffic metrics

[14] 2020, Kybernetes Classification of VMP mechanisms in
cloud

No explicit focus on link-layer energy or inter-VM traffic
topology

[15] 2021, Computer Science Review Multi-level consolidation (VM, container,

etc.)

No focus on ALR or DCN topology; limited to

consolidation trends

[16] 2023, The Journal of Computational
Science and Engineering

Review of 7 energy-efficient VM
placement strategies

General efficiency metrics; lacks deep integration of
DCN traffic patterns or communication metrics

[17] 2024, Frontiers in Computer Science ML-based VM scheduling techniques Does not classify topologies or link-level policies; lacks

VM clustering detail

[18] 2024, Telecommunication Systems Phased VMC lifecycle review (PM→VM
selection→placement)

Does not integrate link‐layer energy or topology; focuses
on VM phases without network-energy objectives

— 2025, TBD (Our Work) Unified network-aware VMP taxonomy Fills all gaps by integrating ALR, topology, traffic

patterns, and energy/thermal considerations

 Ali M. Baydoun

al.baydoun@bau.edu.lb

Journal of Information Systems and Telecommunication
Vol.13, No.3, July-September 2025, 210-231

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

While Table 1 and Table 2 provide a

comparative overview of survey scopes, a deeper analysis

of each work reveals further insights into thematic priorities

and overlooked dimensions. As summarized in Table 2, the

majority of prior surveys fail to integrate link-layer energy

mechanisms, DCN topology constraints, and traffic-aware

placement into a unified classification framework. This

motivates the need for a closer, qualitative critique of each

referenced study—highlighting what each survey addresses

and, more importantly, how our work advances beyond

them with a network-aware energy-efficient focus.

2-3- Critical Analysis

This subsection presents an evaluation of each major survey

study on VMP published from 2013 through 2024, with a

focus on their contributions to energy-efficient and

network-aware strategies. For each referenced work ([5]-

[18]), we describe the main idea of the survey, identify its

strengths, and highlight gaps related to the intersection of

communication patterns, topology constraints, and power

efficiency. Such analysis has two goals: first, to document

the advancement of the domain in the past ten years, and

second, to show how most of these surveys fail to integrate

all these aspects into a single framework. This subsection

also serves to demonstrate how our proposed taxonomy

explicitly addresses these multi-layered challenges by

integrating network topology, traffic-awareness, and

energy-aware mechanisms under a unified VM placement

perspective. These observations establish the rationale for

our integrated taxonomy, as elaborated in the following

sections.

The survey [5] offer one of the foundational treatments of

green networking by categorizing ALR techniques -

dividing link-sleep policies (immediate vs. delayed wake)

and link-rate scaling schemes- and by evaluating the IEEE

802.3az standard’s potential to save nearly 0.9 TWh

annually in large US data centers. Their strength lies in

rigorously detailing how ALR can dynamically reduce link-

layer power, from NICs up to aggregation switches.

However, because their focus remains at the hardware and

firmware level, they do not address how VM placement or

migration strategies might leverage fluctuating link speeds

or ALR states to optimize overall data center energy. Our

survey fills this gap by explicitly integrating ALR

considerations into the network-aware VM placement

taxonomy, demonstrating how VM co-location based on

communication affinity can complement hardware-level

ALR to maximize energy savings.

The authors of [6] present a broad, multi‐layer survey of

energy‐efficiency techniques in large‐scale distributed

systems, covering hardware‐level approaches (DVFS,

power modeling), server‐level optimizations (VM

consolidation, dynamic provisioning), and network-layer

tactics (ALR, link‐sleep, topology reconfiguration). Their

work’s strength is in demonstrating that up to 30–40% of a

data center’s energy can be consumed by its networking

infrastructure, thus motivating holistic solutions, but lacks

a taxonomy specific to VM placement. Our work fills this

void by extending network-layer concerns into VM

placement contexts, thereby illustrating how topology- and

traffic-aware placement strategies interact with server and

link energy dynamics.

The authors of [7] present a specialized taxonomy of

network-aware VM placement and migration algorithms,

classifying approaches based on problem formulation (ILP

vs. heuristics), traffic awareness (static vs. dynamic), and

objectives (minimizing inter-VM traffic, avoiding

congestion, balancing network load) . They survey methods

that co-locate high-traffic VM pairs -reducing inter-rack

hop counts by roughly 30%. Although they excel in

highlighting how inter-VM communication patterns drive

placement, they do not incorporate link-layer ALR or DVFS

as explicit dimensions in their classification, nor do they

quantify the impact of particular DCN topologies on overall

energy consumption. Our survey extends their work by

embedding these network-aware placement algorithms

within a broader framework, explicitly incorporating DCN

structure, traffic distribution patterns, and link utilization

characteristics into placement decision-making.

Authors in [8] provides a focused survey on architectures

and energy efficiency in data center networks. It covers

DCN topologies (FatTree, VL2) and green techniques like

link adaptation and component shutdown. However, it lacks

granularity in VM-level policies. Our review complements

this by showing how such architectural designs can be better

utilized when paired with VM placement that respects

traffic distribution and energy states, offering specific

placement criteria that leverage topology-induced

communication cost differences.

The authors in [9] conducted a comprehensive survey on

Green Data Center Networks (DCNs), focusing on energy-

efficient architectures (electrical, optical, hybrid), traffic

management, and performance monitoring. While their

work extensively covers network-level energy optimization

techniques like ALR and topology-aware resource

consolidation, it does not systematically integrate VM

placement strategies with network energy efficiency. This

separation weakens the applicability of their insights for

practical scheduling decisions. This work integrates their

hardware-level insights into VM placement taxonomy,

connecting traffic profiles and server locality to DCN

energy states.

The authors of [10] deliver a deep examination of live VM

migration and server consolidation frameworks,

categorizing bandwidth-optimization techniques (block-

level and file-level deduplication, delta compression,

dynamic rate limiting), storage-checkpoint approaches, and

consolidation triggers (CPU/memory thresholds vs.

predictive models). Their strength is in quantifying

mailto:al.baydoun@bau.edu.lb

Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches

214

migration downtime, total transfer time, and migration

energy overhead across dozens of tools (e.g., Xen pre-copy,

KVM post-copy, RDMA-accelerated). They also survey

DVFS-enabled consolidation policies that reduce CPU

power during migration windows. However, they do not

incorporate network-awareness beyond minimizing

migration traffic; specifically, they do not explore how VM

selection and placement decisions could optimize for inter-

VM communication patterns. In contrast, our survey

extends their consolidation framework by explicitly

modeling migration and placement objectives that minimize

both compute and network power.

The work in [11] propose a five-axis taxonomy for VM

placement —spanning optimization objectives (power,

performance, network, reliability), workload models (batch,

enterprise, web, HPC), constraints (QoS, SLA, affinity),

problem formulations (ILP, CP, heuristics, metaheuristics),

and placement modes (static vs. dynamic). They provided

researchers with an early, systematic way to navigate the

VM placement literature. Nonetheless, their taxonomy does

not explicitly integrate network-layer energy techniques

such as ALR or discuss how specific DCN topologies shape

algorithmic design. Our work builds on their multi-

dimensional approach by DCN topology —thus mapping

each placement algorithm onto a richer, network-aware

energy context, and explicitly correlating traffic patterns

with link-power-saving opportunities.

Survey [12] compile an extensive algorithm-centric

overview of VM placement techniques, grouping them into

exact ILP/MIP formulations, multi-objective nonlinear

programming, bin-packing heuristics (e.g., First-Fit

Decreasing, Best-Fit Decreasing), coalition- and graph-

theory methods (e.g., Hungarian algorithm), and

evolutionary metaheuristics (GA, PSO, ACO, SA, BBO) .

They evaluate each category in terms of scalability, solution

quality, and runtime, concluding that metaheuristics

predominate for large data centers. However, their survey

omits any discussion of network-aware energy techniques

or DCN topology. In our work, we situate each algorithm

class within a unified, network-aware framework that

specifies how each network metric studied influence

performance and energy outcomes, thereby providing

practical guidance on selecting placement strategies based

on the communication structure of the workload.

In their study [13], the authors deliver a comprehensive

multi-objective taxonomy for IaaS VM placement,

distinguishing between single-objective (power only) and

multi-objective (power and network, power and QoS)

methods, and between operation modes (offline vs. online),

while also noting emerging challenges such as AI/ML-

based placement and edge-cloud integration. However, they

do not unify ALR or DCN topology into their taxonomy.

Our survey builds upon their multi-objective perspective by

adding a network-energy dimension, including

communication-aware cost functions and DCN-aware co-

location policies.

The survey [14] provides a comprehensive overview of

VMP mechanisms in cloud environments by systematically

categorizing approaches into static and schemes. Their

strength lies in rigorously detailing the mapping algorithms,

selection criteria, and resource-utilization impacts across 40

carefully filtered studies. However, because their focus

remains at the process level (static vs. dynamic) and general

algorithmic families, they do not analyze how network-

aware strategies, thermal considerations, or renewable-

energy profiles influence VMP decisions. Our survey fills

this gap by explicitly integrating these concerns, by

enabling sustainability-oriented VM allocation guided by

real-world infrastructure constraints.

The work described in [15] resent a comprehensive survey

of data center consolidation in cloud computing systems,

with a significant portion dedicated to VM-level

consolidation techniques —examining threshold-based host

selection, VM selection heuristics, and consolidation-

driven energy models for CPU and memory utilization.

Their strength lies in synthesizing a wide range of VM

consolidation algorithms—ranging from simple first-fit and

best-fit heuristics to more advanced ILP and metaheuristic

formulations—and in highlighting how VM consolidation

can reduce the number of active hosts and, consequently,

overall energy consumption. However, although they touch

on VM migration overhead, they do not incorporate

network energy considerations nor analyze how specific

data center topologies influence consolidation decisions.

Our survey extends their VM-level focus by embedding

each consolidation algorithm within a network-aware

framework, explicitly showing how inter-VM traffic

patterns interact with placement heuristics to maximize

combined compute and network energy savings, resulting

in more holistic and topology-sensitive consolidation

strategies.

The authors of [16] present a concise survey of seven

energy‐efficient VM‐placement algorithms in cloud data

centers, covering load‐balancing heuristics, metaheuristic

methods, queuing‐based models, simulation‐driven

approaches, static placement schemes, hybrid strategies,

and predictive control techniques. Their work’s strength lies

in clearly summarizing each algorithm’s core mechanism

and practical applicability, but it lacks a systematic

taxonomy and quantitative comparison—particularly

omitting network‐layer energy management. Our survey

fills this void by introducing a comprehensive, multi‐

dimensional taxonomy and detailed comparison tables that

explicitly integrate network‐ and thermal‐aware dimensions

into VM placement strategies, bridging infrastructure

constraints with algorithm design.

The authors of [17] conduct a systematic literature review

(SLR) of VM‐scheduling studies, categorizing them into

three principal methodologies —traditional, heuristic, and

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

215

meta-heuristic— and rigorously charting their problem

formulations, performance metrics, and simulation

environments. Their strength lies in applying a clear SLR

protocol to distill trends and challenges across a broad

corpus. However, because their taxonomy is organized

solely around algorithmic families and general scheduling

parameters, it omits network‐aware energy management

considerations. Our survey fills this void by introducing

dedicated network- and thermal-awareness in the VM-

placement classification, highlighting the impact of link-

power state models and topology-aware routing in

placement evaluation.
Authors of [18] offer a systematic overview of VM

Consolidation (VMC) by describing the three fundamental

phases -(1) Physical Machine (PM) detection, (2) VM

selection, and (3) VM placement- and classifying works

according to their problem formulation (ILP, heuristic,

metaheuristic), constraint sets (SLA, affinity, resource

capacities), and objective functions (power minimization,

network traffic reduction, cost, SLA violation) . Their major

contribution is the clear, phase-by-phase breakdown of

VMC, which helps researchers identify algorithmic gaps in

each subproblem. Still, although they recognize

“minimizing network traffic” as one possible objective,

they do not assess the role of DCN topology. In contrast,

our survey embeds topology-aware metrics directly into the

VMP decision model—linking traffic routing patterns,

bandwidth bottlenecks, and link power profiles with

placement granularity.

2-4- Motivation Toward a Network-Energy-

Aware VMP Taxonomy

Building on the limitations identified, we now motivate the

need for a more unified taxonomy that explicitly links

energy and network metrics in VM placement.

This paper addresses these gaps by:

• Providing an integrated taxonomy covering both
network and energy optimization.

• Categorizing and analyzing methods across heuristic,
meta-heuristic, ML, and hybrid strategies.

• Highlighting topological and communication-aware
metrics used in real deployments.

• Incorporating recent advancements (2022–2025)
including RL-based, and graph-theory-informed VMP
strategies.

In summary, the existing body of survey work demonstrates

valuable insights into VM placement challenges, yet lacks

a unified treatment that integrates network topology,

communication behavior, and energy efficiency within a

cohesive evaluation framework. These gaps underscore the

importance of establishing a systematic classification of

VMP strategies, not only to contextualize existing methods

but also to lay the groundwork for deeper, network-aware

taxonomic analysis.

In the following section, we present a general classification

of VM placement approaches, categorizing them by

strategic objectives, optimization techniques, infrastructure

considerations, and workload profiles — all of which form

the foundation for the specialized taxonomy introduced in

Section 4.

Early research prioritized server-side optimization because

DCNs were heavily overprovisioned and per-flow traffic

metrics were not readily exposed to hypervisors. Moreover,

combining server and network objectives created complex

multi-objective problems, and only with the advent of SDN-

based telemetry [7] did network-aware placement become

both feasible and attractive.

2-5- Bibliometric Overview

To assess the scholarly rigor of our survey corpus, we first

defined precise selection criteria—keywords related to

virtual machine placement, inclusion of peer-reviewed

articles from reputable publishers, and exclusion of non-

technical reports or non-English sources. We then executed

systematic searches across Scopus and Web of Science

using Boolean combinations of “virtual machine

placement,” “cloud data center,” and “energy efficiency,”

restricting results to publications between 2009 and 2025.

After de-duplication and application of our

inclusion/exclusion rules, 80 references remained for

analysis. Table 3 summarizes the distribution of these works

by their SCImago Journal Rank quartile and lists the

corresponding reference numbers. Table 4 shows the

temporal breakdown of the references into 2009–2018,

2019–2021, and ≥ 2022 periods. Together, these tables

provide a clear picture of both the scholarly rigor and the

evolution of the field over time.

Table 3. Distribution of survey references by SCImago journal rank

quartile.

Quartile Count References

Q1 21 [6], [8], [9], [10], [12], [22], [26], [33], [37],

[38], [44], [49], [52], [54], [60], [62], [69],

[72], [73], [78], [85]

Q2 17 [5], [13], [15], [17], [21], [24], [30], [31],

[39], [40], [45], [50], [63], [66], [76], [79],

[83]

Q3 8 [14], [18], [35], [36], [47], [57], [70], [74]

Q4 5 [2], [23], [34], [53], [80]

N/A 34 [1], [3], [4], [7], [11], [16], [19], [20], [25],

[27], [28], [29], [32], [41], [42], [43], [46],

[48], [51], [55], [56], [58], [59], [61], [64],
[65], [67], [68], [71], [75], [77], [81], [82],

[84]

 All Quartiles are taken from the latest SCImago data

(2024).

Conference proceedings, book chapters, standards,

preprints, and other non-journal venues are marked N/A.

Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches

216

Table 4. Distribution of survey references by publication period

(2009–2018, 2019–2021, ≥ 2022).

Date

Range

Count Reference Numbers

2009–
2018

38 [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [25], [27], [32], [42], [53], [54], [55],

[56], [58], [59], [60], [62], [64], [65], [66],

[67], [68], [70], [71], [72], [73], [74], [75],
[77], [78], [80]

2019–

2021

21 [13], [14], [15], [26], [29], [31], [34], [36],

[37], [40], [41], [43], [46], [47], [49], [50],

[51], [57], [69], [76], [85]

2022 and

after

26 [16], [17], [18], [19], [20], [21], [22], [23],

[24], [28], [30], [33], [35], [38], [39], [44],

[45], [48], [52], [61], [63], [79], [81], [82],
[83], [84]

3- VM Placement Classification

This section reviews VM-level placement techniques in

IaaS clouds. While container orchestration (e.g.

Kubernetes, Docker Swarm) and serverless paradigms are

reshaping resource management, they lie outside our VM-

centric focus. For multi-level consolidation spanning VMs

and containers, we refer readers to [15].

To establish a foundation for network-aware taxonomic

refinement, we first present a generalized classification of

VMP strategies. This section categorizes the existing

approaches through four essential questions as shown in

Fig.1—Why place?(Objectives), How to place?(Methods),

Where to place?(Constraints), and What is being

placed?(Workload)—each representing a pillar of modern

VMP design. It is important to note that many studies do not

fit in a single category. Instead, authors often formulate

their placement strategies using a combination of

objectives, methods, and constraints, leading to intentional

overlap across these classification boundaries. This

multidimensional design reflects the complex, real-world

trade-offs that cloud service providers must manage.

3-1- Placement Objectives & Constraints (Why

Place?)

A- Energy Efficiency

Energy efficiency is a foundational objective in VM

placement, targeting both server-side and network-side

power reductions. At the server level, strategies such as

consolidation and intelligent VM distribution aim to reduce

the number of active physical PMs. On the network side,

minimizing inter-VM communication distance—by placing

frequently interacting VMs closer within the topology—

reduces switch and link utilization.

The Energy Efficient VM Placement (EE-VMP) model

proposed in [19] demonstrated remarkable improvements,

reducing power consumption by up to 56.89% and the

number of active servers by 37%, while enhancing resource

utilization by over 64%. These results underscore the

potential of topology-aware consolidation combined with

server optimization. However, the algorithm depends on

accurate traffic matrices, which are rarely available in real

time.

Similarly, an Active Energy-Efficient Placement method

[20] achieved average energy reductions of 21.2%

compared to the First Fit baseline. This highlights the

efficacy of lightweight heuristic decision-making when

real-time adaptability is needed, particularly in large-scale

public clouds. However, its simplicity ignores inter-VM

traffic patterns, potentially increasing cross-rack

communication. Thus, Active Placement is attractive for

compute-heavy, low-communication workloads but falls

short when inter-VM latency and bandwidth must also be

managed.

For dynamic workloads, the MOEA/D-based placement

method proposed by [21] provides a more nuanced multi-

objective balance. It simultaneously minimizes energy

usage and overload risks, ensuring QoS compliance while

maintaining performance efficiency under load. This

approach is especially valuable in heterogeneous cloud

environments with fluctuating demand, although it comes

at the cost of higher computational complexity. That said, it

adds significant computational cost. Choosing MOEA/D is

advisable when offline tuning is acceptable and runtime

overhead is secondary to multi-objective precision;

otherwise, one should reject it in favor of faster

approximation methods.

In [22], authors propose an algorithm designed to jointly

minimize the energy consumption of both servers and

network devices. The algorithm incorporates traffic

awareness by co-locating highly interactive VMs and

selecting physical paths with minimal energy costs. Their

results demonstrated 11.4% reduction in total energy

Fig. 1. VM Placement Classification

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

217

consumption, up to 22.3% reduction in network power

usage, and significant improvement in VM-to-VM

communication efficiency. This method shows how

intelligent mapping of traffic-heavy VMs to proximity-

aware PMs can lower the utilization of aggregation and core

switches, reducing link activation and routing overhead, yet

the solution assumes that accurate traffic matrices are

available prior to placement—a condition not always

feasible in real-time cloud workloads.

B- QoS/SLA Compliance

Guaranteeing Quality of Service (QoS) and minimizing

Service Level Agreement (SLA) violations are crucial

objectives in VM placement. Overlooking these

considerations can result in degraded user experience,

financial penalties, and reduced provider reputation—

especially in multi-tenant cloud infrastructures operating

under tight availability thresholds.

The work in [23] introduced a utilization-aware VM

placement policy that anticipates workload demands and

avoids host overloading. By forecasting CPU trends and

limiting consolidation aggressiveness, the method

minimizes SLA violation time per active host while

maintaining consolidation efficiency. However, reliance on

CPU-only forecasting neglects network congestion effects

during live migrations, potentially shifting bottlenecks to

oversubscribed links. Moreover, the threshold-based

decision logic may misfire under sudden workload spikes,

degrading performance.

In [24], the authors proposed an Energy and QoS-aware VM

placement algorithm (EQVMP) tailored for IaaS cloud

environments. Their work integrates host energy modeling

with service availability constraints, using a hybrid

scheduling policy to minimize SLA violations.

Experimental results show that EQVMP achieves lower

energy consumption compared to baseline algorithms like

RR and FF, while improving response time and reducing

SLA violations, particularly under high-demand scenarios.

Nevertheless, EQVMP’s energy model abstracts away fine-

grained network costs, and its rule-based availability checks

introduce additional scheduling latency.

In a broader context, In [25], authors developed a multi-

domain SLA management model incorporating a Generic

SLA Manager (GSLAM) linked with OpenStack. Their

approach models SLA violations and penalties across the

IaaS, PaaS, and SaaS layers. The AV/AVL algorithms they

introduce maintain availability above 99.99% and reduce

penalty propagation across domains by controlling live

migration overhead and optimizing host selection. While

this multi-layer perspective improves service-level

economics, the framework’s orchestration complexity and

cross-layer coordination overhead pose significant

scalability challenges.

C- Cost Optimization

Cost-efficient VM placement remains a critical challenge in

cloud infrastructures, especially in geographically

distributed data centers where energy prices, carbon taxes,

and renewable availability vary significantly. The work in

[26] proposed a renewable- and carbon-aware VM

allocation model that minimizes electricity costs and CO₂

emissions by dynamically placing VMs across data centers

based on green energy availability, carbon intensity, and

electricity prices. Their system integrates DVFS techniques

and dynamic workload balancing, optimizing both cooling

and server power usage. This work implicitly touches on

network-related cost considerations by analyzing the carbon

footprint and latency constraints tied to inter-data center

VM placement and container communication, making it

relevant to network-aware resource allocation. However,

the method presumes reliable, low-latency energy pricing

and renewable forecasts, which may not be universally

available; it also overlooks performance impacts of inter-

site VM migrations, risking degraded QoS for latency-

sensitive workloads.

Similarly, in [27] authors designed a power and cost-aware

placement strategy using a fuzzy decision model that

simultaneously considers power consumption, electricity

costs, and resource utilization. Their strategy yields

measurable cost benefits under stable network conditions

but omits dynamic bandwidth pricing and incurs significant

overhead from fuzzy parameter tuning.

D- Load Balancing

Effective load balancing in virtual machine placement

ensures even distribution of tasks across physical resources,

which reduces processing delays, prevents host

overloading, and maintains optimal system throughput.

Load imbalance can lead to resource contention, degraded

performance, or energy inefficiencies, particularly in high-

density cloud environments.

In [28], a hybrid metaheuristic approach combining Ant

Colony Optimization (ACO), Particle Swarm Optimization

(PSO), and Artificial Bee Colony (ABC) is introduced to

improve load distribution. This tri-hybrid method leverages

the strengths of each algorithm: ACO's path-finding

accuracy, PSO's global exploration, and ABC's exploitation

of good solutions. The algorithm dynamically reallocates

workloads among VMs based on current utilization,

minimizing makespan and improving response time.

Simulation using CloudAnalyst showed that the hybrid

strategy significantly reduced average response time and

execution time, outperforming classical load balancing

algorithms like DLMA and IDLBA. Despite these gains, the

combined algorithm entails high computational complexity,

complex parameter calibration, and limited scalability

under dynamic workloads.

Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches

218

Authors of [29] proposed the Min-Max Exclusive VM

Placement (MMEVMP) strategy designed for scientific

data environments, where workloads are data-intensive and

disk I/O becomes a performance bottleneck. Unlike

conventional CPU-centric methods, MMEVMP considers

both disk bandwidth and CPU utilization to minimize SLA

violations and reduce system operating costs. The algorithm

dynamically avoids hosts likely to face disk saturation by

analyzing historical usage patterns and applying adaptive

time-based thresholds. Their experiments using a

lightweight CloudSim version showed that MMEVMP

achieved lower SLA violation rates while keeping energy

consumption within acceptable bounds. However, the

approach depends on accurate historical I/O profiling and

neglects real-time network traffic patterns, potentially

shifting bottlenecks to the network layer.

3-2- Optimization Models (How to place?)

Optimization approaches to VMP can be categorized into

distinct yet overlapping models, each with advantages tied

to performance, scalability, and adaptability to multi-

objective goals. These include mathematical models,

heuristic methods, metaheuristics, and learning-based

approaches.

A- Mathematical Optimization

The work [30] presents a Multi-Objective Integer Linear

Programming (MOILP) model for optimal VM placement,

addressing resource utilization in CDCs. Although MOILP

offers a rigorous mathematical framework for balancing

conflicting objectives, its computational complexity grows

exponentially with problem size. When applied to scenarios

involving thousands of VMs and PMs, this leads to long

solution times and excessive resource demands—rendering

MOILP impractical for real-time or highly dynamic cloud

environments. Even with enhancements like Tabu Search

acceleration, solver runtimes extend beyond acceptable

limits for dynamic cloud environments.

This paper [31] introduces mixed‐integer programming

(MIP) models for virtual machine placement that embed

disk anti‐colocation constraints—ensuring no physical disk

hosts more than one virtual disk from the same VM—to

optimize resource allocation in datacenters. MIP

formulation may involve trillions of variables and/or

constraints for large datacenter and therefore can’t solve

VMP optimally within acceptable time.

Optimization-based VM placement approaches offer

mathematically rigorous formulations that guarantee

optimality under well-defined constraints. These methods

are especially suitable for precision-critical environments

where deterministic outcomes are essential. Their ability to

handle multiple objectives simultaneously (e.g., minimizing

energy while balancing load and respecting hardware

constraints) is a significant strength not easily replicated by

heuristics or learning-based methods.

However, the computational cost of solving such models

grows exponentially with problem size, making them

impractical for large-scale cloud infrastructures [32].

Incorporating network-related constraints—such as inter-

VM bandwidth demands, link capacities, or communication

topologies—further increases the complexity. Even when

advanced solvers or acceleration techniques are used, real-

time placement decisions remain out of reach for anything

beyond small- to medium-scale scenarios.

These approaches are also highly sensitive to changes in

input parameters or constraints. A minor modification in

workload demand or infrastructure policy may require full

model regeneration and resolution, limiting their

responsiveness to dynamic or elastic cloud environments.

Furthermore, despite their theoretical strength in modeling

energy consumption or network utilization, embedding

such metrics into optimization formulations significantly

delays solver convergence.

In terms of scalability, scenarios with fewer than 500 VMs

are well-suited to these methods. On the other hand, large-

scale, dynamic, or latency-sensitive platforms—such as

public clouds or edge computing environments—are poorly

matched due to the models' inability to respond within strict

time constraints.

This type of optimization is best suited for offline placement

in private clouds with stable demand, small-scale

deployments where optimality justifies runtime, and

regulated environments requiring strict constraint handling

(e.g., security or compliance-based placement). But they

perform worse with rapidly scaling public clouds, edge

scenarios with latency bounds, and dynamic workloads

requiring frequent re-optimization.

B- Heuristics

Heuristic methods are variants of bin-packing and greedy

placement. They offer rapid, scalable approximations for

the VM placement problem. Use simple, rule-based

strategies (e.g. First-Fit, Best‐Fit Decreasing [33])). These

algorithms sort VMs by one or more dimensions (such as

CPU demand or traffic volume) and assign each VM to the

“best” host in linear or near-linear time.

GMPR [34] is a greedy placement algorithm that first ranks

PMs by power efficiency to minimize the number of active

hosts, then sequentially reduces resource imbalance and

slack. In simulations on synthetic workloads and Amazon

EC2 traces, GMPR achieves average savings of 1.91% in

energy consumption and 16.18% in resource wastage versus

state-of-the-art methods yet overlooks bandwidth costs.

Hybrid Best-Fit (HBF) [35] extends the classic Best-Fit

heuristic by running three VM-ordering schemes (original,

ascending size, descending size) and selecting the allocation

with the lowest total energy. HBF consistently outperforms

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

219

both Best-Fit and Best-Fit Decreasing with minimal

additional computation, but without addressing network

proximity.

Heuristic-based VM placement approaches are widely used

for their speed, simplicity, and scalability, making them

particularly effective in large-scale datacenter

environments where rapid decisions are essential.

Techniques such as First-Fit and Best-Fit Decreasing

achieve linear or near-linear time complexity (O(n log n)),

enabling quick allocation of VMs with minimal

computational overhead. Rule-based strategies, like sorting

VMs based on CPU demand or traffic volume, are easy to

implement and impose very little runtime cost. These

methods are especially well-suited for static or predictable

workloads.

However, the main limitation of heuristic approaches lies in

their tendency to optimize single dimension while

neglecting critical factors like network traffic. As a result,

they often perform poorly in multi-objective optimization

scenarios that require balancing energy consumption,

latency, and SLA compliance. Their static nature also

makes them not suitable for dynamic or unpredictable

environments, where workload patterns change rapidly and

real-time re-optimization is essential. While their

computational efficiency remains a major strength, this

speed frequently comes at the cost of placement accuracy

compared to more adaptive metaheuristic or learning-based

methods.

In terms of scalability, heuristics perform well, handling

high volumes of VM requests. They are ideal for

environments where quick and frequent placement

decisions are needed without deep optimization logic.

However, their suitability for energy- and network-aware

placement remains limited. Although variants like HBF

reduce host-level energy consumption, they do not model

dynamic power states or account for network bandwidth

costs, resulting in potentially inefficient traffic patterns.

Overall, heuristics are best reserved for static or predictable

workloads —such as batch processing— or for initial

placement stages before applying more adaptive

optimization techniques. They are less appropriate for

network-intensive applications, dynamic edge

environments, or scenarios demanding multi-objective

trade-offs.

C- Metaheuristics

Metaheuristic approaches, such as Ant Colony

Optimization (ACO), Particle Swarm Optimization (PSO),

Genetic Algorithms (GA), Grey Wolf Optimization

(GWO), and their hybrids; tackle VM placement as a multi‐

objective optimization problem, balancing energy

consumption, resource utilization, and SLA guarantees.

For example, [36] propose a hybrid ACO–GWO that

weaves in traffic‐awareness to co-locate high-

communication VMs, yielding up to 19.41% power savings

and 10.72% bandwidth‐utilization improvements over

baseline algorithms.

[37] classify and critique a broad spectrum of nature-

inspired metaheuristics—SA, PSO, GA, ACO, BBO, and

hybrids—highlighting their strengths in

exploration/exploitation balance but noting their general

omission of communication costs.

The work [38] presents a hybrid GA–best‐fit scheme that

minimizes active PMs and resource wastage, characterizing

VMs by CPU, RAM, and bandwidth.

Recently, the work [39] proposed the NCRA-DP-ACO

algorithm, a network-, cost-, and renewable-aware ACO

framework for energy-efficient VM placement across

geographically distributed datacenters. Unlike previous

metaheuristic solutions, this work introduces a dynamic

Power Usage Effectiveness (PUE) model, real-time solar

energy profiling, and carbon-aware cost modeling. By

integrating environmental and economic factors into the

multi-objective placement strategy, the algorithm achieved

up to 18% energy savings and a 48% reduction in live

migrations compared to baseline heuristics and

metaheuristics. This approach demonstrates that

incorporating sustainability-aware factors can significantly

enhance placement decisions in large-scale cloud

environments, addressing a critical gap often neglected in

earlier VM placement studies.

Metaheuristics offer excellent pathways to near-optimal

placement of VMs in multi-objective environment. They

are capable of compromising among energy efficiency,

SLA, and resource consolidation while covering a large

solution space.

However, their performance heavily depends on proper

parameter tuning, and poor configurations lead to

suboptimal convergence. Moreover, most metaheuristics

neglect traffic patterns or topology, and therefore require

additional improvements for traffic- and communication-

aware optimizations. Enhanced variants can improve

network efficiency but require additional computational

overhead.

Since these algorithms are iterative and population-based

searches over multiple generations (denoted as t), they

exhibit higher O complexity —O(n²×t), where n is the

problem size and t is the number of iterations. This reflects

a quadratic growth in computational cost with problem size,

meaning convergence time increases significantly as the

number of VMs scales. Nevertheless, these approaches

remain effective for medium to large problem sizes.

These approaches are best suited for offline or semi-

dynamic VM placement scenarios where computation time

is not a concern. They excel in multi-objective optimization

—balancing energy efficiency, performance, and cost—and

are effective in sustainable cloud environments that require

periodic reallocation. However, they are less ideal for low-

Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches

220

latency edge computing due to slower convergence rates,

and they tend to underperform in highly dynamic or

unpredictable workloads where rapid re-optimization is

essential. For small-scale deployments, simpler heuristic

methods are often more practical.

D- Machine Learning

Emerging AI-driven VM placement frameworks leverage

predictive and adaptive techniques to anticipate demand,

group workloads, and continuously learn optimal

allocations. Workload Forecasting Models employ

learning-based algorithms to predict future load patterns

and proactively select hosts that balance energy

consumption and SLA adherence.

Classification & Clustering approaches identify high-traffic

VM pairs or hosts at risk of overload and refine placement

heuristics; Finally, Reinforcement Learning optimizes VM

placement by learning from interactions with the

environment (servers, network, and workloads).

Workload Forecasting Models: The work [40] introduces

a dynamic, learning-based scheme that continuously

predicts per-VM resource-usage thresholds to drive

proactive allocation and live migration decisions. The

approach adapts to fluctuating loads by generating runtime

data and training a hybrid model (combining swarm-

inspired search with an ML classifier), thus improving SLA

compliance, reducing migrations, and cutting energy

compared to standalone bio-inspired or ML methods.

Classification & Clustering: Random Forests or K‐means

identify which VM pairs generate the most traffic, or which

hosts are likely to become overloaded, refining heuristic

weightings. LECC [41] — a multi-objective VM (and data)

placement framework for geo-distributed clouds that jointly

minimizes carbon emission cost, energy consumption, and

WAN communication cost— embeds an intelligent ML

module that is trained on historical energy, latency, and

carbon‐cost data to dynamically adjust its multi‐objective

weightings (carbon emission, energy, WAN cost) at

runtime. Extensive simulations on synthetic and real

(PlanetLab and EC2) traces demonstrate LECC’s ability to

reduce server energy and cut response latency compared to

baseline methods.

Reinforcement Learning (RL): The work [42] proposes a

fuzzy-based State-Action-Reward-State-Action (SARSA)

reinforcement learning algorithm for optimal VM

placement in CDCs, effectively reallocating VMs to

minimize energy consumption and resource wastage while

ensuring compliance with SLA and QoS demands during

fluctuating workloads.

ML-based VM placement algorithms adapt better than

static heuristics under workload variation and fast-changing

user demands.

Yet, there do exist serious disadvantages. These algorithms

need huge amounts of training data of almost perfect

quality, and their predictive power degrades if they are not

promptly retrained or adapted. Many approaches in ML

tend to disregard network traffic behavior or the underlying

topology, limiting their applicability in optimizing network

energy consumption or communication latency. These

models add a further computational overhead and

convergence delays: For instance, clustering methods scale

at O(n³), while deep-learning techniques demand

tremendous GPU/CPU resources [43].

Lastly, scalability becomes an issue: whereas the bigger

data can continue to scale the ML model, on the other side,

training and inference times increase with the size of the

problem. Some solutions —distributed or federated

learning— can help but introduce synchronization and

convergence delays.

Network- and energy-aware suitability, and also

optimization, are still primary concerns of most of these

ML-based solutions. Advanced architectures like GNNs

can integrate network topology into their learning

workflow, but these models are computationally costly and

thus seldom used. Without explicitly modeling bandwidth

consumption or link-layer power states, ML-based

placements may underperform when communication and

geo-distribution dominate the environment [44].

ML-based VM placement algorithms are more suited to

dynamic and large-scale cloud environments with regular

patterns of workload and good availability of historical data

[45]. However, their applicability is limited in real time or

latency-sensitive deployments, where response has to be

immediate. They also fail in environments where the

workloads are unpredictable or rapidly changing.

E- Graph Approaches

Graph-theoretic VM placement models represent PMs/

VMs as graph nodes, with edges encoding constraints like

inter-VM traffic or power costs. By applying community-

detection or graph-partitioning algorithms, they co-locate

highly communicative VMs —minimizing network hops and

energy consumption.

The algorithm in [46] uses a graph‐coloring algorithm that

models VMs as graph vertices and inter-VM traffic volumes

as weighted edges, then iteratively “colors” (assigns) and

merges vertices to minimize both network overhead and

server power use. Their method batches VM migrations to

keep high-traffic groups co-located and decommission

underutilized hosts. Extensive simulations across

hierarchical datacenter topologies demonstrate that GCA

halves link saturation and outperforms single-migration

schemes by up to 65% in network-overhead reduction.

Authors in [47] propose a two-phase, graph-theoretic VM

placement strategy tailored for data-intensive cloud

applications. They first model the datacenter as a complete

weighted graph —vertices are hosts, edges carry a

networking-cost metric combining link saturation and hop

count. In Phase 1, a fuzzy inference system ranks racks by

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

221

free resources and intra-rack traffic, and a linear program

selects the smallest set of “close” racks with low uplink

load. In Phase 2, the Traffic-Distance-Balanced (TDB)

greedy algorithm uses the graph’s weighted adjacency

matrix to iteratively pick hosts minimizing total inter-host

networking cost. This approach unifies capacity and

communication in a single graph framework, ensuring high

host utilization while keeping over 80% of traffic rack-local

and halving link saturation compared to flat heuristics.

Despite clear advantages in topology-aware grouping,

graph methods incur O(n³) complexity and often require

full-network snapshots, impractical for frequent re-

optimizations.

Despite their strength in encoding traffic and topology

awareness, these methods come with high computational

costs. Algorithms for community detection, graph

partitioning, and coloring frequently exhibit O(n³)

complexity, which becomes a bottleneck in large or fast-

evolving systems [46].

Another limitation lies in their reliance on static or

snapshot-based views of the network state. To remain

effective, graph-based models require up-to-date global

topology and traffic matrices —information that is difficult

to capture or maintain in real time without imposing

significant monitoring and re-computation overhead.

Additionally, integrating these specialized algorithms into

existing cloud controllers or schedulers remains a challenge

due to their architectural differences.

From an energy and network efficiency perspective, graph-

theoretic strategies outperform heuristic or ML-based

approaches in minimizing communication overhead and

active link utilization. However, this often comes at the

expense of higher host-level energy consumption when

traffic-based clustering leads to VM consolidation on less

energy-efficient machines. While the network energy

savings are clear, careful balance is required to avoid

increasing overall compute energy due to suboptimal host

selection. These algorithms are suitable for communication-

intensive workloads with predictable traffic patterns (e.g.,

Hadoop), and hierarchical (or structured) data centers where

intra-rack traffic locality is critical. However they perform

poor with: real-time architectures with rapidly shifting

traffic flows, edge and fog computing scenarios with strict

latency constraints, and hyperscale public clouds (>10,000

VMs) where O(n³) complexity is unjustified [48].

Summary and Comparative Insights

While each VM placement strategy category—

mathematical optimization, heuristics, metaheuristics,

machine learning, and graph theory—has distinct merits,

they also exhibit significant trade-offs in terms of

computational complexity, scalability, and suitability for

energy- and network-aware objectives. Mathematical

optimization-based methods provide provable optimality

for small-scale problems but are intractable for real-time or

large deployments. Heuristic methods are fast and scalable

but fail to consider complex objectives or traffic metrics.

Metaheuristics deliver near-optimal results and support

multi-objective optimization, yet often suffer from

parameter sensitivity and long runtimes. ML approaches

bring adaptability and prediction to dynamic environments

but are data-hungry and rarely embed network topology or

energy metrics explicitly. Graph-theoretic models excel at

topology-aware co-location but incur high computational

costs and require complete snapshot data. As summarized

in Table 5, selecting an appropriate placement strategy

requires balancing complexity, performance goals, and

environmental context, especially when aiming to reduce

both host and network energy consumption.

3-3- Infrastructure Considerations (where to

place?)

Cloud architecture plays a pivotal role in VM placement

decisions. It encompasses the set of interconnected

components and deployment models that define how

compute, storage, and network services are delivered. A

network-aware placement algorithm must adapt to the

physical and logical characteristics of the underlying

architecture.

A- Cloud Infrastructure type

Centralized Cloud: infrastructure consolidates all resources

in a single data center, offering uniform latency and

centralized cooling, power, and network control. Here,

placement strategies emphasize intra-rack traffic

minimization, server consolidation, and ALR to reduce

switch and server energy. Because of the homogeneous

environment, algorithms benefit from predictable latencies

and uniform PUE values, supporting static or light dynamic

heuristics [49]. However, placement strategies risk creating

network congestion at the rack level if VM affinities are

misestimated and lack resilience against localized failures

or flash crowd events. Centralized placements suit

applications with consistent workload distributions but

should be augmented with fault-tolerance and burst-

handling extensions for production deployments.

Distributed Cloud: infrastructures span multiple,

geographically dispersed sites or edge facilities. Placement

algorithms in this context must account for WAN latency,

variable carbon intensity, renewable energy availability,

and differing PUE scores across locations. For instance,

placement might favor a solar-powered region despite

slightly higher latency. Network-aware algorithms in

distributed contexts must balance performance against

operational costs and inter-site bandwidth constraints [27].

While distributed placement can optimize global cost and

sustainability, it introduces complexity in synchronizing

Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches

222

state across sites, handling network failures, and meeting

latency-sensitive SLAs.

B- Cloud Proximity Models

Cloud Proximity Models distinguish between edge and core

clouds based on their user-nearness and resource richness.

Edge Clouds: Deployed close to users for latency-sensitive

workloads like gaming or AR/VR; placement here must

prioritize minimal hop counts and rapid elasticity but

suffers from limited capacity and heterogeneous

infrastructure. TRACTOR [50], Traffic-aware and Power-

efficient Placement in Edge-Cloud Data Centers (ECDCs),

an Artificial Bee Colony-based multi-objective VM

placement scheme that minimizes network traffic and

power consumption in ECDCs. Evaluations on VL2 and

three-tier topologies demonstrate a 3.5% reduction in server

energy and up to 30% cut in network power usage without

degrading QoS. However, TRACTOR presumes accurate

pre- and post-placement traffic matrices and requires

simulation-based calibration, limiting its adaptability to

heterogeneous, real-world edge deployments.

Core Clouds: located in centralized, resource-rich facilities,

are suited for compute-heavy, batch-oriented tasks that do

not have stringent latency demands. Placement algorithms

in these environments optimize resource density and power

utilization while managing rack-level heat and congestion.

In a centralized high-density core clouds, [51] framework

employs a Greedy Randomized VMP (GRVMP) algorithm

that fuses heuristic sorting with stochastic perturbations to

escape local optima, achieving up to 12% energy reduction

and 8% resource utilization gains compared to deterministic

baselines. GRVMP addresses dynamic VM arrivals;

however, its randomized nature can lead to variability in

outcomes and overlooks network topology unless network-

aware metrics are integrated.

C- Hardware-Based Energy Mechanisms

Datacenter hardware often embeds energy-saving features

at component and network levels. Placement algorithms

that are aware of these mechanisms can reduce overall

power draw by tailoring VM assignments to exploit them.

We categorize three primary hardware-based strategies

below:

• ALR:
ALR dynamically scales the data-link speed of network
interfaces (e.g., from 1 Gbps to 100 Mbps) based on
instantaneous utilization. When traffic is low, links down-
shift to a lower rate—saving up to 40 % of PHY-layer
power—then ramp up again under load. Some VM
placement schemes explicitly cluster bursty or low‐
throughput VMs under the same Top-of-Rack switch to
maximize low‐speed intervals and link‐power savings [52].

• DVFS:
Modern CPUs and NICs support DVFS, which lowers
voltage and clock frequency when workload demands
permit. Experimental studies report up to 30 % server-level
energy reduction with minimal performance loss under
controlled load variations [53]. Energy-aware schedulers
simulate or predict CPU utilization to trigger DVFS states—
placing latency-insensitive VMs on hosts where cores can be
down-clocked, while reserving full-speed nodes for critical
workloads [54].

• Switch and Rack Power-Down:
Many top-of-rack (ToR) switches and rack PDUs can enter
sleep modes or shut down unused ports when idle. Research
prototypes have shown up to 50 % energy savings in
underutilized racks by consolidating traffic and powering
down dormant switches [55]. Topology-aware schemes fold
traffic into active racks during off-peak periods, allowing
idle switches or PDUs to sleep or power off; the migration
cost is balanced against the long-term energy gains [56].

Placement algorithms treat ALR, DVFS, and switch/rack

power‐down not as standalone placement steps but as

hardware‐aware objectives or constraints that guide where

and when to place or migrate VMs. In other words, these

features aren’t separate “phases” of VM placement; rather,

placement algorithms incorporate knowledge of link‐rate

scaling, voltage/frequency capabilities, or switch on/off

thresholds to shape consolidation decisions.

Integrating these hardware-based mechanisms into

placement and migration heuristics unlocks significant

energy savings that complement software techniques.

D- Thermal-Aware Placement Strategies

Integrating thermal dynamics into VM placement helps

prevent hotspots and reduces cooling energy consumption

by considering rack- and node-level temperature

distributions during allocation and migration decisions [57].

Multi-objective formulations jointly optimize computing

energy and cooling load, enabling VM placement

algorithms to trade off consolidation benefits against the

risk of creating thermal hotspots [58].

3-4- Workload Characteristics (What Is Being

Placed)

A- Arrival rate

Static: Static workloads such as batch jobs in scientific

computing, benefit from heavy-weight optimizations like

ILP, yielding near-optimal resource packing when demands

are known in advance [59][60]. The term "static allocation"

usually refers to the initial VM placement which is the

allocation of VMs to PMs is done during deployment and

remains fixed throughout the VMs' lifecycle. The goal is to

optimize allocation based on resource requirements and

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

223

constraints. However, the assumption of stable load profiles

renders it brittle when workloads fluctuate unpredictably.

Dynamic: Dynamic scenarios characterized by real-time

VM arrivals in auto-scaling web services or event-driven

microservices. Dynamic VM placement includes placing

new VMs and migrating existing ones, considering future

live migrations, and needs more resources than static

solutions.

In this context, reactive placement adapts the initial

allocation of resources based on the current state of the

system, while proactive placement predicts future

conditions and adjusts allocations before problems occur.

• Reactive Placement: Migration or reallocation is
triggered by observed thresholds, such as CPU/memory
utilization exceeding a limit, network congestion detected on
a link, or thermal hot spots. Reactive methods respond to
current system state ([61][62]) but often react too late to
avoid SLA violations or suboptimal energy states.

• Proactive Placement: Predictive models anticipate
future workloads or traffic spikes and migrate VMs
preemptively. While more complex, requiring accurate
demand prediction, proactive approaches can better prevent
overloads and exploit low‐utilization windows for
consolidation [20], [21]).

B- Workload Type (Application-Centric)

We present the main application categories in the literature

used to guide placement heuristics.

Bag of Tasks: Independent parallel tasks requiring minimal

inter-communication. Placement focuses on maximizing

throughput and minimizing makespan by grouping tasks

(VMs) on minimal PMs [41].

CPU-Intensive Workloads: Require sustained processor

capacity and thermal stability. Placement must dedicate

cores to each VM and move workloads off busy hosts to

prevent contention and overheating [64].

Data-Intensive Workloads: Require high I/O and low-

latency access to shared storage. Placement must reduce

traffic to storage nodes (SNs) and minimize bottlenecks

[65].

Latency-Sensitive Applications: Include gaming, financial

systems, or telemedicine, where delays severely degrade

user experience. These demand edge-aware, low-hop-count

VM placement [66].

C- Workload Data Sources for Algorithm Evaluation

The following are the ways researchers evaluate their work

against other algorithms. However, researchers may

combine two or more types of workload data.

• Benchmark Datasets: Standardized collections of
VM workload traces detailing CPU, memory, I/O and

network usage, collected via monitoring tools, application
profilers or user logs. They enable controlled, repeatable
comparisons of placement algorithms by quantifying
impacts on network utilization, availability and cost.

• Synthetic data: Synthetic data is generated using
mathematical models and statistical techniques that simulate
the behavior of real-world applications and infrastructure
components. It allows researchers to control the workload
and resource utilization characteristics of the cloud
infrastructure and to compare different algorithms under the
same conditions. Researchers evaluated their work using
synthetic scenarios with several performance metrics [67].

• Real Traces: Real traces are collected from real cloud
computing environments (Amazon EC2, PlanetLab, and
Google Cluster) to evaluate VM placement algorithms
under realistic conditions. In [51], Amazon EC2 data was
used to optimize power consumption. In [68], PlanetLab
network traces were utilized to assess algorithm
performance. Both methods provide insights into workload
behaviors and resource utilization for algorithm evaluation.

These classifications create a multidimensional lens to

evaluate VM placement strategies and pave the way for

our specialized network-aware taxonomy in Section 4.

4- Taxonomy of Network-Aware VM

Placement Approaches

This section synthesizes the contextual shifts and motivates

the need for a new taxonomy—one that maps VM

placement methods not only to their algorithmic families

(heuristic, ML-based) but also to the underlying network

dynamics they aim to optimize. As shown in Fig.2, our

taxonomy therefore introduces a cross-layer perspective

that bridges DCN topology, traffic characteristics,

communication patterns, and energy reduction strategies,

reflecting how emerging solutions should be evaluated in

modern cloud environments. Additionally, a sub-taxonomy

at the bottom of Fig.2 classifies network-aware VMP

algorithms according to their energy consumption

strategies.

In a typical cloud computing environment, VMs are

interconnected with physical hosts through a network,

generating substantial network traffic from the applications

they run. Consequently, the placement of VMs on physical

hosts significantly impacts network performance, which in

turn affects overall application performance. Given that the

network is a major consumer of energy, minimizing

network traffic and optimizing topology can lead to

substantial energy savings.

Therefore, it is critical to consider network-related factors

throughout placing and migrating VMs. This means that the

VMP algorithm should not only consider the usual metrics

Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches

224

and resource requirements of VMs and PMs but also

incorporate network considerations. The algorithm can

make more informed decisions regarding VM placement

and consolidation by incorporating network conditions,

topology, and traffic patterns.

Customers utilize VMs to conduct specific jobs that are

frequently parts of larger applications, such as tiers of multi-

tier applications. As these VMs start communicating with

each other, it can involve the transfer of significant amounts

of data, which might increase latency or response times to

intolerable levels. In addition, the power consumption of the

hardware components involved, such as PMs, routers,

switches, and other networking equipment, can also be

affected by such communication patterns.

For the reasons listed above, it is ideal to have VMs that

communicate frequently placed on the same server, or at the

very least within the same DC. Additionally, VMs

belonging to the same application may have load

correlation, making it more likely that they may peak at the

same time; this must also be carefully considered when

allocating VM resources.

Network bandwidth can often become a bottleneck,

particularly in scenarios involving data mapping on SNs.

High network traffic between VMs and SNs can arise when

workloads require extensive data mapping. To prevent too

many high network loads, it is necessary to consider both

the placement of VMs on PMs and application data on SNs.

To facilitate this, we categorize network-aware VMP

algorithms into four groups based on their focus on network

considerations:

4-1- DCN Topology

DC topology involves organizing physical and logical

components in a network, including servers, network

devices, and SNs. It enables efficient connections with

multiple PMs, enhancing energy efficiency and reducing

reliability concerns. Various network topologies tackle

scalability and energy consumption differently and offer

insights for future VM placement research. Researchers can

examine the advantages, drawbacks, and enhancements of

these topologies to improve current VM placement

methods, as discussed in Section V.

A- Hierarchical Three-Tier

This architecture manages traffic using a structured

approach. The access layer connects servers to edge

switches, which then relay information to interconnected

aggregate switches. The core layer serves as the spine,

linking all aggregate switches and handling external

connections, providing a scalable and efficient solution for

internal data center communication.

• Fat-tree: A three-tier architecture utilizing bipartite
graphs with pods as the basic unit, where each pod contains
access and aggregation switches. This topology offers
efficient routing paths for reducing congestion and power
consumption [69].

• VL2: Like fat-tree, this three-tier topology connects
core and aggregation switches in a bipartite graph. Valiant
load balancing routes traffic by randomly selecting a core
switch, reducing congestion and power consumption. A
customized VMP technique further optimizes network
traffic. [67].

• Portland: This architecture comprises pods with
access and aggregation switches forming bipartite graphs,
connecting to all core switches. VM placement algorithms
prioritize proximity to enhance quality of service (QoS)[70].

B- Recursive

These topologies are constructed recursively, combining

smaller building blocks into larger network structures,

allowing for scalable and modular designs.

• DCell: a server-centric data center network design
with a hierarchical structure. Servers connect directly with
multiple NICs, organized into cells like cell0, cell1, and cell2
[71].

• BCube: BCube is a multi-level data center network
architecture focused on servers, integrating them into the
network infrastructure. It is derived from hypercube
architecture, connecting hosts via switches based on port
availability for efficient packet forwarding [72].

Fig.2 Network-aware VM placement taxonomy.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

225

C- Rack to Rack

Rack-to-rack networks prioritize communication between

server racks. Their design focuses on efficient data transfer

within and across racks.

• Scafida: a method inspired by scale-free networks to
create asymmetric data center topologies with high fault
tolerance and small diameters. It allows for flexible scaling
but faces challenges with link correlation as the network
grows [73].

• Jellyfish: Jellyfish network with random graph
topology offers cost-efficiency, 25% more server support,
scalability, and flexibility for high-capacity
interconnectivity [74].

4-2- Traffic Type

Traffic type categorization in cloud DCs (considered in

VMP) optimizes network performance and energy usage by

placing VMs with similar traffic types together, reducing

data transfers across the network and minimizing energy

consumption.

A- Cross-Traffic

Cross-traffic is the data flow between VMs or applications

that may be located on different servers within the same

rack or across different racks. This type of traffic can impact

network performance and energy usage. Allocating VMs

and data on physically closer PMs can improve efficiency,

as explored in [75].

B- Inter-VM Communication

North-south traffic involves data flow between virtual

machines (VMs) and the Internet, while inter-VM

communication refers to data exchange within the same

data center. The latter is often high-bandwidth and low-

latency, with different application requirements.

Studies are focusing on reducing network energy usage by

optimizing VM placement to minimize inter-rack traffic

and reduce delays, consequently cutting down on power

consumption and costs [76].

C- Traffic between VM and Data

This traffic occurs when VMs access data stored on storage

devices. VMs send requests to these devices via the

network, and the data is transmitted back to the requesting

VM. Factors influencing traffic volume include data size,

access frequency, and the type of storage device used. In

distributed object storage systems, each storage node

manages a group of servers. When a server and its

corresponding storage node are within the same group, data

transfer is optimized, thereby reducing overall traffic flow

[77].

4-3- Traffic Patterns

Understanding traffic patterns in cloud networks is crucial

for optimizing performance by placing virtual machines in

strategic locations to improve network performance and

reduce energy consumption. Research indicates that

network status changes over time due to unpredictable

traffic characteristics, regardless of data center size or type.

Authors advocate for traffic-aware VM placement to

enhance network scalability by aligning traffic patterns with

communication distances. Empirical studies reveal

imbalanced communication patterns, link losses, and ON-

OFF traffic patterns with varying distributions,

emphasizing the need for optimized VM allocation and

routing in cloud networks [3] [78].

4-4- Communication Patterns

Communication patterns in VM placement refer to how

VMs interact with each other and with external networks. It

is a useful resource for perceiving the parallel application

communication behavior and is extracted from

communication trace, where machines form multiple

groups or tiers each of which serves a specific part needed

for the accomplishment of the overall task. Energy

consumption heavily depends on the communication

pattern [79].

A- Fixed

Fixed communication patterns between virtual machines

(VMs) exhibit predictable and consistent interactions that

remain unchanged during runtime. VM placement

strategies often aim to co-locate VMs with frequent

communication to minimize network latency and overhead

[76].

B- Dynamic

Dynamic communication patterns between VMs change

during runtime, in contrast to fixed patterns. This requires

adaptable VM placement solutions that monitor and adjust

VM locations based on evolving communication needs. The

technique introduced in [80] uses a decentralized migration

approach considering VM affinity. It dynamically adjusts

VM placement through a distributed bartering algorithm to

minimize communication overhead and adapt to changing

patterns, while maintaining low overhead.

4-5- Energy Reduction Achievement

The energy reduction classification in our taxonomy in

Fig.2 is centered around strategies and methodologies in

reducing energy consumption in network-aware VM

placement. This section highlights how researchers have

leveraged network awareness to achieve considerable

energy savings in CDCs. In this section, we review different

approaches for network traffic minimization,

communication cost minimization, data transfer time

reduction, and network performance improvement.

Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches

226

A- Minimizing Network Traffic

One of the effective strategies is to optimize VM placement

with the co-location of VMs that communicate with each

other with high volume on the same physical hosts. In this

way, the distance that data needs to travel is minimal and

reduces traffic in the network. For example, the work in [50]

suggested a multi-objective VM placement algorithm using

a bee colony method, achieving 3.5% power reduction, 15%

less network traffic, and 30% lower network power.

Similarly, the work in [22] proposed an ant colony

optimization algorithm considering both energy usage and

network bandwidth, which effectively reduced traffic and

outperformed other heuristics.

B- Minimize Communication Cost

Network communication costs refer to expenses in terms of

bandwidth utilization, latency, and rate of data transfer. For

VM placement, reducing such costs minimizes resource

consumption and overall expenses. The work in [59]

introduced a "network consumption" metric to identify

optimal VM placements within a fat-tree architecture to

minimize network traffic. This approach led to a significant

reduction in overall network usage and power consumption,

decreasing resource wastage by up to 20%. Similarly, the

approach in [81] focused on enhancing VM-to-VM

communication using dynamic clustering of VMs based on

the network. An adaptive algorithm consolidated VMs to

minimize communication costs, leading to reduced high-

latency jobs and improved traffic patterns across the

network. The goal of these techniques is to strategically

place and manage VMs to lower the overall communication

costs in the data center network [36].

C- Minimizing Data Transfer Time

Data transfer time is the duration for data to be transmitted

between VMs over the network. It affects energy usage and

application performance. Placing VMs closer and grouping

them based on traffic patterns can minimize data transfer

time. [82] proposed a novel VMP technique that

simultaneously improves both VM locations and data rates.

They developed heuristics that allocate VMs to PMs with

better network bandwidth to reduce the latencies associated

with data access. Through simulation experiments, they

demonstrated how the proposed approach may lower VMs'

data transmission delays.

D- Improving Network Performance

Improving network performance is the act of optimizing a

computer network to enhance its speed, reliability, and

efficiency. This involves improving the various

components of the network, including switches, routers,

cables, servers, and applications, to ensure that data is

transmitted quickly, accurately, and consistently. The

previously mentioned work in [59] was categorized under

minimizing communication cost, but it focused also on

minimizing resource wastage, which led to the optimization

of the overall network performance.

E- Emerging Trends

With the rise of such technologies as network virtualization

and Software-Defined Networking (SDN), the way VM

placement for energy efficiency will be significantly

impacted. Network virtualization increases the flexibility of

network resource allocation and management, such that

even real-time adjustments according to changing traffic

patterns become possible. On the other hand, SDN brings

central control to a network, which makes routing much

more efficient and leads to lower energy consumption.

These technologies are still evolving, we can expect further

improvements in energy efficiency and overall network

performance in the placement of VMs [83].

5- Discussion

This section discusses the important relationship between

network topology, traffic patterns, and energy efficiency in

network-aware VMP. We provide a novel perspective on

how these aspects interact and affect the total energy

consumption within the datacenter.

5-1- Traffic Type

Different traffic types have varying requirements regarding

reliability, latency, and network bandwidth. For example,

real-time communication applications, including video

conferencing and VoIP, require low latency and high

reliability; in contrast, batch processing applications such as

data analytics can tolerate high latency and low reliability.

Those network traffic patterns found in datacenters can

significantly affect energy consumption, SLAs, cloud

provider revenue, as well as the overall cloud

infrastructure's efficiency.

In response to such challenges, there has been a

development of network-aware VM placement algorithms

to optimize network traffic and minimize resource

utilization in CDCs. These algorithms distribute the

network traffic evenly across the infrastructure to prevent

congestion, resulting in energy savings. VMs often rely on

the network for data-intensive applications and interactions

with other VMs. These algorithms can prioritize high-

bandwidth VMs and place them nearby by optimizing the

placement of VMs based on their communication patterns,

reducing the overall network traffic between and within the

data centers. This, in turn, minimizes the number of

physical networking components required and leads to

reduced power consumption.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

227

5-2- Network Topology

Network topology is a principal issue in virtual machine

placement, which affects resource utilization and energy

efficiency. Placing VMs wisely reduces the distance of data

transfers, switches, and links involved in communication

and leads to saving energy as well as increasing

performance. Fat-tree topology manages the high-

bandwidth, low-latency traffic well within a pod or data

center, while VL2 is good for traffic generated by VMs in

cloud environments, including storage, migration, and

inter-DC. BCube is suitable for data-intensive applications

that demand high bandwidth and efficient data

transmission.

In this subsection, network topology influence on VM

placement is discussed based on existing research that

examines the impact on energy efficiency as well as overall

system performance [84]. The placement of VMs close to

each other is quite essential for resource utilization and

energy efficiency. Strategic placement reduces the distance

of data transfer, therefore reducing the number of switches

and links, which means less energy consumption and

improved performance in data centers. The three-tier

architecture typically includes expensive and power-

intensive network devices at the corporate level, whereas

DCell and BCube architecture consume similar energy for

small-sized data centers. However, BCube consumes more

energy for larger data centers. The Fat-Tree topology has

reasonable power usage, while BCube is power-intensive

due to its extensive use of switches. DCell utilizes

commodity switches that consume less power. BCube's

design with intermediate servers for routing can pose

challenges to energy efficiency.

According to experimental findings, the tree topology

experiences congestion issues with similar VM traffic,

while the Fat-Tree topology distributes traffic more evenly

due to its multi-path connections. VL2 suffers from uneven

traffic distribution due to a large gap in link utilization. The

Tree topology has lower energy efficiency compared to

VL2 and Fat-Tree, although topology awareness can

optimize energy usage in the network. However, these

conclusions are specific to each author's work, and more

research is needed to establish correlations between data

center size, server count, switches, and user demands.

Cloud service providers should ensure appropriately sized

environments to minimize costs. A hybrid or dynamic

topology approach using SDN can optimize resource

utilization, energy efficiency, and overall performance by

adapting the network topology based on workload demands,

such as favoring a fat-tree topology for high east-west

traffic.

5-3- Traffic and Communication Patterns

To minimize energy consumption in DCs, network-aware

VM placement algorithms play a crucial role. These

algorithms aim to allocate VMs with similar traffic patterns

to the same physical servers or switches. This will reduce

inter-server or inter-switch communication, therefore

saving energy not only in the network infrastructure but also

in the servers. Secondly, VMP optimization based on

bandwidth and latency demands will prevent network

congestion, thus assuring satisfactory performance and

energy efficiency during communications.

Energy consumption and network traffic in virtualized

environments were analyzed in studies [58,59]. It was

noticed that energy consumption might have a wide

variation for different traffic allocation strategies and that

the type of traffic may strongly influence the possible

energy savings. Such results are important to consider in

traffic-aware optimizations, but all such optimizations

require detailed information from clients about the

application network and communication requirements. This

allows network-aware techniques for minimizing

communication delays and/or improving overall application

performance.

The distribution of the components over various PMs

provides a good opportunity for parallel processing in

applications such as MapReduce. In case migration needs

to be done, the ideal order of the intercommunicating virtual

machines will help avoid core network traffic and energy

consumption. Considering intercommunication between

replicated virtual machines is also important to prevent

bottlenecks and excessive energy usage.

Recognition of the traffic pattern is especially important in

dynamic cloud environments. Workload and

communication requirements are dynamic; hence, the

adaptability of VMP algorithms is required to achieve

resource and energy efficiency. Such dynamical traffic

management approaches like load balancing and traffic

shaping would prevent congestion and optimize power

consumption.

The application-specific information will also reduce

latency, inter-VM traffic, and improve application

performance in placement algorithms. On the other hand,

machine learning algorithms will use historical traffic data

and predictive models to foresee traffic patterns, thus

making proactive placement decisions that reduce energy

consumption. Machine learning can also help in identifying

and classifying traffic hotspots, which helps in applying

targeted optimizations to mitigate power imbalances.

6- Conclusion And Future Directions

Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches

228

This paper presents a new classification for VM placement
techniques in CDCs that are both network-aware and
energy-efficient. It examines various network factors,
including network equipment, workload type, performance,
scalability, efficiency, reliability, and availability, to
understand how VM placement affects network
performance. The research indicates that network-aware
VM placement algorithms can boost performance by
reducing latency between VMs and improving security
through co-location. However, the initial deployment of
these algorithms might incur higher costs, necessitating a
careful evaluation of the trade-off between energy
consumption and migration costs.

This work also reviews research that identifies the most

effective metrics for evaluating the performance of

network-aware VM placement algorithms, focusing on

energy efficiency, network performance, and resource

utilization. Additionally, the study examines how network

topology affects energy consumption in data centers and the

trade-off between energy use and migration costs, providing

valuable insights. These insights can help researchers

develop and implement more effective network-aware VM

placement algorithms that optimize energy consumption,

improve network performance, and minimize migration

costs. Based on the findings, future research directions for

network-aware VM placement in CDCs can be suggested,

including:

• Developing energy-efficient algorithms that consider
the network metrics identified in this study. This would
involve creating strategies to optimize energy use while
improving network performance, factoring in elements like
datacenter layout and communication patterns.

• Testing VM placement techniques on realistic
testbeds. While simulations help assess the proposed VM
placement methods, it is essential to validate these
techniques on actual cloud testbeds with real-world network
topologies.

• Researching VM placement algorithms that enhance
security and privacy in cloud environments. This could
involve devising methods to group related VMs on the same
server or rack while preventing the co-location of unrelated
VMs. Such strategies would help mitigate the risk of security
breaches and protect sensitive data in cloud settings.

• Continuing to explore novel solutions for optimizing
VM placement and migration that can boost energy
efficiency and network performance in CDCs. This would
include investigating innovative techniques and approaches
that leverage emerging technologies like machine learning
and artificial intelligence to improve network-aware VM
placement.

Future research in this area could investigate how elements
like energy storage systems, renewable energy sources, and
workload balancing impact network-aware VM placement.
These potential directions provide a solid foundation for

further exploration of energy-efficient network-aware VM
placement, intending to create more effective strategies for
optimizing energy consumption, improving network
performance, enhancing security and privacy, and
integrating artificial intelligence throughout the cloud
computing environment.

References
[1] P. M. Mell and T. Grance, “The NIST definition of cloud

computing,” Gaithersburg, MD, 2011. doi:

10.6028/NIST.SP.800-145.

[2] D. Bliedy, S. Mazen, and E. Ezzat, “Datacentre Total Cost of

Ownership (TCO) Models : A Survey,” International Journal

of Computer Science, Engineering and Applications, vol. 8,

no. 2/3/4, pp. 47–62, 2018, doi: 10.5121/ijcsea.2018.8404.

[3] T. Benson, A. Akella, and D. A. Maltz, “Network traffic

characteristics of data centers in the wild,” Proceedings of the

ACM SIGCOMM Internet Measurement Conference, IMC,

pp. 267–280, 2010, doi: 10.1145/1879141.1879175.

[4] L. Zhou, C. H. Chou, L. N. Bhuyan, K. K. Ramakrishnan, and

D. Wong, “Joint server and network energy saving in data

centers for latency-sensitive applications,” Proceedings - 2018

IEEE 32nd International Parallel and Distributed Processing

Symposium, IPDPS 2018, pp. 700–709, 2018, doi:

10.1109/IPDPS.2018.00079.

[5] K. Bilal et al., “A survey on Green communications using

Adaptive Link Rate,” Cluster Comput, vol. 16, no. 3, pp. 575–

589, Jul. 2013, doi: 10.1007/s10586-012-0225-8.

[6] A. C. Orgerie, M. D. De Assuncao, and L. Lefevre, “A survey

on techniques for improving the energy efficiency of large-

scale distributed systems,” ACM Comput Surv, vol. 46, no. 4,

2014, doi: 10.1145/2532637.

[7] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya,

Network-aware virtual machine placement and migration in

cloud data centers, no. May. 2015. doi: 10.4018/978-1-4666-

8213-9.ch002.

[8] A. Hammadi and L. Mhamdi, “A survey on architectures and

energy efficiency in Data Center Networks,” Comput

Commun, vol. 40, pp. 1–21, 2014, doi:

10.1016/j.comcom.2013.11.005.

[9] K. Bilal et al., “A taxonomy and survey on Green Data Center

Networks,” Future Generation Computer Systems, vol. 36, pp.

189–208, Jul. 2014, doi: 10.1016/j.future.2013.07.006.

[10] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A.

Yousafzai, and F. Xia, “A survey on virtual machine migration

and server consolidation frameworks for cloud data centers,”

Journal of Network and Computer Applications, vol. 52, pp.

11–25, 2015, doi: 10.1016/j.jnca.2015.02.002.

[11] F. L. Pires and B. Baran, “A virtual machine placement

taxonomy,” Proceedings - 2015 IEEE/ACM 15th International

Symposium on Cluster, Cloud, and Grid Computing, CCGrid

2015, no. July, pp. 159–168, 2015, doi:

10.1109/CCGrid.2015.15.

[12] M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of

virtual machine placement schemes in cloud computing,”

Journal of Network and Computer Applications, vol. 66, pp.

106–127, 2016, doi: 10.1016/j.jnca.2016.01.011.

[13] H. Talebian et al., Optimizing virtual machine placement in

IaaS data centers: taxonomy, review and open issues, vol. 23,

no. 2. Springer US, 2020. doi: 10.1007/s10586-019-02954-w.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

229

[14] H. Zhuang and B. Esmaeilpour Ghouchani, “Virtual machine

placement mechanisms in the cloud environments: a

systematic review,” Kybernetes, vol. 50, no. 2, pp. 333–368,

2021, doi: 10.1108/K-09-2019-0635.

[15] L. Helali and M. N. Omri, “A survey of data center

consolidation in cloud computing systems,” 2021. doi:

10.1016/j.cosrev.2021.100366.

[16] A. Sumathi, … B. K.-T. J. of, and undefined 2023,

“Advancements in Energy-Efficient Virtual Machine

Placement Survey for Cloud Computing,” Researchgate.Net,

no. February, 2024, doi: 10.13140/RG.2.2.17918.36164.

[17] N. Rana et al., “A systematic literature review on

contemporary and future trends in virtual machine scheduling

techniques in cloud and multi-access computing,” Front

Comput Sci, vol. 6, 2024, doi: 10.3389/fcomp.2024.1288552.

[18] J. Zou, K. Wang, K. Zhang, and M. Kassim, “Perspective of

virtual machine consolidation in cloud computing: a

systematic survey,” Telecommun Syst, p. 11235, 2024, doi:

10.1007/s11235-024-01184-9.

[19] S. R. Swain, A. Parashar, A. K. Singh, and C. Nan Lee, “An

Energy Efficient Virtual Machine Placement Scheme for

Intelligent Resource Management at Cloud Data Center,” in

OCIT 2023 - 21st International Conference on Information

Technology, Proceedings, Institute of Electrical and

Electronics Engineers Inc., 2023, pp. 65–70. doi:

10.1109/OCIT59427.2023.10430915.

[20] S. Kumar, S. Mittal, and M. Singh, “Active VM Placement

Approach Based on Energy Efficiency in Cloud

Environment,” in Lecture Notes in Networks and Systems,

Springer Science and Business Media Deutschland GmbH,

2022, pp. 35–46. doi: 10.1007/978-981-19-1018-0_4.

[21] Z. Li, K. Lin, S. Cheng, L. Yu, and J. Qian, “Energy-Efficient

and Load-Aware VM Placement in Cloud Data Centers,” J

Grid Comput, vol. 20, no. 4, 2022, doi: 10.1007/s10723-022-

09631-0.

[22] H. Xing, J. Zhu, R. Qu, P. Dai, S. Luo, and M. A. Iqbal, “An

ACO for energy-efficient and traffic-aware virtual machine

placement in cloud computing,” Swarm Evol Comput, vol. 68,

no. November 2021, p. 101012, 2022, doi:

10.1016/j.swevo.2021.101012.

[23] D. Dabhi and D. Thakor, “Utilisation-aware VM placement

policy for workload consolidation in cloud data centres,”

International Journal of Communication Networks and

Distributed Systems, vol. 28, no. 6, pp. 704–726, 2022, doi:

10.1504/ijcnds.2022.126224.

[24] E. I. Elsedimy, M. Herajy, and S. M. M. Abohashish, “Energy

and QoS-aware virtual machine placement approach for IaaS

cloud datacenter,” 2025. doi: 10.1007/s00521-024-10872-1.

[25] K. Lu, R. Yahyapour, P. Wieder, C. Kotsokalis, E. Yaqub,

and A. I. Jehangiri, “QoS-aware VM placement in multi-

domain service level agreements scenarios,” IEEE

International Conference on Cloud Computing, CLOUD, no.

April 2014, pp. 661–668, 2013, doi:

10.1109/CLOUD.2013.112.

[26] T. Renugadevi, K. Geetha, K. Muthukumar, and Z. W. Geem,

“Optimized energy cost and carbon emission-aware virtual

machine allocation in sustainable data centers,” Sustainability

(Switzerland), vol. 12, no. 16, pp. 1–27, 2020, doi:

10.3390/SU12166383.

[27] S. Rawas, A. Zekri, and A. El Zaart, “Power and Cost-Aware

Virtual Machine Placement in Geo-Distributed Data Power

and Cost-aware Virtual Machine Placement in Geo-distributed

Data Centers,” no. March, 2018, doi:

10.5220/0006696201120123.

[28] G. P. Maskare and S. Sharma, “The Hybrid ACO, PSO, and

ABC Approach for Load Balancing in Cloud Computing,” vol.

10, 2023, Accessed: May 07, 2025. [Online]. Available:

www.jetir.org

[29] M. H. Kim, J. Y. Lee, S. A. Raza Shah, T. H. Kim, and S. Y.

Noh, “Min-max exclusive virtual machine placement in cloud

computing for scientific data environment,” Journal of Cloud

Computing, vol. 10, no. 1, pp. 1–17, Dec. 2021, doi:

10.1186/S13677-020-00221-7/FIGURES/12.

[30] M. Koubàa, R. Regaieg, A. S. Karar, M. Nadeem, and F.

Bahloul, “A Multi-Objective Approach for Optimizing Virtual

Machine Placement Using ILP and Tabu Search,” Telecom,

vol. 5, no. 4, pp. 1309–1331, 2024, doi:

10.3390/telecom5040065.

[31] X. Zheng and Y. Xia, “Exploring mixed integer programming

reformulations for virtual machine placement with disk anti-

colocation constraints,” Performance Evaluation, vol. 135,

2019, doi: 10.1016/j.peva.2019.102035.

[32] S. Yang, P. Wieder, R. Yahyapour, S. Trajanovski, and X. Fu,

“Reliable Virtual Machine Placement and Routing in Clouds,”

IEEE Transactions on Parallel and Distributed Systems, vol.

28, no. 10, pp. 2965–2978, 2017, doi:

10.1109/TPDS.2017.2693273.

[33] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware

resource allocation heuristics for efficient management of data

centers for Cloud computing,” Future Generation Computer

Systems, vol. 28, no. 5, pp. 755–768, 2012, doi:

10.1016/j.future.2011.04.017.

[34] J. Wang, J. Yu, R. Zhai, X. He, and Y. Song, “GMPR: A Two-

Phase Heuristic Algorithm for Virtual Machine Placement in

Large-Scale Cloud Data Centers,” IEEE Syst J, vol. 17, no. 1,

pp. 1419–1430, Mar. 2023, doi:

10.1109/JSYST.2022.3187971.

[35] S. Jangiti, V. Vijayakumar, and V. Subramaniyaswamy,

“Hybrid best-fit heuristic for energy efficient virtual machine

placement in cloud data centers,” EAI Endorsed Transactions

on Energy Web, vol. 7, no. 26, pp. 1–7, 2020, doi:

10.4108/eai.13-7-2018.162689.

[36] R. Keshri and D. P. Vidyarthi, “Communication-aware,

energy-efficient VM placement in cloud data center using ant

colony optimization,” International Journal of Information

Technology (Singapore), vol. 15, no. 8, pp. 4529–4535, Dec.

2023, doi: 10.1007/S41870-023-01531-0/METRICS.

[37] N. Donyagard Vahed, M. Ghobaei-Arani, and A. Souri,

“Multiobjective virtual machine placement mechanisms using

nature-inspired metaheuristic algorithms in cloud

environments: A comprehensive review,” International

Journal of Communication Systems, vol. 32, no. 14, 2019, doi:

10.1002/dac.4068.

[38] A. S. Abohamama and E. Hamouda, “A hybrid energy–

Aware virtual machine placement algorithm for cloud

environments,” Expert Syst Appl, vol. 150, p. 113306, 2020,

doi: 10.1016/j.eswa.2020.113306.

[39] A. M. Baydoun and A. S. Zekri, “Network-, Cost-, and

Renewable-Aware Ant Colony Optimization for Energy-

Efficient Virtual Machine Placement in Cloud Datacenters,”

Future Internet, vol. 17, no. 6, p. 261, Jun. 2025, doi:

10.3390/fi17060261.

Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches

230

[40] S. Talwani et al., “Machine-Learning-Based Approach for

Virtual Machine Allocation and Migration,” Electronics

(Switzerland), vol. 11, no. 19, 2022, doi:

10.3390/electronics11193249.

[41] S. Rawas, A. Zekri, and A. El-Zaart, “LECC: Location,

energy, carbon and cost-aware VM placement model in geo-

distributed DCs,” Sustainable Computing: Informatics and

Systems, vol. 33, 2022, doi: 10.1016/j.suscom.2021.100649.

[42] A. Jumnal and S. M. Dilip Kumar, “Optimal VM placement

approach using fuzzy reinforcement learning for cloud data

centers,” in Proceedings of the 3rd International Conference

on Intelligent Communication Technologies and Virtual

Mobile Networks, ICICV 2021, Institute of Electrical and

Electronics Engineers Inc., Feb. 2021, pp. 29–35. doi:

10.1109/ICICV50876.2021.9388424.

[43] H. Padmanaban, “Machine Learning Algorithms Scaling on

Large-Scale Data Infrastructure,” Journal of Artificial

Intelligence General science (JAIGS) ISSN:3006-4023, vol. 3,

no. 1, pp. 1–26, Apr. 2024, doi:

10.60087/JAIGS.VOL03.ISSUE01.P26.

[44] H. A. Alharbi, T. E. H. Elgorashi, A. Q. Lawey, and J. M. H.

Elmirghani, “The Impact of Inter-Virtual Machine Traffic on

Energy Efficient Virtual Machines Placement,” in 2019 IEEE

Sustainability through ICT Summit, StICT 2019, 2019. doi:

10.1109/STICT.2019.8789381.

[45] F. kamoun-abid, H. Frikha, A. Meddeb-Makhoulf, and F.

Zarai, “Allocation of virtual machine in a cloud environment

based on machine learning,” Res Sq, Jan. 2023, doi:

10.21203/RS.3.RS-2483861/V1.

[46] N. Tziritas, T. Loukopoulos, S. Khan, C. Z. Xu, and A.

Zomaya, “A communication-aware energy-efficient graph-

coloring algorithm for VM placement in clouds,” Proceedings

- 2018 IEEE SmartWorld, Ubiquitous Intelligence and

Computing, Advanced and Trusted Computing, Scalable

Computing and Communications, Cloud and Big Data

Computing, Internet of People and Smart City Innovations,

SmartWorld/UIC/ATC/ScalCom/CBDCo, pp. 1684–1691,

2018, doi: 10.1109/SmartWorld.2018.00286.

[47] S. Sadegh, K. Zamanifar, P. Kasprzak, and R. Yahyapour, “A

two-phase virtual machine placement policy for data-intensive

applications in cloud,” Journal of Network and Computer

Applications, vol. 180, no. December 2020, p. 103025, 2021,

doi: 10.1016/j.jnca.2021.103025.

[48] J. Gedeon, M. Stein, L. Wang, and M. Mühlhäuser, “On

Scalable In-Network Operator Placement for Edge

Computing”.

[49] T. Huang, W. Huang, B. Zhang, W. Chen, and X. Pan,

“Optimizing energy consumption in centralized and

distributed cloud architectures with a comparative study to

increase stability and efficiency,” Energy Build, vol. 333,

2025, doi: 10.1016/j.enbuild.2025.115454.

[50] S. S. Nabavi, S. S. Gill, M. Xu, M. Masdari, and P. Garraghan,

“TRACTOR: Traffic-aware and power-efficient virtual

machine placement in edge-cloud data centers using artificial

bee colony optimization,” International Journal of

Communication Systems, vol. 35, no. 1, pp. 1–20, 2022, doi:

10.1002/dac.4747.

[51] S. Azizi, M. Shojafar, J. Abawajy, and R. Buyya, “GRVMP:

A Greedy Randomized Algorithm for Virtual Machine

Placement in Cloud Data Centers,” IEEE Syst J, vol. 15, no. 2,

pp. 2571–2582, 2020, doi: 10.1109/jsyst.2020.3002721.

[52] W. Wei, H. Gu, W. Lu, T. Zhou, and X. Liu, “Energy

Efficient Virtual Machine Placement with an Improved Ant

Colony Optimization over Data Center Networks,” IEEE

Access, vol. 7, pp. 60617–60625, 2019, doi:

10.1109/ACCESS.2019.2911914.

[53] S. Bani-Ahmad, S. Sa’adeh, S. Bani-Ahmad, and S. Sa’adeh,

“Scalability of the DVFS Power Management Technique as

Applied to 3-Tier Data Center Architecture in Cloud

Computing,” Journal of Computer and Communications, vol.

5, no. 1, pp. 69–93, Dec. 2016, doi: 10.4236/JCC.2017.51007.

[54] J. Masoudi, B. Barzegar, and H. Motameni, “Energy-Aware

Virtual Machine Allocation in DVFS-Enabled Cloud Data

Centers,” IEEE Access, vol. 10, pp. 3617–3630, 2022, doi:

10.1109/ACCESS.2021.3136827.

[55] “ElasticTree: Saving Energy in Data Center Networks,” in

Proceedings of the 7th USENIX Symposium on Networked

Systems Design and Implementation, San Jose, CA, USA,

Apr. 2010.

[56] S. Xiao, Y. Cui, X. Wang, Z. Yang, S. Yan, and L. Yang,

“Traffic-aware Virtual Machine Migration in Topology-

adaptive DCN,” Proceedings - International Conference on

Network Protocols, ICNP, vol. 2016-December, Dec. 2016.

[57] A. Akbari, A. Khonsari, and S. M. Ghoreyshi,

“Thermal-aware virtual machine allocation for heterogeneous

cloud data centers,” Energies (Basel), vol. 13, no. 11, 2020,

doi: 10.3390/en13112880.

[58] J. Lin, W. Lin, W. Wu, W. Lin, and K. Li, “Energy-aware

virtual machine placement based on a holistic thermal model

for cloud data centers,” Future Generation Computer Systems,

vol. 161, pp. 302–314, 2024, doi:

10.1016/j.future.2024.07.020.

[59] S. Omer, S. Azizi, M. Shojafar, and R. Tafazolli, “A priority,

power and traffic-aware virtual machine placement of IoT

applications in cloud data centers,” Journal of Systems

Architecture, vol. 115, no. April, 2021, doi:

10.1016/j.sysarc.2021.101996.

[60] A. K. Singh, S. R. Swain, D. Saxena, and C. N. Lee, “A Bio-

Inspired Virtual Machine Placement Toward Sustainable

Cloud Resource Management,” IEEE Syst J, vol. 17, no. 3, pp.

3894–3905, 2023, doi: 10.1109/JSYST.2023.3248118.

[61] H. F. Farimani, S. R. K. Tabbakh, D. Bahrepour, and R.

Ghaemi, “Reallocation of virtual machines to cloud data

centers reduce service level agreement violation and energy

consumption using the FMT method,” Journal of Information

Systems and Telecommunication, vol. 7, no. 4, pp. 316–325,

2019.

[62] F. Alharbi, Y. C. Tian, M. Tang, W. Z. Zhang, C. Peng, and

M. Fei, “An Ant Colony System for energy-efficient dynamic

Virtual Machine Placement in data centers,” Expert Syst Appl,

vol. 120, pp. 228–238, 2019, doi:

10.1016/j.eswa.2018.11.029.

[63] S. Mashhadi Moghaddam, M. O’Sullivan, C. Walker, S.

Fotuhi Piraghaj, and C. P. Unsworth, “Embedding

individualized machine learning prediction models for energy

efficient VM consolidation within Cloud data centers,” Future

Generation Computer Systems, vol. 106, pp. 221–233, 2020,

doi: 10.1016/j.future.2020.01.008.

[64] A. Kamalinia and A. Ghaffari, “Hybrid Task Scheduling

Method for Cloud Computing by Genetic and PSO

Algorithms,” Journal of Information Systems and

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

231

Telecommunication, vol. 4, no. 16, pp. 1–10, 2017, doi:

10.1007/s11277-017-4839-2.

[65] S. Sadegh, K. Zamanifar, P. Kasprzak, and R. Yahyapour, “A

two-phase virtual machine placement policy for data-intensive

applications in cloud,” Journal of Network and Computer

Applications, vol. 180, p. 103025, Apr. 2021, doi:

10.1016/J.JNCA.2021.103025.

[66] Y. Fan, H. Ding, L. Wang, and X. Yuan, “Green latency-

aware data placement in data centers,” Computer Networks,

vol. 110, pp. 46–57, 2016, doi: 10.1016/j.comnet.2016.09.015.

[67] S. Farzai, M. H. Shirvani, and M. Rabbani, “Communication-

Aware Traffic Stream Optimization for Virtual Machine

Placement in Cloud Datacenters with VL2 Topology,” no.

May, 2021.

[68] A. Beloglazov and R. Buyya, “Optimal online deterministic

algorithms and adaptive heuristics for energy and performance

efficient dynamic consolidation of virtual machines in Cloud

data centers,” Concurrency Computation Practice and

Experience, vol. 24, no. 13, pp. 1397–1420, 2012, doi:

10.1002/cpe.1867.

[69] S. Fang, R. Kanagavelu, B. S. Lee, C. H. Foh, and K. M. M.

Aung, “Power-efficient virtual machine placement and

migration in data centers,” Proceedings - 2013 IEEE

International Conference on Green Computing and

Communications and IEEE Internet of Things and IEEE

Cyber, Physical and Social Computing, GreenCom-iThings-

CPSCom 2013, pp. 1408–1413, 2013, doi:

10.1109/GreenCom-iThings-CPSCom.2013.246.

[70] S. Georgiou, K. Tsakalozos, and A. Delis, “Exploiting

network-topology awareness for VM placement in IaaS

clouds,” in Proceedings - 2013 IEEE 3rd International

Conference on Cloud and Green Computing, CGC 2013 and

2013 IEEE 3rd International Conference on Social Computing

and Its Applications, SCA 2013, 2013, pp. 151–158. doi:

10.1109/CGC.2013.30.

[71] “Data center network architectures.” [Online]. Available:

https://en.wikipedia.org/wiki/Data_center_network_architect

ures

[72] C. Guo et al., “BCube: A high performance, server-centric

network architecture for modular data centers,” Computer

Communication Review, vol. 39, no. 4, pp. 63–74, 2009, doi:

10.1145/1594977.1592577.

[73] L. Gyarmati and T. A. Trinh, “Scafida: A scale-free network

inspired data center architecture,” 2010. doi:

10.1145/1880153.1880155.

[74] A. Singla, C. Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish:

Networking data centers randomly,” Proceedings of NSDI

2012: 9th USENIX Symposium on Networked Systems

Design and Implementation, pp. 225–238, 2012.

[75] M. C. Çavdar, I. Korpeoglu, and Ö. Ulusoy, “A Utilization

Based Genetic Algorithm for virtual machine placement in

cloud systems,” Comput Commun, vol. 214, pp. 136–148, Jan.

2024, doi: 10.1016/J.COMCOM.2023.11.028.

[76] K. Lacurts, S. Deng, A. Goyal, and H. Balakrishnan, “Choreo:

Network-Aware Task Placement for Cloud Applications,”

2013, doi: 10.1145/2504730.2504744.

[77] Q. Zheng et al., “Virtual machine consolidated placement

based on multi-objective biogeography-based optimization,”

Future Generation Computer Systems, vol. 54, pp. 95–122,

Jan. 2016, doi: 10.1016/J.FUTURE.2015.02.010.

[78] T. Benson, A. Anand, A. Akella, and M. Zhang,

“Understanding Data Center Traffic Characteristics,” in

Computer Communication Review, 2010, pp. 92–99.

[79] S. M. Nabavinejad and M. Goudarzi, “Communication-

Awareness for Energy- Efficiency in Datacenters,” in

Advances in Computers, vol. 100, 2016, pp. 201–254.

[80] J. Sonnek, J. Greensky, R. Reutiman, and A. Chandra,

“Starling: Minimizing Communication Overhead in

Virtualized Computing Platforms Using Decentralized

Affinity-Aware Migration ,” 2009.

[81] G. Luo, Z. Qian, M. Dong, K. Ota, and S. Lu, “Improving

performance by network-aware virtual machine clustering and

consolidation,” Journal of Supercomputing, vol. 74, no. 11,

pp. 5846–5864, 2018, doi: 10.1007/s11227-017-2104-9.

[82] K. Zamanifar, N. Nasri, and M. H. Nadimi-Shahraki, “Data-

aware virtual machine placement and rate allocation in cloud

environment,” Proceedings - 2012 2nd International

Conference on Advanced Computing and Communication

Technologies, ACCT 2012, pp. 357–360, 2012, doi:

10.1109/ACCT.2012.40.

[83] S. Aggarwal, N. Kumar, S. Tanwar, and M. Alazab, “A

Survey on Energy Trading in the Smart Grid: Taxonomy,

Research Challenges and Solutions,” IEEE Access, vol. 9, pp.

116231–116253, 2021, doi: 10.1109/access.2021.3104354.

[84] J. K. Dong, H. B. Wang, Y. Y. Li, and S. D. Cheng, “Virtual

machine placement optimizing to improve network

performance in cloud data centers,” Journal of China

Universities of Posts and Telecommunications, vol. 21, no. 3,

pp. 62–70, 2014, doi: 10.1016/S1005-8885(14)60302-2.

[85] C. Xu, Z. Zhao, H. Wang, R. Shea, and J. Liu, “Energy

Efficiency of Cloud Virtual Machines: From Traffic Pattern

and CPU Affinity Perspectives,” IEEE Syst J, vol. 11, no. 2,

pp. 835–845, 2017, doi: 10.1109/JSYST.2015.2429731.

Journal of Information Systems and Telecommunication
Vol.13, No.3, July-September 2025, 232-242

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

Simulation Based Economical Approach for Detecting Heart
Disease Earlier from ECG Data

Md. Obaidur Rahaman1,2, Mohammod Abul Kashem1, Sovon Chakraborty3,4, Shakib Mahmud Dipto3,4

1Department of Computer Science and Engineering, Faculty of Electrical and Electronic Engineering, Dhaka University of Engineering

and Technology, Dhaka, Bangladesh.
2Department of Computer Science and Engineering, Faculty of Science and Engineering, Asian University of Bangladesh, Ashulia, Dhaka,

Bangladesh.
3Department of Computer Science,Old Dominion University, Norfolk, Virginia, USA.
4Department of Computer Science and Engineering, University of Liberal Arts Bangladesh, Dhaka, Bangladesh.

Received: 11 Sep 2024/ Revised: 04 Aug 2025/ Accepted: 29 Sep 2025

Abstract
Cardiovascular diseases present significant challenges to public health in developing countries. The high costs of traditional

treatments and the limited availability of specialized medical equipment contribute to these challenges. Current diagnostic

methods often rely on specific electrocardiogram (ECG) parameters, which may not capture the nuanced complexities

necessary for accurate diagnosis. To address these issues, our study proposes an innovative solution: an accessible and cost-

effective ECG monitoring system. This system not only captures electrical signals from the heart but also translates them into

numerical values using advanced modulation techniques. A trained deep learning model then analyzes this data to accurately

identify any potential complications or confirm a healthy cardiac state. Our approach also allows for remote diagnosis and

treatment. By utilizing an MQTT server, ECG data can be efficiently transmitted to experts for evaluation and intervention

when necessary. Our meticulously fine-tuned Artificial Neural Network (ANN) architecture has achieved an impressive

accuracy of 95.64%, surpassing existing methodologies in this field. Designed with resource-strapped regions in mind, our

system offers a lifeline to rural areas lacking access to medical professionals and advanced equipment. Its affordability

ensures that even individuals with limited financial means can benefit from timely and accurate cardiac monitoring,

potentially saving lives and reducing the burden of cardiovascular diseases in underprivileged communities.

Keywords: Artificial Neural Network (ANN); Cardiovascular D isease; Electrocardiogram; Heart Disease; Modulation

Techniques; MQTT Server.

1- Introduction

Cardiovascular diseases (CVDs) are a global health concern

that poses a persistent threat to millions of people [1]. The

heart and blood vessels are particularly vulnerable to CVDs,

with coronary artery disease being a major contributing

factor to the high death rates associated with these diseases

[2]. In fact, it is estimated that CVDs account for 36% of

deaths worldwide in the European Union alone [3]. Early

detection of heart ailments is crucial for effectively

addressing cardiovascular diseases. Continuous monitoring

and measurement of heartbeats play a key role in this

process. Electrocardiogram (ECG) signals, which provide

comprehensive insights into heart-related issues through the

analysis of physiological data, are a crucial tool [4,5].

Thanks to technological advancements, ECG monitoring

devices now offer reliable measurement and observation of

these signals [6,7]. However, there are ongoing concerns

among researchers regarding the analysis of the data

gathered from ECG monitoring devices. Critics argue that

previously suggested devices are inadequate in keeping up

with emerging technologies and lack comprehensiveness

[8–10]. While some ECG monitoring devices boast

specialized technology, others rely on context and server-

based functionality [11,13]. Itt has been obesity has a major

role in cardiovascular diseases that denotes heavily in the

increment of heart rate. This highlights the pressing need

for universal ECG monitoring equipment that can better

assess and understand cardiac issues. By facilitating early

detection and prevention of CVDs, these tools have the

potential to save numerous lives [14]. The primary objective

of this ANN architecture is to uncover patterns in ECG data

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

233

that may be difficult to detect by the human eye, thereby

enhancing diagnostic capabilities. This advancement

enables the early identification of cardiac issues, which is

crucial for prompt treatment. In Bangladesh, a developing

nation where 73% of individuals are reported to suffer from

one or more cardiovascular diseases (CVDs), rural

communities face significant healthcare challenges,

including a lack of medical professionals and inadequate

supplies. The motivation of this research is to address the

health care challenges, especially in the domain of

cardiovascular where most developing countries are

suffering. Furthermore, an IoT-based device for detecting

cardiovascular disease is proposed with less cost as

economically these types of devices are not easy to buy. A

proper communication medium between the device and

doctors over the channel. Furthermore, the credibility of the

data is being examined using multiple Machine Learning

and Deep Learning architectures. Furthermore, the

question arises what the proper model to will be to work

with IoT devices. In [12], it has been discussed that DL

architectures might not work properly with spatila and

sequential data but can be effective if modified properly.

Taking this into account authors have explored the

opportunity to apply ANN in the gathered dataset. Finally,

the primary focus is to proposing a IoT device that will be

affordable for the people from underdeveloped countries.

This research paper addresses the following questions:

RQ1: How can cheaper IoT devices be bought for people

from underdeveloped or developing countries?

RQ2: Can ANN be modified enough to communicate with

IoT based devices properly?

The major contributions of this paper can be summarized

as:

I) Implementing and validating real time gathered

dataset that will be sent through IoT servers so that

diseases can be detected earlier.

II) Proposing a shallow neural network that will

instantly detect heart diseases from real-time data.

Necessary suggestions will be provided instantly.

III) Building a low-cost device that will assist people

from underdeveloped countries in order to detect

heart diseases. The device is lightweight and

portable.

The recent research from the literature has been discussed

in section 2. The methodology and methods have been

proposed in the section 3. Experimental results are shown

in section 4 and finally, the future work and conclusion have

been discussed in section 5.

2- Literature Review

The Internet of Things (IoT) is a fast-moving field in

computer science that focuses on effectively sharing data

between devices via cloud servers. The effectiveness of the

cloud server being used determines how smoothly data is

transferred. The authors of [14] offer a unique approach to

signal capture in addition to signal preprocessing;

nevertheless, an adequate encryption model is not

implemented in this study. In [15], a crucial suggestion for

Internet of Things (IoT)-based monitoring systems with

sophisticated data visualization is made. But there is a

significant difference in how deep learning (DL) structures

and machine learning (ML) algorithms are integrated in this

idea [16], which calls for more investigation. The state of

IoT-based ECG monitoring systems [17–20] has given

important new information on this field.

Predominantly, research has focused on signal collection,

with a pivotal concern being data preparation. [21]

addresses this by employing time-based feature integration

for data purification. The microcontroller board utilized,

namely the Arduino Uno, centers around the ATmega328T.

Earlier studies have extensively utilized the Arduino Uno

for cardiac signal acquisition [22–24], emphasizing its cost-

effectiveness and ease of integration in such contexts.

The literature review explores various developments in the

realm of Electrocardiogram (ECG) monitoring systems and

associated technologies. In reference, an Internet of Things

(IoT)-based ECG and vitals monitoring system is detailed,

incorporating parameters such as QRS complex, heart rate,

blood oxygen levels, and body temperature [25]. The

iterative design approach is emphasized to reduce the

device's overall cost. However, the three-lead end-to-end

ECG acquisition system constructed proves inadequate for

capturing all regular and augmented parameters of ECG

signals. Moving on to fetal Electrocardiogram (FECG)

monitoring, a system has been developed [26],

concentrating on FECG and fetal heart rate (FHR) with an

emphasis on an Android application. Nevertheless,

improvement is deemed necessary, urging the incorporation

of more miniaturized patches and real-time analytics via

cloud computing. Addressing concerns about

cardiovascular disease (CVDs) severity and the lack of

precautionary monitoring systems, a low-cost solution is

presented [27], aiming to reduce harmonic distortions and

input inferred noise in ECG signal frequencies. This system

highlights the need for an efficient cloud server for

instantaneous data transfer. In another study [28], authors

introduce a wearable Tele-ECG and heart rate monitoring

Last name 1, Last name 2 & Last name 3, Author Guide for preparing a paper for the journal of information …

234

system, integrating a Singlet and Holter-based ECG system

with a mobile application. Despite focusing on parameters

such as P, Q, R, S, T peaks, the system requires additional

sensors for a more comprehensive measurement of heart

disease-related parameters. The proposed IoT-assisted ECG

monitoring framework in [29] emphasizes secure data

transmission for continuous cardiovascular health

monitoring through automatic classification and real-time

implementation. However, there's a call for advanced

machine learning algorithms to enhance prediction

accuracy. A smartphone-based ECG monitoring device is

proposed in to evaluate post-ablation patients with atrial

fibrillation. The focus lies on the ECG check monitoring

protocol, considering sinus rhythm and sinus tachycardia.

However, concerns are raised about the lack of a proper

detection mechanism for ECG parameters, and the reported

accuracy stands at around 93%. Some of the major research

gaps are stated in Table 1.

Table 1: Identified Research Gap from the Literature

Reference Contributions Research Gap

Serhani et al. Precise collection

of data sending

through the IoT

network.

No applications of

DL methods to

capture the proper

semantics.

Ghosh et al. Integration of ML

methods for

detection

purposes. Many

algorithms are

explored.

Device is costly

and difficult to

afford for under

developed people.

Faruk et al. Enhanced

accuracy than the

state-of-the-art

architectures.

The model is not

lightweight and

takes time to

propagate real

time data.

Rahman et al. Methodology is

described

properly.

No proper system

is available.

Based on the research gap available in the literature, it is

important to identify a novel approach that will be available

for the underdeveloped countries. This research focuses on

proposing an approach that will integrate the DL approach

detect cardiovascular diseases precisely along with the cost

of the device is lower that can be affordable for rural people.

The lightweight nature allows to detect cardiovascular

diseases easily. The spatial information is also captured

properly by the proposed model.

 The below section comprehensively addresses the

architectures, method of converting ECG signal, overall

methodologies, and procedures employed in conducting the

research. Initially, data collection was facilitated through

the utilization of an ECG monitoring system, which is

interconnected with 12 leads and necessary Internet of

Things (IoT) devices. The proposed method of converting

ECG signal is illustrated in section 3.

3- Materials and Methodology

Algorithm 1: ECG Data Classification using ANN

1. Input: ECG dataset with multiple columns

2. Output: Model performance evaluated using

Precision, Recall, F1-score,

 and trainable parameters

3. Step 1: Load the Dataset

4. Load the ECG dataset.

5. Split the dataset into features (X) and labels (Y).

6. Step 2: Parameter Tuning

7. Identify hyperparameters to tune, such as learning

rate, batch size,

 number of layers, and neurons.

8. Use grid search or random search to find the optimal

hyperparameters.

9. Step 3: Data Preprocessing

10. Handle missing values using imputation

techniques.

11. Normalize or standardize the data.

12. Apply noise reduction techniques if required (e.g.,

bandpass filtering).

13. Split the dataset into training, validation, and test

sets.

14. Step 4: Model Design

15. Design an Artificial Neural Network (ANN) with

an appropriate

 architecture.

16. Define the input layer based on the number of

features.

17. Add hidden layers with appropriate activation

functions (e.g., ReLU).

18. Define the output layer with a softmax activation

function.

19. Step 5: Model Training

20. Compile the model with an appropriate optimizer

(e.g., Adam) and loss

 function (e.g., categorical crossentropy).

21. Train the model on the training set.

22. Validate the model on the validation set during

training.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

235

23. Step 6: Model Evaluation

24. Evaluate the model's performance on the test set.

25. Calculate Precision, Recall, and F1-score for each

class.

26. Analyze the trainable parameters in the model.

27. Step 7: Performance Analysis

28. Compare the model's performance based on the

metrics.

29. Adjust hyperparameters or model architecture if

necessary to improve

 performance.

30. Fine-tune the model using additional rounds of

training and validation

 if required.

31. Step 8: Final Model

32. Save the final model and its parameters.

33. Document the model's performance metrics.

34. Step 9: Reporting

35. Prepare a report summarizing the methodology,

results, and performance of the model.

36. Include plots of loss, accuracy, and confusion

matrix if applicable.

Algorithm 1: Proposed Workflow

Algorithm 1 discusses the potential workflow of this

research. Here, it is seen that, the dataset is loaded at first,

then necessary parameter tuning has been performed in

Table 2. For the preprocessing purpose, normalization,

handling missing data and noise reduction is performed.

Furthermore, authors are focused on designing the model

with ANN that has been trained with the added hidden

layers of ReLU. The performance of the model is analyzed

and fine-tuned that has been reported with multiple

performance metrics.

A threshold (𝜏) value condition on the amplitude of the

signal will be calculated by the following proposed formula

1.

𝜏 = (0.6) × 𝑚 (1)

Where m is the ISO electric line value. According to the

characteristics of the ECG signal, it is possible to find out

the different range of the amplitude for P, Q, R, S, and T

parameters by applying the threshold value. An analog-to-

digital converter needs to be configured to get the numerical

value. This numerical value can be divided by the total

number of parameters in a window of ECG signal to get the

base numerical values as row data. This row data can be

multiplied by different ratios of each parameter of the ECG

signal to get the individual numerical value of P, Q, R, S,

and T parameters. The formulation of converted numerical

values is shown in Table 2. The parameters P, Q, R, S, T, U

are tuned by the authors based on mathematical statistics

[24].

In the second stage, augmented parameters (RR, PR, QT,

QTc interval, and QRS complex) of the ECG signal can be

considered to make better decisions about heart conditions

provided in consultation with experts in cardiovascular

diseases.

The proposed algorithm for formulation of RR interval can

be established from the following steps

Table 2. The formulation of the parameters

ECG Basic

Parameter

Formulation of the

parameter

Remarks

P 𝑃 = 𝑟𝑜𝑤 𝑑𝑎𝑡𝑎 × 1.1 Always less than

R peak

Q 𝑄 = 𝑟𝑜𝑤 𝑑𝑎𝑡𝑎 × 0.8 Always less than

P,T peak

R 𝑅 = 𝑟𝑜𝑤 𝑑𝑎𝑡𝑎 × 2.0 Maximum peak

of ECG signal

S 𝑆 = 𝑟𝑜𝑤 𝑑𝑎𝑡𝑎 × 0.7 Always less than

P,T peak

T 𝑇 = 𝑟𝑜𝑤 𝑑𝑎𝑡𝑎 × 1.0 Always less than

R peak

U 𝑈 = 𝑟𝑜𝑤 𝑑𝑎𝑡𝑎 × 0.4 Always less than

P,T peak

Step 1: Determine the overall sampling frequency (𝑓𝑠) by

giving a sample rate from the total ECG signal which is

generated from the proposed device.

Step 2: Determine the sampling frequency (𝑓𝑥) by

partitioning the overall sampling frequency (𝑓𝑠) according

to the number of R peaks from each 𝑓𝑠.

Step 3: Individual window base average RR interval can be

derived from the formula 2, which is denoted as 𝐼𝑊𝑡𝑟𝑟𝑎𝑣𝑔.

𝐼𝑊𝑡𝑟𝑟𝑎𝑣𝑔 =
𝑇𝑟𝑟𝑖

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅 𝑝𝑒𝑎𝑘
 = 𝑇𝑟𝑟𝑖 =

𝑅𝑙𝑜𝑐(𝑖+1)−𝑅𝑙𝑜𝑐(𝑖)

(𝑓𝑥)
 (2)

The other parameters PR, QT, QTc interval, and QRS

complex can be calculated from the conventional methods

[4], which is shown as following:

𝑂𝑊𝑡𝑟𝑟(𝑖) =
𝐼𝑊𝑡𝑟𝑟𝑎𝑣𝑔(𝑖+1)−𝐼𝑊𝑡𝑟𝑟𝑎𝑣𝑔(𝑖)

𝑓𝑠
 (3)

𝑡𝑝𝑟(𝑖) =
(𝑅𝑙𝑜𝑐(𝑖)−𝑃𝑙𝑜𝑐(𝑖))

𝑓𝑠
 (4)

𝑡𝑞𝑡(i)=
𝑡𝑙𝑜𝑐(𝑖)+(𝑡𝑟𝑟(𝑖)× 0.13)−(𝑄𝑙𝑜𝑐(𝑖)−𝑥)

𝑓𝑠
 (5)

 𝑡𝑞𝑡(𝑐𝑜𝑟𝑟)(i)=
𝑡𝑞𝑡(𝑖)

𝑓𝑠 × √𝑡𝑟𝑟(𝑖)
𝑡𝑞𝑟𝑠(𝑖) =

(𝑆𝑙𝑜𝑐(𝑖)+𝑥)−(𝑃𝑙𝑜𝑐(𝑖)−𝑥)

𝑓𝑠
 (6)

The proposed algorithm for the formulation of ST-Segment

can be established from the following:

Last name 1, Last name 2 & Last name 3, Author Guide for preparing a paper for the journal of information …

236

𝑡𝑠𝑡(𝑖) =
(𝑇𝑙𝑜𝑐(𝑖)−𝑆𝑙𝑜𝑐(𝑖))

𝑓𝑠
 (7)

Where 𝑆𝑙𝑜𝑐(𝑖) is called 𝐽 − 𝑝𝑜𝑖𝑛𝑡 or 𝑆 Depolarization, and

𝑇𝑙𝑜𝑐(𝑖) is called 𝐾 − 𝑝𝑜𝑖𝑛𝑡 or Beginning of the 𝑇 wave.

The numerical values of these augmented parameters can be

found by a computational programming application and the

generated numerical values will be stored in cloud using

MQTT technology.

Subsequently, meticulous preparation was undertaken to

ensure a thorough understanding of the acquired data.

Following this, an Artificial Neural Network (ANN) was

employed to process the refined data. Fine-tuning of the

model's hyperparameters ensued to attain the most optimal

outcomes. Lastly, a diverse range of evaluation metrics

were employed to gauge the performance of the model.

Figure 1 illustrates the chronological sequence of actions

undertaken throughout the entirety of the research work.

The process encompasses six primary phases prior to

evaluating the outcomes. Initially, the designated

equipment is employed to sense the data as suggested.

Subsequently, the time intervals are converted into floating-

point values upon retrieval. The initial presentation of the

readings is in a waveform format, from which numerical

values are derived based on the waveform intervals.

Subsequent to this, the data undergoes preprocessing,

entailing dimensionality reduction and null value

elimination. Following preprocessing, the input is

channeled into the proposed architecture of the artificial

neural network. Various metrics are then employed to gauge

the performance. Figure 1 elucidates the sequential

execution of the entire investigative procedure.

Fig 1: Methodology of the research

3-1- Requirements for Setting up the Device

The authors have focused primarily on establishing optimal

conditions for successful implementation. The primary

mechanism employed for collecting physiological data

from patients' bodies is the ECG sensor network. To

facilitate seamless data transmission, wireless channels are

maintained using cloud-based IoT platforms. Within this

framework, the AD8232 chip, utilized for electrical activity

calculation, is integrated to record data from the device.

Embedded within the chip is an integrated circuit (IC)

responsible for signal amplification and extraction of

requisite qualities. Electrocardiography serves as a pivotal

diagnostic tool for numerous heart conditions, with several

procedural steps involved in the data collection process. The

initial step involves the implantation of multiple electrode

pads—preferably three—into the patient's body for data

collection. These pads play a crucial role in capturing data

from the patient's body, which is subsequently transmitted

to the AD8232 chip for analysis. Subsequently, the

procedure entails the setup of a screen, commonly referred

to as the Arduino COM port screen, through which medical

specialists receive the data. Additionally, a Wi-Fi module is

configured to facilitate data transmission from the device to

experts. The detailed ECG curve displayed on the screen

aids medical professionals in interpreting the data more

effectively. The final stage entails deploying an Android

app equipped with features that provide relevant

suggestions. This app displays the ECG curve, aiding

patients in comprehending the condition of their hearts

better. Data transmission to the app is facilitated by the ECG

sensors' ability to connect to integrated Wi-Fi. Moreover,

ensuring the correct operation of the device, the Arduino

Mega 2560 and earlier processors are configured to function

between -3.3 and 3.3 volts, with pins appropriately

connected from ground to ground.

Fig 2: Visual Representation for Acquired ECG Data

3-2- Equipment Cost

The device's detailed cost is given in Table 3. It is clear that

the gadget can be constructed for as little as 4231 BDT, or,

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

237

at the present exchange rate, 38.41 USD. This is the primary

system's cost. There will be additional expenses, which

cover cloud support and the monitor.

Table 3. Cost calculation of constructing the device

Name of the

Components

Cost in Bangladeshi Taka

(BDT)

Sensors 1142

Cables 174

Wi-Fi module 375

Serial converter 194

Breadboard 175

Arduino mega 934

Pins and others 294

Total 4231 BDT

Most of the devices that were proposed for detecting

cardiovascular disease, most device cost around 1200 USD

to 1800 USD [13,16,17]. On the other hand, the cost of the

proposed device is only 39.5 USD. That is why this device

is more affordable for people with low income.

3-3- Details of the Platform

The integration of technology within the medical industry

has revolutionized the diagnosis and treatment of a myriad

of medical conditions. Among the most profound

technological advancements lies the development of ECG

devices, designed to monitor the heart's electrical activity.

These devices play a crucial role in identifying and treating

various cardiac issues such as arrhythmias, ischemia, and

heart attacks.

 The MQTT [30] server is an ideal choice for transmitting

ECG data due to its seamless handling of both analog and

digital data. However, before data transmission can begin,

certain prerequisites must be met. A minimum of 50 data

points is required, and an ERROR alert is triggered if the

ECG displays fewer than 70 data points. Furthermore, data

transmission will not initiate if there are fewer than 50 data

points available. This ensures that doctors receive only

accurate and reliable data, which is crucial for precise

diagnosis and treatment. To enable data transmission, the

analog signal undergoes conversion into a digital format

using a digital data converter inconsistency.

3-4- Dataset Building

To procure the necessary data, the authors conducted

information gathering from a pool of 8,000 volunteers,

spanning ages 18 to 75. Specifically, they recorded the

durations between ECG waves, focusing on the P, Q, R, S,

and T waves, along with the PR, RR, QRS complex, QT,

and QTC intervals. Additionally, essential personal

information was incorporated into the dataset.

Comprising 14 columns, each housing distinct data based

on various criteria, the dataset primarily draws from ECG

data to populate 10 of the 13 columns. Furthermore, it

includes details such as an individual's ID, age, and BMI.

The inclusion of age and BMI attributes enhances

comprehension of an individual's health and well-being.

The final column of the dataset provides information on the

patient's heart condition, annotated by five Bangladeshi

cardiac doctors. After thorough examination of each

observation, they determined whether it suggests a healthy

or at-risk heart. Table 4 displays attributes and their

corresponding data types, offering healthcare professionals

a comprehensive overview of the dataset contents. By

examining the table, they can gain a better understanding of

the dataset, facilitating more informed primary care

decisions based on the patient’s health status provided

within. Data was gathered from volunteers where both

patients with cardiovascular disease and healthy persons

were available. During data collection, the protocols that

were prescribed by a renowned hospital in Bangladesh is

followed. All kinds of data biases are removed using

statistical measures. Furthermore, wrongly collected data

were eradicated during the preprocessing phase. The dataset

does not poses that bias except demographic bias where the

age difference is not properly balanced. The reason is that

cardiovascular disease is mainly common in elderly people.

Preprocessing plays a pivotal role in enhancing the

outcomes of Machine Learning (ML) and Deep Learning

(DL) architectures. Fundamentally, the ECG signal

furnishes all requisite information. Therefore,

preprocessing steps are executed as necessary prior to

feeding the data into the suggested optimized architecture.

Table 4. Attributes and their corresponding data types

Attribute Name Data Type

P Wave float32

Q Wave float32

R Wave float32

S Wave float32

T Wave float32

PR interval float32

RR interval float32

QRS complex float32

QT-interval float32

QTC-interval float32

Age Int64

BMI float32

ID Int64

Risk Int64

Any empty rows or columns are meticulously addressed by

the authors. Moreover, all data types are standardized to

Int64 and Float32 formats. Subsequently, the dataset

undergoes partitioning into training and testing subsets.

Last name 1, Last name 2 & Last name 3, Author Guide for preparing a paper for the journal of information …

238

3-5- Data Cleaning and Preparation

During the preparation stages, categorical data is also

encoded appropriately. Specifically, labels indicating

healthy hearts are assigned values of 0, while those

representing hearts at risk are assigned a value of 1. For

clarity, a partial view of the dataset is presented in Table 5,

providing insight into the encoded categories and their

corresponding values.

The authors assess the data quality through the application

of diverse statistical methods. Within this research, the

evaluation entails measuring both covariance and

correlation between the data. Covariance serves as a metric

to gauge the relationship between variables, while

correlation further elucidates the nature of this relationship,

indicating whether the data exhibit linear separability or not.

One sample of real-life data for 3 cycles has been given

below. For each patient 3 cycles have been considered.

Table 5. Data annotation concerning the heart condition
Cycle P Q R S T RR PR QRS QT QTc

1 49 38 96 33 48 .64 .16 ..05 .3 .75

2 49 38 96 33 48 .64 .16 ..05 .3 .75

3 54 41 104 36 52 .43 .1 .05 .7 .78

The authors assess the data quality through the application

of diverse statistical methods. Within this research, the

evaluation entails measuring both covariance and

correlation between the data. Covariance serves as a metric

to gauge the relationship between variables, while

correlation further elucidates the nature of this relationship,

indicating whether the data exhibit linear separability or not.

3-6- Artificial Neural Network

Artificial Neural Networks (ANNs) are sophisticated

machine learning models designed to emulate the structure

and functionality of the human brain. These networks

consist of layers of interconnected neurons that process and

transmit data. Among the most commonly utilized types of

ANNs is the feedforward neural network, which channels

data from the input layer to the output layer in a

unidirectional manner, devoid of looping back. To optimize

performance for specific tasks, various training techniques

are employed, allowing for the adjustment of connection

strengths between neurons. ANNs excel in tasks

necessitating pattern recognition, such as speech

recognition, natural language processing, and image

classification. Figure 3 illustrates the architecture of the

ANN employed in the study. The authors conducted this

study utilizing an 11th generation Core i7 PC equipped with

a 1 TB HDD and 32 GB of RAM. The study leveraged the

Python programming language, with Tensorflow and Keras

serving as integrated libraries for constructing the

architecture.

Fig 3. Architectural details of the ANN model

Additionally, Pandas facilitated the conversion of data into

a dataframe, while numpy was instrumental in translating

all calculations into vector space. Matplotlib.pyplot was

utilized for plotting various graphs to aid in data

visualization. Furthermore, Sklearn.train_test was

employed to partition the data into separate test and train

sets.

Table 6. Hyperparametric details of the architecture

Hyperparameters Details

Learning rate 0.001

Loss function Categorical cross-entropy

Epoch 40

Dropout 0.21

Number of dense layers 3

Trainable parameters 1,24,868

Activation functions ReLU, softmax

4- Simulation of the Research

The authors aimed to integrate wireless technology and the

Internet of Things (IoT) for efficient remote patient

monitoring. The main technical objective is to develop an

ECG sensor module that can accurately capture the heart's

electrical signals, including the P, Q, R, S, and T waves

[31], in real-time with high precision. These signals are

thoroughly analyzed and extracted from the continuous

ECG data stream.

ECG signals are wirelessly transmitted using robust

communication protocols such as Bluetooth Low Energy

(BLE) or Wi-Fi Direct, ensuring secure and rapid data

transfer to a central server.

Fig. 4. Some significant stages of data processing

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

239

The system's architecture is carefully designed to accurately

capture and transmit subtle variations in the amplitude and

morphology of the PQRST complex. Figure 4 illustrates

key stages from data sensing to processing through an

artificial neural network.

Additionally, considerable emphasis is placed on

optimizing power efficiency and scalability to support an

expanding nework of interconnected devices. This focus

aims to ensure prolonged battery life and seamless

integration into healthcare infrastructure. Figure 5 provides

a functional overview of the entire system.

Fig. 5. Working of the whole system

5- Experimental Result Analysis

Initially, the dataset is employed to train the model,

imparting knowledge on how attribute values differ

between a healthy heart and one experiencing issues. Once

trained and tested, the model can effectively evaluate

readings obtained from the device, distinguishing between

normal readings and those requiring further attention. The

authors have meticulously tracked several performance

measures to evaluate the model's efficacy. Key metrics

assessed include accuracy, precision, recall, and F1-score,

as detailed in equations (11) through (14). From the

literature it has found that, in [32] the proposed AlexNet

method performs much better than traditional machine

learning models and other deep learning techniques. It

achieved very high results in all major evaluation areas:

98.96% accuracy, 98.53% precision, 95.26% recall, 94.56%

F1-score, and a correlation score of 0.988. These results are

clearly better than other models, like the Support Vector

Machine, which only reached 89% accuracy, and many

others that stayed below 90%. This shows that the method

is very good at correctly identifying different types of heart

signals in electrocardiogram data. One of the key reasons

behind this strong performance is the use of deep learning

for feature extraction and a fuzzy bi-clustering approach,

which together help the model pick up even small

differences in heart patterns. However, one weakness is that

the model still sometimes makes mistakes by wrongly

classifying healthy or unrelated signals as heart conditions.

For example, it wrongly identifies some signals as Atrial

Fibrillation, Congestive Heart Failure, or Normal Sinus

Rhythm, leading to small false positive rates of 2.5%, 3.0%,

and 2.0% respectively. The study notes that while the model

is highly effective, there is still room to reduce these

incorrect predictions.

The outcome that the suggested ANN model produced is

depicted in Table 7. Four measures are included in the

performance analysis: F1-score, accuracy, recall, and

precision. Overall, the Model's performance is

extraordinary [32].

Table 7. Performance analysis of the system

Metrics Performance

Accuracy 95.44%

Precision 94.35%

Recall 95.47%

F1-Score 95.64%

After completing the analysis, the authors focused on

comparing the outcomes with state-of-the-art ML and DL

architectures.

Initially, they compared the proposed model against the

most advanced machine learning models, followed by

comparisons with deep learning architectures.

According to their assessment, the suggested ANN model

outperforms all existing highly effective ML and DL

models, boasting an average F1 score of 98.87%. The

comparison analysis is depicted in Figure 6.

Fig. 6. Performance comparison of the proposed model

with other state-of-the-art models

The results illustrated in Figure 6 highlight a notable

enhancement in performance when compared to other

models, with the deep neural network (DNN) emerging as

the closest competitor. Furthermore, the authors juxtaposed

the suggested model with the best deep learning

architectures, considering the quantity of trainable

Last name 1, Last name 2 & Last name 3, Author Guide for preparing a paper for the journal of information …

240

parameters in each model. Notably, the suggested model

surpassed others by a considerable margin.

Fig. 7. Performance comparison given the number of

trainable parameters

Figure 7 illustrates the count of trainable parameters for

each of the DL architectures with which our model

competed. Comparative analysis between the suggested

ANN architecture and other DL architectures reveals that

fewer trainable parameters are required, as evidenced by

experimental results. From this result, it is evident, that the

proposed model and device integrate properly to detect

cardiovascular disease in a proper and economically

friendly way. Furthermore, the device has a quick response

time that will help doctors and patients to get benefits.

Moreover, as the research is focused for the under

developing countries that is why this device will help the

whole medical sector of the world. The primary problem

with LSTM is that it requires extensive data for

understanding the sequencing. LSTM is very good in text

data but not always in numerical values. Furthermore, CNN

1D can not perform proper with sequential data. That is why

ANN is performing better and less trainable parameters

because of optimization.

Fig. 8. The physical system corroborating this study

Figure 8 depicts the physical system supporting this study.

This device is responsible for collecting personal data from

users, which is then analyzed to provide them with the

emergency medical attention they may require.

6- Conclusion

Leading the way in modern wellness, this study presents an

IoT-based healthcare network that seamlessly integrates

advanced sensors attached to the human body. A key

innovation is the provision of continuous patient monitoring

through multiple channels, including phone messaging

services, live monitoring, websites, and apps. By blending

state-of-the-art medical devices and applications with

traditional medical practices, this approach aims to

maximize effectiveness and make high-quality healthcare

more accessible and affordable. Taking this into

consideration, authors has focused on developing a IoT

based device where it can used for medical purposes easily.

The methodology suggest that with proper tuning and

integration of ANN results in good result in classifying

cardiovascular diseases. This work will aid the

underprivileged countries to improve their medical sector.

With the knowledge transferring from ANN, it is easier to

determine the role of DL is immense. Furthermore, the

proposed model is lightweight in nature. This research has

resulted in the development of a cost-effective IoT-based

ECG monitoring device, priced at only 38.41 USD.

Experimental results show that using Artificial Neural

Network (ANN) procedures, the system achieves 95.64

percent accuracy, outperforming alternative methods. The

integration of IoT technologies with smartphones offers

significant development. The broader implication is to

integrate with real-life hospitals where this device and

proposed model can be utilized to detect cardio-vascular

disease at an earlier stage. The mortality rate can be reduced

significantly in such cases. The research shows, this device

has the ability to provide future direction in the health

informatics field.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

241

References

[1] J. Heaney, J. Buick, M. U. Hadi, and N. Soin, “Internet

of Things-based ECG and vitals healthcare monitoring

system,” Micromachines, vol. 13, no. 12, p. 2153, Dec.

2022, https://doi.org/10.3390/mi13122153.

[2] J.-T. Huang, J. Zhang, W. Wang, P. He, Y. Su, and M.

R. Lyu, “AEON: A method for Automatic evaluation

of NLP test cases,” arXiv (Cornell University), Jan.

2022, doi: 10.48550/arxiv.2205.06439.
[3] Md. S. Azam, Md. A. Raihan, and H. K. Rana, “An

experimental study of various machine learning approaches

in heart disease prediction,” International Journal of

Computer Applications, vol. 175, no. 21, pp. 16–21, Sep.

2020, doi: 10.5120/ijca2020920741.

[4] X. Bao and Y. Deng, “Processing of Cardiac Signals for

Health Monitoring and Early Detection of Heart Diseases,”

Ph.D. dissertation, King’s College London, 2023.

[5] Sunny, Jithin S., C. Pawan K. Patro, Khushi Karnani,

Sandeep C. Pingle, Feng Lin, Misa Anekoji, Lawrence D.

Jones, Santosh Kesari, and Shashaanka Ashili. "Anomaly

detection framework for wearables data: A perspective

review on data concepts, data analysis algorithms and

prospects." Sensors 22, no. 3 (2022): 756,

https://doi.org/10.3390/s22030756.

[6] A. Belhani, H. Semira, R. Kheddara, and G. Hassis,

“Implementation of uplink and downlink non-orthogonal

multiple access (NOMA) on Zynq FPGA device,” Journal of

Information Systems and Telecommunication (JIST), vol. 4,

no. 44, p. 269, 2023.

[7] M. A. Serhani, H. T. E. Kassabi, H. Ismail, and A. N. Navaz,

“ECG Monitoring Systems: review, architecture, processes,

and key challenges,” Sensors, vol. 20, no. 6, p. 1796, Mar.

2020, doi: 10.3390/s20061796.

[8] V. Vijayan, J. P. Connolly, J. Condell, N. McKelvey, and P.

Gardiner, “Review of Wearable Devices and data collection

Considerations for connected Health,” Sensors, vol. 21, no.

16, p. 5589, Aug. 2021, doi: 10.3390/s21165589.

[9] J. S and C. M. B. M. J, “Convolutional Neural Networks for

Medical Image Segmentation and Classification: A review,”

Journal of Information Systems and Telecommunication

(JIST), vol. 11, no. 44, pp. 347–358, Dec. 2023, doi:

10.61186/jist.37936.11.44.347.

[10] R. Patra, M. Bhattacharya, and S. Mukherjee, “IoT-Based

Computational Frameworks in Disease Prediction and

Healthcare Management: Strategies, challenges, and

potential,” in Studies in computational intelligence, 2021, pp.

17–41. doi: 10.1007/978-981-15-9897-5_2.

[11] Q. Abbas and A. Alsheddy, “Driver Fatigue Detection

Systems using Multi-Sensors, Smartphone, and Cloud-Based

Computing Platforms: A Comparative analysis,” Sensors,

vol. 21, no. 1, p. 56, Dec. 2020, doi: 10.3390/s21010056.

[12] H. E. Bays, C. F. Kirkpatrick, K. C. Maki, P. P. Toth, R. T.

Morgan, J. Tondt, S. M. Christensen, D. L. Dixon, and T. A.

Jacobson, “Obesity, dyslipidemia, and cardiovascular

disease: A joint expert review from the Obesity Medicine

Association and the National Lipid Association 2024,”

Journal of Clinical Lipidology, vol. 18, no. 3, pp. e320–e350,

2024.

[13] S. Yin, N. Xue, C. You, Y. Guo, P. Yao, Y. Shi, T. Liu,

“Wearable physiological multi-vital sign monitoring system

with medical standard,” IEEE Sensors Journal, vol. 21, no.

23, pp. 27157–27167, 2021. doi: 10.1016/j.jacl.2024.04.001.

[14] Yang, Y., Bränn, E., Zhou, J., Wei, D., Bergstedt, J., Fang,

F., ... & Lu, D. (2025). Premenstrual disorders and risk of

cardiovascular diseases. Nature Cardiovascular Research, 1–

10. https://doi.org/10.1038/s44161-025-00456-9.

[15] T. Shaown, I. Hasan, Md. M. R. Mim, and Md. S. Hossain,

“IoT-based portable ECG monitoring system for smart

healthcare,” 2019 1st International Conference on Advances

in Science, Engineering and Robotics Technology

(ICASERT), May 2019, doi: 10.1109/icasert.2019.8934622.

[16] B. Chong, J. Jayabaskaran, S. M. Jauhari, S. P. Chan, R. Goh,

M. T. W. Kueh, et al., “Global burden of cardiovascular

diseases: projections from 2025 to 2050,” European Journal

of Preventive Cardiology, vol. zwae281, 2024.

[17] M. O. Rahman, M. A. Kashem, A.-A. Nayan, M. F. Akter, F.

Rabbi, M. Ahmed, and M. Asaduzzaman, “Internet of Things

(IoT) based ECG system for rural health care,” International

Journal of Advanced Computer Science and Applications

(IJACSA), vol. 12, no. 6, 2021. doi:

10.14569/IJACSA.2021.0120653.

[18] Y. Zhao, X. Yang, Y. Du, L. Chen, J. Dong, T. Hu, N. Sun et

al., “Global cardiovascular disease burden attributable to

particulate matter pollution, 1990–2021: An analysis of the

global burden of disease study 2021 and forecast to 2045,”

BMC Cardiovasc. Disord., vol. 25, no. 1, pp. 1–14, 2025

https://doi.org/10.1186/s12872-025-04724-6.

[19] Kelters, I. R., Koop, Y., Young, M. E., Daiber, A., & van

Laake, L. W. (2025). Circadian rhythms in cardiovascular

disease. European Heart Journal, 46(36), 3532–3545.

https://doi.org/10.1093/eurheartj/ehae455.

[20] M. L. Sahu, M. Atulkar, M. K. Ahirwal, and A. Ahamad,

“IoT-enabled cloud-based real-time remote ECG monitoring

system,” Journal of Medical Engineering & Technology, vol.

45, no. 6, pp. 473–485, May 2021, doi:

10.1080/03091902.2021.1921870.

[21] N. A. Nayan, R. Jaafar, and N. S. Risman, “Development of

respiratory rate estimation technique using electrocardiogram

and photoplethysmogram for continuous health monitoring,”

Bulletin of Electrical Engineering and Informatics, vol. 7, no.

3, pp. 487–494, 2018. doi: 10.1007/s40846-022-00700-z.

[22] A. Ghosh, A. Raha, and A. Mukherjee, “Energy-Efficient

IoT-Health Monitoring System using Approximate

Computing,” Internet of Things, vol. 9, p. 100166, Jan. 2020,

doi: 10.1016/j.iot.2020.100166.

[23] S. M. Ahsanuzzaman, T. Ahmed, and Md. A. Rahman, “Low

cost, portable ECG monitoring and alarming system based on

Last name 1, Last name 2 & Last name 3, Author Guide for preparing a paper for the journal of information …

242

deep learning,” 2017 IEEE Region 10 Symposium

(TENSYMP), pp. 316–319, Jan. 2020, doi:

10.1109/tensymp50017.2020.9231005.

[24] B. Patil, V. Rajan, and P. Patani, “Wearable fetal ECG

monitoring system from abdominal electrocardiography

recording,” Journal of Pharmaceutical Negative Results, pp.

2383–2393, 2022. doi: 10.5555/jpnr.2022.2383.

[25] S. Chakraborty, M. B. U. Talukdar, P. Sikdar, and J. Uddin,

“An Efficient Sentiment Analysis Model for Crime Articles’

Comments using a Fine-tuned BERT Deep Architecture and

Pre-Processing Techniques,” Journal of Information Systems

and Telecommunication (JIST), vol. 12, no. 45, pp. 1–11,

Mar. 2024, doi: 10.61186/jist.38322.12.45.1.
[26] N. Xiao, W. Yu, and X. Han, “Wearable heart rate monitoring

intelligent sports bracelet based on Internet of things,”

Measurement, vol. 164, p. 108102, Jun. 2020, doi:

10.1016/j.measurement.2020.108102.

[27] A. Badr, A. Badawi, A. Rashwan, and K. Elgazzar, “XBeats:

a Real-Time Electrocardiogram monitoring and analysis

system,” Signals, vol. 3, no. 2, pp. 189–208, Apr. 2022, doi:

10.3390/signals3020013.

[28] N. A. Nayan and H. Ab Hamid, “Evaluation of patient

electrocardiogram datasets using signal quality indexing,”

Bulletin of Electrical Engineering and Informatics, vol. 8, no.

2, pp. 519–526, 2019.

[29] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,

M. Ghafoorian, J. Van Der Laak, B. Van Ginneken, and C. I.

Sánchez, “A survey on deep learning in medical image

analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.

doi: 10.1016/j.media.2017.07.005

[30] U. N. Cobrado, S. Sharief, N. G. Regahal, E. Zepka, M.

Mamauag, and L. C. Velasco, “Access control solutions in

electronic health record systems: A systematic review,”

Informatics in Medicine Unlocked, vol. 49, p. 101552, Jan.

2024, doi: 10.1016/j.imu.2024.101552.

[31] L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on

buildings energy consumption information,” Energy and

Buildings, vol. 40, no. 3, pp. 394–398, Mar. 2007, doi:

10.1016/j.enbuild.2007.03.007.

[32] S. T. Aarthy and J. L. Mazher Iqbal, "A novel deep learning

approach for early detection of cardiovascular diseases from

ECG signals," Medical Engineering & Physics, vol. 125, p.

104111, Mar. 2024, doi: 10.1016/j.medengphy.2024.104111.

[33] S. Begum, E. Ghousia, E. Priyadarshi, S. Pratap, S.

Kulshrestha, and V. Singh, “Automated detection of

abnormalities in ECG signals using deep neural network,”

Biomedical Engineering Advances, vol. 5, 100066, 2023.

 Kaebeh Yaeghoobi

yaeghoobi@kntu.ac.ir

Journal of Information Systems and Telecommunication
Vol.13, No.3, July-September 2025, 243-255

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

Enhancing Computational Offloading for Sustainable Smart
Cities: A Deep Belief Network Approach

Kaebeh Yaeghoobi1*, Mahsa Bakhshandeh N.2

1.Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran Iran
2.Faculty of Engineering, Ale-Taha Institute of Higher Education, Tehran, Iran

Received: 12 Nov 2024/ Revised: 11 Sep 2025/ Accepted: 13 Oct 2025

Abstract
The use of mobile devices with limited processing power has surged in recent years, alongside the expansion of cloud and

fog computing across various sectors. These devices can handle small to medium computing tasks, but they fall short when

it comes to large-scale processes, making computational offloading a crucial solution. Cloud computing and fog computing

provide an effective platform for offloading tasks from mobile devices. However, critical real-time applications necessitate a

near-edge approach to managing the computational load. Significant challenges exist in optimizing response times for

effective offloading in cloud computing. This research introduces a framework for predicting response times using Deep

Belief Network (DBN) learning to enhance offloading performance. Implementing a DBN aims to minimize response times

and resource consumption, thereby improving the overall efficiency of offloading processes. The framework is designed to

predict response times accurately, ensuring timely completion of tasks and efficient use of resources. Simulation results using

multiple models show that the use of DBN significantly reduces processing, response, and offloading times compared to other

algorithms. Consequently, the DBN algorithm proves to be more efficient in predicting response times and enhancing

offloading performance. By leveraging the capabilities of DBN, this framework provides a promising solution for optimizing

computational offloading in cloud computing environments. This enhances the performance of mobile devices and ensures

the reliability and efficiency of real-time applications, direct the way for more advanced and responsive computing

technologies.

Keywords: Computational Offloading; Cloud Computing; Deep Belief Network; Response Time; Resource Management;

Sustainable Smart Cities; Real-time Management.

1- Introduction

The proliferation of mobile devices has substantially

increased computing demands, introducing new challenges

in communication networks and resource provisioning. Due

to their limited resources, mobile devices struggle with

large-scale image processing and real-time conversion

services [1]. Cloud computing technology helps mitigate

these limitations; however, it is not applicable for real-time

applications considering latency issues. Consequently,

offloading computational tasks to independent platforms

becomes a practical solution. For instance, the mobile cloud

can provide maximum advantage for mobile video gaming

and streaming [2].

Nevertheless, mobile cloud computing encounters

challenges such as limited network bandwidth and

offloading latency. Transmitting data from mobile devices

to distant clouds consumes significant bandwidth, leading

to traffic congestion and increased latency. Latency-

sensitive applications require offloading to nearby

locations, such as the nearest edge or mobile fog, to address

these issues [3].

Cisco Systems introduced fog computing as an extension of

cloud computing, bringing its capabilities to the network’s

edge. This extension benefits IoT services by supporting

latency-intolerant mobile services. Numerous studies have

focused on standardizing the computational offloading

process at the edge or mobile fog, particularly in selecting

mobile application units. Challenges related to offloading at

mailto:yaeghoobi@kntu.ac.ir

Yaeghoobi & Bakhshandeh, Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network Approach

244

the mobile edge or fog include mobility, heterogeneity, and

geographic distribution of devices.

As the digital world expands and network technologies

evolve, complex services are emerging [4]. The generation

of online applications featuring computing,

communication, and intelligent capabilities continues to

grow. Despite the growing power of current devices, they

still struggle with tasks required for smart healthcare,

augmented reality, intelligent car communication, and

many smart city services. These applications often require

another individual to execute tasks as a representative of the

user's device, a technique known as process offloading [5].

Task disburdening is especially advantageous for Internet

of Things and cloud computing requisition, facilitating

interactions between edge devices or fog nodes and sensors

and IoT nodes. Load shedding can be established on

computational requirements, load balancing, energy

management, and latency management [6].

In a data-rich world, mobile devices with limited resources

can handle small-to-medium computations but struggle

with high-level computations. Processing offloading is an

effective solution to overcome this limitation. Recently,

cloud computing has been recognized as a suitable platform

for offloading tasks from mobile devices. However, the

distance of cloud data centers from mobile devices

increases network latency and affects the performance of

real-time IoT applications.

For essential real-time applications, employing a near-edge

network approach for computing offload is vital.

Additionally, the primary controls for distributed mobile

devices are heterogeneous in the offloading process of

mobile computing. To overwhelm these contests, a deep

learning-based response time prediction framework has

been implemented to optimize offloading decisions near

fog/edge or cloud nodes.

The objectives of this research are:

• Enhance Offloading Performance: Develop a deep

learning-based framework to improve

computational offloading efficiency.

• Minimize Prediction Error: Achieve the lowest

discrepancy between actual and predicted

response times using deep learning techniques.

• Boost Prediction Accuracy: Enhance the accuracy

of response time predictions with the proposed

deep learning method.

The paper is structured as follows: Section 2 covers related

concepts and foundational research. Section 3 outlines the

technical methodology, including the proposed method and

framework. Section 4 analyses the proposed framework,

presents results, and evaluates their theoretical implications.

The final section discusses the results' implications and

concludes with future trends and perspectives.

2- Background

This section explores concepts and metrics used in

computational offloading, IoT middleware technologies,

technologies that enhance fog computing tasks, and

offloading methods in fog and cloud computing. The

interplay between cloud, fog, and mobile computing

models, concerning large computing resources, is analyzed.

The literature review also covers computing resource

allocation methods and achievements in cloud computing

offloading.

Cloud computing resources are managed using

virtualization technology. For example,[7] explains optimal

virtual machine placement, examining distribution methods

in cloud data centers. Most resource allocation mechanisms

are designed for green computing. The DPRA allocation

mechanism, discussed in [8], considers energy consumption

of virtual and physical machines and data center air

conditioning. A comparison of three schemes with DPRA

shows energy savings, PM shutdowns, and reduced VM

migrations.

In [9], a multi-objective optimization algorithm balances

availability, costs, and performance for running big data

applications in the cloud, outperforming conventional

methods by reducing costs and achieving higher

performance. However, the study focuses on big data

applications.

In critical real-time applications, for example, patient

control systems and intelligent transportation, mobile cloud

computing offloads large tasks while maintaining quality

standards [10]. A mobility-aware resource allocation

architecture, Mobihat, provides efficient scheduling but

does not study the impact of mobility on delay and response

times for real-time mobile services.

Offloading mobile edge computing with multiple users,

based on TDMA and OFDMA, is introduced in [11]. The

TDMA-based method reduces mobile energy consumption,

while the OFDMA hybrid model transforms into TDMA,

defining a discharge priority function for optimal resource

allocation.

The optimal computational offloading framework for

DNNs is presented in [12], considering mobile batteries and

cloud resources. This method evaluates energy

consumption and execution time.

In [13], battery life of nearby mobile devices is used to select

discharge positions. A non-interactive game model,

maximizing player payoffs, reduces response times. The

Nash equilibrium is obtained through the game model and

indirect induction method, evaluated for response time, end-

user benefit, and memory usage. Yang et al. [14] address high

implementation delays among mobile devices and fog nodes

using queuing theory. Data rate and power consumption are

selected as decision parameters, formulating a multi-

objective optimization problem to decrease transmission

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

245

energy consumption, power, and cost, determining the

probability of discharge for all mobile devices.

A survey on stochastic-based offloading methods in

different computing environments, including mobile cloud,

edge, and fog computing, is proposed in [15]. The

classification is divided into Markov chain, Markov

process, and hidden Markov models, discussing open issues

and future challenges.

In [16], a multi-objective optimization model addresses

time and energy consumption of mobile users and edge

server resource utilization. An edge-cloud joint offloading

method, based on the evolved Strength Pareto algorithm, is

effective and efficient for scenarios with multiple mobile

users and heterogeneous edge servers.

An offloading architecture, combining intelligent

computing with AI, is presented in [17]. Considering

mobile task data size and edge node performance, a load

shedding and task transfer algorithm optimize edge

computing offloading. Experiments show reduced task

delay by increasing data and subtask execution.

Du et al. [18] address offloading in a cloud-cloud

environment, supporting a heterogeneous model to consider

task communication cost asymmetry. They prove the NP-

hard nature of the problem and design an efficient algorithm

for an optimal solution, evaluated through a PageRank-

based program in a controlled cloud edge setting.

An adaptive wireless resource allocation strategy for

computational offloading, under a three-layer edge cloud

framework, is studied in [19]. Modeling the offloading

process at the minimum block level of allocable wireless

resources adapts to vehicular scenarios and evolves in the

5G network. The proposed value density function measures

cost-effectiveness and energy saving. Numerical results

show the designed algorithm achieves significant running

time and energy savings, with superior performance

compared to benchmark solutions.

An autonomous computational offloading framework is

presented in [20] for time-consuming programs, addressing

control model challenges for managing computing load.

Various simulations, including deep neural networks and

hidden Markov models, are performed. Results show the

hybrid model fits the problem with near-optimal accuracy

for discharge decisions, delay, and energy consumption

predictions. MAPE is used for discharge, collection, and

processing for decision making. The proposed method

outperforms local computing and offloading in latency,

energy consumption, network utilization, and execution

cost.

In [21], minimizing average task execution time in edge

systems, considering job request heterogeneity, application

data pre-storage, and base station cooperation, is addressed.

A mixed integer nonlinear programming (MINLP) problem

is formulated and addressed using decomposition theory.

The GenCOSCO algorithm improves service quality and

computational complexity. For fixed service cache

configurations, the FixSC algorithm derives evacuation

strategies, with simulations showing significant task

execution time reductions.

Peng et al. [22] propose three multi-objective evolutionary

algorithms to tackle the computing offloading challenges in

IoT for edge and cloud networks. They developed a

constrained multi-objective load calculation model that

accounts for time and energy consumption in mobile

environments. Drawing inspiration from the push and pull

search (PPS) framework, they introduced three algorithms

(PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE) that

integrate population-based search with flexible constraint

control. These algorithms were tested using multi-task,

multi-user scenarios across various IoT devices. The results

demonstrated their effectiveness and superiority.

Other research presents a user-centered joint optimization

offloading scheme designed to minimize the weighted costs

of time delay and energy consumption. The mixed-integer

nonlinear programming problem is addressed using a

particle swarm optimization algorithm that incorporates 0-

1 and weight improvement techniques. Simulation results

indicate higher performance in delay, energy consumption,

and cost [23].

In [24], a computation offloading scheme via mobile

vehicles in a cloud-IoT network is proposed. Sensing

devices generate tasks and transmit them to vehicles, which

then decide whether to compute the tasks locally, on a MEC

server, or at a cloud hub. The offloading decision is based

on a utility function that considers energy consumption and

transmission delay, using a learning-based approach.

Experimental results show that this solution maximizes

rewards and reduces delay.

Based on the research discussed, various techniques can be

adopted for cloud computing offloading, depending on

priorities. This research proposes using a response time

prediction model based on deep learning to determine the

optimal offloading position. The impact on delay and

energy efficiency will be evaluated to improve offloading

performance by minimizing the error between actual and

predicted response times.

3- Methodology

A mobile fog node expands the capabilities of fog and

mobile cloud computing models by offering a localized

system to minimize potential delays and execution times

while maintaining continuous and direct communication in

conjunction with the cloud data center. The proposed

model, depicted in Figure 1, encompasses three offloading

positions: the cloud data center, adjacent mobile station, and

mobile fog. This setup is supported by the LTE hierarchical

architecture and the Wi-Fi intra-network reference model,

situating the mobile fog at the network's edge. Access points

and access point controllers operate as mobile fog nodes.

Yaeghoobi & Bakhshandeh, Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network Approach

246

Fig. 1 Mobile Fog System Model for Computational Offloading -

Verification and confirmation of Mobile Stations is Achieved by 3GPP

AAA via Extensible Authentication Protocol-Authentication and Key

Agreement(EAP-AKA) over Internet Key Exchange version 2 (IKEv2)

Within this architecture, the mobile edge/fog is represented

by the fog-1 node, the mobile fog by the fog-2 node, and the

public cloud serves as the third offloading position, referred

to as the cloud node. Communication within the fog is

enabled by the Evolved Packet Core, which provides the

Evolved Packet Data Gateway.

Access points not only facilitate communication between

mobile stations but also offer cloud services such as,

Network as a Service (NaaS), Platform as a Service (PaaS),

and Infrastructure as a Service (IaaS). IEEE Ethernet

interfaces connect access points to access point controllers,

while IEEE 802.11 WLAN interfaces link mobile stations

to access points. The access point controller manages block

code migration, overseeing memory, processing, I/O, and

networking capabilities to sustain mobile cloud services.

Hence, the access point controller similarly serves as a fog

network controller. In Figure 1, fog-enabled access points

are labeled as "fog-access points," and access point

controllers are designated as "fog-access point controllers."

Mobile station authentication is conducted by the 3GPP

AAA via EAP-AKA over IKEv2, with the verification and

validation vector derive through the shared home server unit

in the LTE network. The data network gateway, which

handles access to user equipment or mobile stations and

virtual machines (VMs), has evolved into a packet data

gateway. The top module, the public cloud, functions as a

traditional delivery network, providing pervasive and

scalable services accessible via the web using both mobile

and static devices.

3-1- Unloading Node Process

This section details the offloading process based on the

previously described model, with a focus on the fog/mobile

edge. In critical real-time applications, nodes such as public

cloud and mobile fog and mobile edge are physically

dispersed to deliver services to mobile cloudlets, which are

resource-limited mobile stations. Due to the dynamic nature

of these applications, request times are unknown and

random, with variable response times, making it

challenging to identify the optimal offloading node.

To tackle this issue, a deep learning-based approach is

recommended. This approach learns from the request

history and response times of nodes to predict future

response times. The node with the lowest predicted

response time is then selected for offloading. The

relationship between the computing requirements of cloud

or fog nodes and the response time of virtual machines is

complex.

Predicting workload data patterns is challenging due to their

non-consecutive nature. Therefore, aggregated workload

data characteristics of VMs are used instead of single VM

data for prediction purposes. A deep learning model can

better determine workload data dispersions based on

inherent data characteristics, outperforming simpler

models. This preference is due to the deep model's ability to

learn complex relationships between workload data

features. Although structurally similar to a Multi-Layer

Perceptron (MLP), a Deep Belief Network (DBN) has a

diverse training method, allowing it to address gradient

fading effectively.

Fig. 2 Flowchart of the DBN-based offloading decision process,

integrating predictive modelling, fallback selection via p-model, and

feedback-driven model updates for sustainable smart city applications.

Framework

evolved packet core (EPC)

Public Cloud

Packet Data
Gteway

Evolved Packet
Data Gateway

Fog-Access Point
Controller

Number of Fog-
Access Points

Mobile Stations

AAA
Evolved Packet
Data Gateway

Fog- Access Point
Controller

Number of Fog-
Access Points

Mobile Stations

Fog Node 1 Fog Node 2

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

247

Figure 2 illustrates the complete workflow of the proposed

DBN-based computational offloading system for smart city

environments. The process begins with data collection from

mobile devices and virtual machines, including historical

request patterns and aggregated workload characteristics.

After preprocessing and feature extraction, the data be used

for DBN step, which performs multi-layer encoding and

pattern recognition to predict future response times of

candidate nodes. Based on these predictions, the system

attempts to select the node with the lowest latency for

offloading. If due to unpredictable workload patterns or

insufficient confidence no suitable node is identified, the

system activates a fallback mechanism using the p-model,

which randomly selects a server based on predefined

probability. The final stage involves task execution and

feedback logging, which continuously refines the DBN

model for future decisions.

3-2- Deep Belief Network (DBN)

A Restricted Boltzmann Machine (RBM) can extract

features and recreate data entry, in spite of that, it struggles

with gradient blurring. To address this, multiple RBMs can

be combined with a classifier to form a Deep Belief

Network (DBN). This method, known as greedy layer-by-

layer unsupervised pretraining, involves training the DBN

two layers at a time, treating each pair of layers as an RBM.

In this architecture, the hidden layer of one RBM acts as the

input layer for the subsequent RBM. The training process

starts with the initial RBM, whose outputs are fed into the

next RBM, and this sequence continues until the output

layer is reached. Through this process, the DBN identifies

inherent data patterns, functioning as an advanced multi-

layer feature extractor. A unique aspect of this network is

its ability to learn the complete structure of the input at each

layer, similar to a camera gradually focusing an image.

Finally, labels are applied to the resulting patterns in the

DBN. The DBN is subsequently fine-tuned through

supervised learning using a small set of labeled samples,

with minor changes to weights and biases leading to a

marginal increase in accuracy.

The proposed approach includes a deep belief network with

one-layer neural network. This method employs an

unsupervised approach to extract more robust and helpful

features from VM workload data. By increasing the hidden

layers in the DBN, the error gradient is significantly

amplified before being minimized. Training is conducted

using an unsupervised greedy layer-wise method. To further

optimize, the DBN's top layer utilizes a standard sigmoid

regression. Future request predictions are generated by

analyzing response times in terms of bandwidth (B),

memory (M), and processing capability (P).

As presented in Figure 3, inputs to the DBN model include

the bandwidth, memory and processing capability of entire

requests, along with the recent workload of all VMs. These

data cover actual response times discovered over various

time spans. For each node, the trained DBN models predict

response times, with input values normalized between 0 and

1. The core layer's units equal the sum of the VMs in the

cloud and the time slots.

Number of Units=VM×TI (1)

Where:

VM represents the number of virtual machines.

TI represents the number of time intervals.

This simple yet effective formula helps determine the total

number of units required based on the given parameters.

Alternatively, a supervised approach with a precisely

configured logistic regression layer can be employed to

label the data and predict the workload of a VM.

Fig. 3 Stacks before RBM Training

Initially, the standard binary RBM is modified to a

Gaussian-Bernoulli RBM. The visible unit biases in the

RBM energy function are adjusted to include quadratic bias

terms [3]. An example of a load shedding decision session

is shown in Table 1. The Energy function and Conditional

Probability Distribution are conveyed in following way:

E(x, h|θ) = ∑
(𝑥𝑖−𝑎𝑖)2

2𝜎𝑖
2

𝑋
𝑖=1 − ∑ 𝑏𝑗ℎ𝑗

𝐻
𝑗= − ∑ ∑

𝑣𝑖

𝜎𝑖
ℎ𝑗𝑤𝑖𝑗

𝐻
𝑗=1

𝑋
𝑖=1

 (2)

𝑃(ℎ𝑖|𝑥; 𝜃) = 𝛿(∑ 𝑤𝑖𝑗𝑥𝑖
𝑋
𝑖=1 + 𝑏𝑗) (3)

𝑃(𝑥𝑖|𝑥; 𝜃) = 𝑁(𝜎𝑖 ∑ 𝑤𝑖𝑗𝑥𝑖
𝑋
𝑖=1 + 𝑎𝑗 , 𝜎𝑖

2) (4)

Table 1: Description of symbols

Symbol Description

𝜇 mean

𝜎2 variance

𝜎 standard deviation

P probability

E expectancy

X observable variables

H common hidden space of variables

W linear mapping coefficient

B bias

In this context, the Gaussian distribution's probability

distribution function is represented by N(μ,σ2), where μ is

the mean, and σ2 is the variance vector. Hinton’s training

method outlines the prediction process as follows:

Unsupervised Training: The RBN visible and hidden

layer are trained. The RBM input comprises a request

section and a response time dataset. θ is the only non-

continuous parameter in the RBM.

Input Value Output Value

Yaeghoobi & Bakhshandeh, Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network Approach

248

Layer Inheritance: Each visible layer in RBM inherits and

utilizes the extracted features of the preceding RBM as its

input. This process is repeated for subsequent RBMs, with

the parameter θ retained for the next and initial RBM.

Input to Logistic Regression: The regression layer is

trained using labelled data in a supervised manner; and

input of that is the output of the final RBM.

Supervised Training: The θ parameters are trained and

adjusted using the backpropagation (BP) algorithm.

The deep belief network-based response time prediction

method leverages edge/cloud computing to accurately

determine whether to offload computations to a

neighbouring node, an edge/fog node, or a cloud node. To

handle the unpredictability of resource availability in

edge/fog and cloud nodes, the proposed offloading

procedure leverages the technique of RBM learning.

To begin the substantial data volumes and the demand for

real-time applications, particularly in the e-health sector, a

near-edge network approach for offloading computations is

recommended. This strategy addresses the primary controls

for distributed mobile devices, easing the offloading

process in mobile and heterogeneous computing

environments. A deep learning-based response time

prediction framework has been developed to enhance

computational offloading performance, determining the

optimal offloading target, whether it's a nearby fog/edge

node, an adjacent fog/edge node, or a cloud node.

Additionally, the Restricted Boltzmann Machine (RBM)

learning technique is utilized to handle the variability of

resource availability.

In this study, the DBN model was trained using aggregated

workload data collected from simulated virtual machines

operating under diverse conditions. The training process

involved unsupervised pre-training of Restricted

Boltzmann Machines (RBMs) followed by supervised fine-

tuning using labeled response time data. Training was

conducted on a standard CPU-based computing

environment, which, was sufficient for the scale and

complexity of the dataset used. The total training time

varied depending on the configuration, typically ranging

from 30 minutes to 2 hours. Once trained, the model was

deployed for inference on edge servers, where its

lightweight architecture enabled real-time prediction

without significant computational overhead. This setup

demonstrates that even without specialized hardware, the

DBN-based offloading strategy remains practical and

effective for mobile and fog-based environments.

4- Result and Analysis

This section examines the performance of the proposed

models. The simulation results integrate real mobility

tracking, server datasets, and model implementation on

actual machines. Subsequent sections will explore the

performance benefits of DBN-based models using three

probability distributions (uniform, normal, and exponential)

to achieve accurate results.

4-1- Data Collection

To simulate mobile node movements, a dataset of vehicle

movements in Rome was utilized, as referenced in [25].

This dataset comprises coordinates of 320 taxis collected

over 30 days, including their coordinates, date, time, and

GPS location. Mobility tracking treats any movement as a

point in time to check server or dump time, rather than

studying user mobility. Each movement is modeled as an

interaction with a mobile edge computing server.

Processing times are obtained from real servers (CPU

usage), involving around 150 data servers (over 1 billion

rows). With e very movement, a server is selected from the

dataset, its utilization is checked, and an unloading decision

is made based on the model's recommendation.

The evaluation spans more than five days (5000 rows of

movements). An evacuation decision is made every minute,

resulting in over 1000 evacuation decisions, ensuring the

proposed models' behavior is observed over an extended

period. The DBN-based response time prediction method

leverages edge/cloud computing to determine whether to

offload computations to a neighboring node, an edge/fog

node, or a cloud node.

Given the challenges posed by large data volumes and real-

time applications, particularly in the e-health sector, a near-

edge network approach was recommended for offloading

computations. The proposed RBM learning technique

addresses the randomness of resource availability.

Figure 4 distribution of server usage probabilities across all

servers in the dataset. The data generally follows a normal

distribution, illustrating typical CPU utilization patterns

observed during simulation.

Fig. 4. CPU usage distribution of servers (CPU unit is percentage and

Density is J)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0-10 10 20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

D
en

si
ty

CPU Usage Interval

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

249

Table 2 sample load shedding decision session, showing

CPU consumption values for selected mobile edge

computing servers at specific geographic positions and time

intervals.

Table 2: Dataset Sample Used in the Experiment. (ID: xx6, Motion Time
Interval: 10 Seconds)

Position Machine CPU Consumption

X=41.8911,

Y=12.49073
M_xx39 51

X=41.89905,

Y=12.4899
M_xx36 47

X=41.8994,

Y=12.48940
M_xx41 20

X=41.8994,

Y=12.489401
M_xx41 37

4-2- Evaluation

This section focuses on simulating and evaluating the

proposed evacuation rules across various variables. The

primary aim is to observe the models' behavior under

different conditions, allowing generalization to parameters

such as quality of service and response time concerning

computational load.

MATLAB software is chosen for the simulation, which can

perform process-based discrete event simulation. The

“Advance Mode” is selected for the probability distribution

of the random variable X, including time (processing). In

the simulation, a resource actually is a mobile edge

computing server k that is modelled and can advertises its

processing time Xk. A process is a mobile node that

modelled to traverses the mobile edge computing servers

and checks latency of each server based on the processing

time. Initially, we consider n=5, means having five mobile

edge computing servers. The processing time X follows a

normal distribution (50 ms to 10 ms), a uniform distribution

in the interval [0-1], and a binominal distribution of 50

J/mol. MATLAB has generated incidental variables

following the determined apportionment.

At every initiation, a node begins polling the mobile edge

computing servers consecutively, starts with server one. At

this step, the proposed approaches are utilized to choose a

mobile edge computing server. The important parameters in

processing time are waiting time, delay and total delay.

Additionally, based on the program types, the range of

processing time differs from 100 milliseconds to 800

seconds, and in intervals of 10 milliseconds to 30

milliseconds. Therefore, various ranges for parameter X can

be considered derived from the proposed models, which

producing similar outcomes as observed in the experiment

dataset. Table 3 shows the values and range of parameters

in the simulation test.

The main approach used in the simulation involves

comparing values obtained from other studies, random

values, the nearest server (immediate loading), and a

method from the same family of algorithms proposed in this

work. This evaluation is limited to comparisons between

different models, including the random and probabilistic

model (p). These approaches are compared to the superior

option, where the server or time with the minimum value is

chosen.

Table 3: Simulation Parameters Values for all Methods

Parameters Value / Range of Values

X N(10, 50) & U(0, 1)

No. of mobile nodes 1000

N {3, 5, 10}

P for p-model 0.8

R {0, 0.25, 0.5, 1}

𝜃
{30, 40, 50, 60}

{0.3, 0.4, 0.5, 0.6}

{20, 30, 40, 50, 60}

C
{1, 2, 3, 4, 5, 20, 30}

{0.1, 0.2, 0.3, 0.4}

{1, 10, 15, 20, 30, 40}

The reasons for adopting this approach are as follows:

Primarily, this research emphasizes data decision-making

and task offloading. Additionally, deep learning algorithms

inherently differ from traditional algorithms, especially

when the decision maker lacks complete information. Thus,

the approach to optimality is the main analysis for

evaluating these algorithms. Optimization is suitable when

all server information is available to the decision maker,

facilitating the mobile node in determining the ideal

offloading location. Ultimately, these algorithms are

implemented in sequence, complicating direct comparisons

with other algorithms.

In this setting, in the absence of offloading rules, the mobile

node will likely choose the first available mobile edge

computing server. For edge computing load, such an

offloading method is optimal for task offloading. So, the p-

model method is utilized as a fallback technique. In the p-

model, each server is assigned a loading probability, set to

p=0.8. During each user move, each server has a probability

p=0.8 of being selected to load the job. In this experiment,

increasing p intensively the probability of selecting the first

server for loading. Consequently, the p-model replicates the

scenario where the mobile node chooses the nearest servers

that is closest edge servers due to the higher probability

p=0.8.

When evaluating the actual dataset, if a server is preferred

(server is chosen for loading) the process stops; if no server

is preferred, the last server is chosen. A server is randomly

preferred for each user to offload the work in the random

selection model.

The results of all models are compared with values obtained

from the proposed model, where the server with the shortest

processing time is chosen for each unloading session.

Models that are closer to the optimal value demonstrate

superior performance in offloading decisions. The optimal

Yaeghoobi & Bakhshandeh, Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network Approach

250

model is achieved by choosing the server with the shortest

processing time for each load sequence.

4-3- Results

The simulation results evaluate the performance of the

proposed DBN-based offloading model across multiple

dimensions, including execution time, server usage, energy

efficiency, and successful offloads. The evaluation spans

three distinct probability distributions for the processing

time variable X: normal, uniform, and exponential. Each

distribution reflects different real-world workload scenarios

in mobile edge computing environments.

Across all simulations, the DBN-based model consistently

demonstrates superior performance compared to

benchmark algorithms such as Delay Tolerant Offloading

(DTO), Best Choice Problem (BCP), Cost-based Optimal

Task (COT), Quality-Aware Odds, Random selection, and

the p-model. The proposed method achieves lower average

execution times, reduced CPU usage, and higher rates of

successful offloads under varying resource constraints.

Figures 5 through 13 present comparative results for each

distribution scenario. These include average processing

times, server utilization, and the number of effective

offloads under different CPU thresholds. The DBN model

shows strong alignment with the optimal model,

particularly in scenarios where resource availability is

dynamic and unpredictable. This confirms the model’s

ability to make accurate offloading decisions and maintain

system efficiency under diverse conditions.

Performance Analysis with Normal Distribution

As illustrated in Figure 5, when the processing time X

follows a normal distribution, the proposed DBN-based

algorithm achieves the shortest execution time among all

evaluated methods. The average execution time for

computational discharge is approximately 40 milliseconds,

outperforming DTO, BCP, COT, and the p-model

algorithms.

Fig. 5 Simulation Results for All Models in Case of X Normal

Distribution.

The figure also reveals a significant overlap between the

DBN model and the optimal model, indicating that the

DBN’s predictions closely approximate ideal offloading

decisions. In contrast, models such as the p-model and

random selection exhibit higher variance and longer

processing times. The BCP model achieves a processing

time of 46 milliseconds, which is lower than the p-model

and random approaches but still less efficient than the DBN.

These results validate the effectiveness of the DBN-based

offloading strategy in minimizing latency and optimizing

resource allocation in mobile edge computing. The model’s

ability to learn from historical workload patterns and predict

response times contributes to its superior performance

across varying conditions.

The results in Figure 6 reveal that the variation between the

optimal model and DBN model is significantly smaller than

the variation detected with other models. Notably, for

models other than the DBN, the optimal threshold for each

experiment k is generally close to the average processing

time of 50 milliseconds. For example, in the DTO model

and COT model, the thresholds generated for n=5 are {40,

42, 43, 46, 50}, all near the average processing time.

Fig. 6 Average Processing Time for Different Models with X Normal

Distribution.

Using these optimal thresholds as a reference, the initial

threshold value for the Odds method is set to 50, with

performance evaluated for various values. The results,

indicate the effective performance of the Odds method. This

performance can be credited to the high likelihood of

choosing a server with a processing time under 50

milliseconds. Thus, by setting a threshold value close to the

average processing time, a shorter processing time is

achieved for unloading the computational load.

Furthermore, the results demonstrate better performance for

the BCP method compared to the p-models and Random

method. The BCP evacuation policy is more likely to

achieve the shortest processing time, leading to a lower

average processing time than other models. This increased

likelihood results in a lower expected processing time

compared to the random and p models

Significantly, while the probability of selecting the best

server is assumed to be similar in the BCP and Odds

models, the defined threshold in the Odds model enhances

performance by ensuring quality-aware decisions when

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

25 30 35 40 45 50 55 60 65 70 75 80

D
en

si
ty

Tme of Process

Normal Distibution of X

Optimal COT BCP DTO Odds Random P-model

0 10 20 30 40 50 60

DTO

COT

Quality-Aware Odds

BCP

Random

p-model

Optimal

Time of Process

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

251

examining mobile edge computing servers. The main

conclusion from these results is that the proposed method,

referred to as the optimal model, achieves a shorter

processing time than other methods, thereby reducing

response time and improving the performance of

computational offloading in cloud computing.

Performance Analysis with Uniform Distribution

In the initial results, the random variable X followed a

normal distribution. To achieve more accurate findings, we

conducted an additional simulation with X uniformly

distributed within the interval [0-1] (Figure 7). This range

represents server usage, such as CPU utilization, where a

value of 0.5 indicates 50% CPU usage. We applied similar

steps to all models, as in previous experiments.

In the DTO model, the delay coefficient initially began at

r=0, with results for other r values presented subsequently.

For the cost-based optimal task model, an ideal threshold

was identified for each cost value in the second set.

Specifically, for c = 0.2, evaluations determined the optimal

threshold to be 0.3. The cost interpretation is similar to the

normal distribution scenario: a higher cost (smaller

threshold V) signifies a greater need for shorter processing

times.

Fig. 7 Simulation Results for All Models in Case of X Uniformly

Distribution.

In the quality-aware Odds model, the threshold was set to

0.5, yielding a 42% probability of selecting a server with

X=0.5. Though the BCP model shares this probability,

setting the threshold notably improved the Odds model's

performance. Figures 7 and 8 show that model performance

aligns closely with results from the normal distribution

scenario. DTO and COT models remain top performers,

with deep belief network-based models coming closer to

optimality compared to random and p models.

As illustrated in Figure 8, the average execution time for

various algorithms, including the proposed method based

on the deep belief network, has been evaluated. The results

demonstrate that the proposed method achieves a shorter

execution time compared to other methods, indicating a

more efficient response to computational offloading in

mobile edge computing.

Fig. 8 Average Processing Time for Different Models with Uniform X

Distribution.

Performance Analysis with Exponential Distribution

Figure 8 demonstrates that the proposed algorithm achieves

an execution time of approximately 0.15 milliseconds,

which is shorter compared to other methods. On the other

hand, the p-model algorithm exhibits the longest execution

time due to the consideration of a threshold value for

selecting servers. These results suggest that the deep belief

network (DBN) method provides superior response times

for computational offloading in mobile edge computing,

attributed to its layered approach.

Besides normal and uniform distributions, this experiment

also included an exponential distribution with a mean of 50.

The same procedural steps were followed as in the previous

distributions. Initially, the delay coefficient in the DTO

method was set to r=0, with results for other r values

subsequently presented. The results under these conditions

are shown in Figures 9.

In the Cost-based Optimal Task model, the figures depict

the optimal threshold values V corresponding to each cost

value. For this simulation, the cost was initially set to 20,

with the optimal threshold determined to be 45.81, resulting

in the lowest simulated expectation of X among other

values. Performance across various cost values is also

demonstrated. The cost interpretation aligns with scenarios

where X follows normal and uniform distributions: a higher

cost (smaller threshold V) indicates an increased demand for

shorter processing times.

In the quality-aware Odds method, the threshold was set to

50, resulting in a 44% probability of selecting a server with

X=50. The results in Figures 9 and 10 indicate that the

proposed model's performance is consistent with the results

obtained when X follows normal and uniform distributions.

The DBN-based method consistently outperforms other

algorithms, demonstrating the best performance and closest

proximity to optimality compared to the random and p-

models.

0

20

40

60

80

100

120

140

160

0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0

D
en

si
ty

Time of Process

Uniformly Distribution of X

Optimal BCP DTO COT Odd Random p-model

0 0.1 0.2 0.3 0.4 0.5 0.6

Optimal

DTO

COT

Quality-Aware Odds

BCP

Random

P-model

Time of Process

Yaeghoobi & Bakhshandeh, Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network Approach

252

Figure 9 demonstrates that the proposed method with

exponential distribution achieves a lower execution time

compared to other methods. This distribution effectively

guides server selection for mobile edge calculations,

showing that the deep belief network-based method

provides a faster response for computational offloading in

mobile edge computing than other algorithms.

 Fig. 9 Simulation Results for All Models in Case of X Exponential

Distribution.

Figure 10 illustrates the average response time for different

methods with exponential distribution. The proposed

method has a significantly lower response time,

approximately 10 milliseconds, compared to other

algorithms. This demonstrates that the proposed method

surpasses other approaches in reducing response time for

computational offloading in mobile edge computing.

Fig. 10 Average Processing Time for Different Models With X

Exponential Distribution.

Server Usage and Energy Efficiency

Figure 11 illustrates the average server usage recommended

by each model. The DTO and COT models show results

closest to the proposed method, with DTO performing

better than the others by an absolute difference of 23 units

compared to the proposed method. The findings indicate

that the proposed method has a lower average server

consumption than the other methods, meaning it consumes

less energy for mobile edge calculations.

Additionally, the proposed method, based on the deep belief

network, demonstrates a shorter average unloading time

compared to other algorithms. Consequently, this suggests

that the response time for computational offloading in

mobile edge computing is more efficient with the proposed

method than with others.

Fig. 11 Average CPU Usage and Average Computational Drain Time by

each Model

Server Consumption and Successful Offloads

Figure 12 illustrates the average server consumption for the

proposed method compared to other solutions. The

proposed deep belief network method demonstrates a lower

average server consumption, indicating that it not only

reduces the response time for computational offloading but

also optimizes server usage. This results in lower overall

server consumption compared to other algorithms.

Fig. 12 Average Usage of Servers for Different Algorithms.

Result presented the average server consumption for the

proposed method compared to other solutions. The

proposed deep belief network method demonstrates lower

average server consumption, indicating that it not only

reduces response time for computational offloading but also

0

20

40

60

80

100

120

140

160

180

0
-

10

10
 2

0

20
 -

 3
0

30
 -

 4
0

40
 -

 5
0

50
 -

 6
0

60
 -

 7
0

70
 -

 8
0

80
 -

 9
0

90
 -

 1
00

10
0

-
15

0

15
0

-
20

0

20
0

-
25

0

25
0

-
30

0

D
en

si
ty

Time of Process

Exponential Distribution of X

Optimal Random P-model

BCP DTO (r = 0) COT (C = 20)

Quality-Aware Odds (θ = 50)

0 10 20 30 40 50 60

Optimal

DTO

COT

Quality-Aware Odds

BCP

Random

P-model

Time of Process for exponential distribution of X

0

20

40

60

80

100

120

21.45 26 28 29.5 30 37.56 36.74

49.45 43 42.19

64.2
44

66.33

45.74

Average CPU Usage

Average Utilisation Average Offloading Times

0 5 10 15 20 25 30 35 40

Optimal

DTO

COT

Quality-Aware Odds

BCP

Random

P-model

Server Usage

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

253

optimizes server usage, resulting in lower overall server

consumption compared to other algorithms.

Beyond average server utilization, we compare

performance based on the number of effective offloads for

each model. An effective offload refers to unloading

decisions that meet specific requirements set by each

model. To assess this, we assume three different mobile

edge computing programs (x, y, and z) each with distinct

needs. For example:

• Program x requires less than 10% CPU utilization.

• Program y requires less than 20% CPU utilization.

• Program z requires a server with less than 30%

CPU utilization.

If an offload occurs for a server with usage less than 10%,

it is considered a successful offload for program x.

Figure 13 illustrates the effective offloads for various

resource demands across entire methods. The proposed

deep belief network-based method achieves the highest

number of successful offloads in these three cases, with

values of 102, 463, and 1887 successful offloads,

respectively.

Fig. 13 Number of Effective Discharges for each Model Based on

Various Threshold Values.

4-4- Discussion

The simulation results for various methods indicate that the

presented models generally exhibit a time complexity of

O(n) at worst, both in terms of time and space. If each

model's condition is met on server number n, the mobile

node will visit server n. For the DTO, COT, and Quality-

aware Odds models, a pre-observation step involves

generating thresholds. This step is presumed to be executed

a single time by the service provider, external to the mobile

node, although it can be implemented within the mobile

node if necessary. For example, computing the threshold at

the mobile node in the Odds and DTO methods requires

O(n) time complexity. The COT method requires more time

to calculate the threshold, depending on the likelihood

distribution. Merely a sole operation is essential for a

(uniform) distribution, while a normal distribution requires

integration estimation with a time complexity no greater

than O(n2).

Regarding space complexity, the BCP model does not

require additional space for data storage, resulting in a space

complexity of O(n). This also applies to other models,

provided the training step is performed outside the mobile

node. If the training step is conducted locally at the mobile

node, only the probability distribution parameters need to

be stored. For a uniformly distributed X, the maximum and

minimum values are stored, while for exponentially

distributed X, the 𝜇 mean and 𝜎2 standard deviation are

required. Previous results showed that the time complexity

of the proposed method based on a deep belief network

(DBN) is O(1), the lowest complexity for predicting time

and improving computational offloading performance in

mobile edge computing.

Analyzing the execution time and server consumption

across different algorithms reveals that the proposed

method is more efficient in performing the computational

offloading process. The results indicate that the proposed

model is completely independent and lightweight for

implementation in the mobile node, outperforming other

compared solutions. The DBN-based method requires less

processing time for computational offloading and task

execution, with lower CPU consumption than other

solutions. This makes it suitable for managing

computational offloading of resources, compressing, or

delaying limited tasks.

A practical scenario that highlights the effectiveness of the

proposed DBN-based offloading mechanism involves a

mobile user engaged in augmented reality (AR) navigation

within a smart city. AR applications are latency-sensitive

and require rapid processing of environmental data, user

location, and graphical overlays. In such a context, the DBN

model predicts the response times of available fog and cloud

nodes based on historical workload patterns and real-time

system conditions. By selecting the node with the lowest

predicted latency, the system ensures that AR content is

rendered and delivered with minimal delay, thereby

preserving user experience and application responsiveness.

In cases where no optimal node is identified, the fallback

mechanism ensures continuity by probabilistically selecting

a viable server. This dynamic and adaptive offloading

strategy demonstrates the model’s potential to support real-

time, resource-intensive mobile applications in complex

urban environments.

Opti
mal

DTO COT

Quali
ty-

Awar
e

Odds

BCP
Rand
om

P-
mod

el

30% CPU Utilization 1887 952 834 1131 102 473 489

20% CPU Utiloization 463 186 250 342 297 148 135

10% CPU utilization 102 53 41 55 43 25 21

0

500

1000

1500

2000

2500

3000

Successful Offloads

Yaeghoobi & Bakhshandeh, Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network Approach

254

5- Conclusion

The principal aim of this research is to enhance

computational offloading performance in mobile edge

computing. To achieve this, we have employed a

computational analysis method based on the deep belief

network (DBN), incorporating various deep learning

features to improve the evacuation process. By adding

specific steps to the computational evacuation process, we

aim to reduce server consumption, increase process speed,

and decrease response time to computational requests.

In this study, the deep belief network algorithm has been

utilized to further optimize computational offloading,

making it suitable for various cloud computing applications,

including mobile edge computing. The proposed algorithm

focuses on reducing execution time for requests and

increasing the number of successful offloads within the

mobile edge computing system. By combining different

distribution functions and the core features of the DBN

algorithm, our method seeks to enhance efficiency and the

volume of computational offloading.

Our approach to computational offloading on the server side

is designed to provide a solution with low response time,

ultimately reducing time complexity and energy

consumption. It is crucial to employ the appropriate method

to perform this process efficiently. Incorrect algorithms for

computational offloading in cloud computing can lead to

increased energy consumption and decreased successful

offloads. Timely offloading reduces server-side energy

consumption and increases efficiency, highlighting the

importance of an accurate response time prediction solution

to improve computational offloading performance in

mobile edge computing.

A detailed examination of our results indicates that the

proposed algorithm effectively improves computational

offloading in mobile edge computing. This algorithm

requires less time to execute offloading processes and

respond to requests from mobile nodes. The number of

requests handled by the servers does not increase response

time, thereby reducing the duration of computational

offloading. Compared to Delay Tolerant Offloading (DTO),

Best Choice Problem (BCP), Cost-based Optimal Task

(COT), and p-model algorithms, our method demonstrates

shorter average processing times for computational

offloading and request responses, achieving optimal results

for the evaluated dataset. The proposed method outperforms

other methods in terms of time complexity, energy

consumption, processing time, CPU usage, average offload

time, and the number of successful offloads.

While the proposed algorithm sometimes exhibits longer

processing times for specific requests, overall performance

in processing time, resource utilization, average server

usage, successful offloads, and computational offload time

is superior in improving computational offloading in mobile

edge computing. By balancing accuracy and speed, our

method effectively reduces response time and increases the

number of successful offloads.

Future research should evaluate the proposed method across

various cloud computing systems, applications, and datasets

to fully explore its efficiency and applicability.

Additionally, further studies can investigate other neural

network algorithms, such as long short-term memory and

convolutional neural networks, to enhance offloading

performance in mobile edge computing. Meta-heuristic

algorithms may also be considered to address the NP-hard

nature of computational offloading problems, aiming to

reduce complexity and increase successful offloads.

Finally, developing solutions that require minimal

processing and computing resources, while considering

available resource consumption, will lead to more efficient

computational offloading and increased successful offloads.

References

[1] A. Mahdavi and A. Ghaffari, “Embedding Virtual Machines

in Cloud Computing based on Big Bang–Big Crunch

Algorithm,” Journal of Information Systems &

Telecommunication (JIST), p. 305, 2019.

[2] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud

computing: A survey,” Future Generation Computer Systems,

vol. 29, no. 1, pp. 84–106, Jan. 2013, doi:

10.1016/J.FUTURE.2012.05.023.

[3] Md. G. R. Alam, M. M. Hassan, Md. Z. Uddin, A. S.

Almogren, and G. Fortino, “Autonomic computation

offloading in mobile edge for IoT applications,” Future

Gener. Comput. Syst., vol. 90, pp. 149–157, 2019, [Online].

Available:

https://api.semanticscholar.org/CorpusID:52899499

[4] P. Boopathy et al., “Deep learning for intelligent demand

response and smart grids: A comprehensive survey,” Comput

Sci Rev, vol. 51, p. 100617, Feb. 2024, doi:

10.1016/J.COSREV.2024.100617.

[5] I. Abdullaev, N. Prodanova, K. A. Bhaskar, E. L. Lydia, S.

Kadry, and J. Kim, “Task Offloading and Resource Allocation

in IoT Based Mobile Edge Computing Using Deep Learning,”

Computers, Materials and Continua, vol. 76, no. 2, pp. 1463–

1477, Aug. 2023, doi: 10.32604/CMC.2023.038417.

[6] H. Naseri, S. Azizi, and A. Abdollahpouri, “BSFS: A

Bidirectional Search Algorithm for Flow Scheduling in Cloud

Data Centers,” Journal of Information Systems and

Telecommunication (JIST), vol. 3, no. 27, p. 175, 2020.

[7] D. Seddiki, F. J. Maldonado Carrascosa, S. García Galán, M.

Valverde Ibáñez, T. Marciniak, and N. Ruiz Reyes,

“Enhanced virtual machine migration for energy sustainability

optimization in cloud computing through knowledge

acquisition,” Computers and Electrical Engineering, vol. 119,

p. 109506, Oct. 2024, doi:

10.1016/J.COMPELECENG.2024.109506.

[8] L.-D. Chou, H.-F. Chen, F.-H. Tseng, H.-C. Chao, and Y.-J.

Chang, “DPRA: Dynamic Power-Saving Resource Allocation

for Cloud Data Center Using Particle Swarm Optimization,”

IEEE Syst J, vol. 12, no. 2, pp. 1554–1565, 2018, doi:

10.1109/JSYST.2016.2596299.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

255

[9] H. Wang, S. Cao, H. Li, L. Yan, Z. Guo, and Y. Gao, “Multi-

objective joint optimization of task offloading based on

MADRL in internet of things assisted by satellite networks,”

Computer Networks, vol. 254, p. 110801, Dec. 2024, doi:

10.1016/J.COMNET.2024.110801.

[10] T. Tsokov and H. Kostadinov, “Dynamic network-aware

container allocation in Cloud/Fog computing with mobile

nodes,” Internet of Things, vol. 26, p. 101211, Jul. 2024, doi:

10.1016/J.IOT.2024.101211.

[11] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-

Efficient Resource Allocation for Mobile-Edge Computation

Offloading,” IEEE Trans Wirel Commun, vol. 16, no. 3, pp.

1397–1411, 2017, doi: 10.1109/TWC.2016.2633522.

[12] Q. Wang, S. Guo, J. Liu, and Y. Yang, “Energy-efficient

computation offloading and resource allocation for delay-

sensitive mobile edge computing,” Sustainable Computing:

Informatics and Systems, vol. 21, pp. 154–164, Mar. 2019,

doi: 10.1016/J.SUSCOM.2019.01.007.

[13] S. C. Ghoshal et al., “VESBELT: An energy-efficient and

low-latency aware task offloading in Maritime Internet-of-

Things networks using ensemble neural networks,” Future

Generation Computer Systems, vol. 161, pp. 572–585, Dec.

2024, doi: 10.1016/J.FUTURE.2024.07.034.

[14] S. Yang, D. Kwon, H. Yi, Y. Cho, Y. Kwon, and Y. Paek,

“Techniques to Minimize State Transfer Costs for Dynamic

Execution Offloading in Mobile Cloud Computing,” IEEE

Trans Mob Comput, vol. 13, no. 11, pp. 2648–2660, 2014, doi:

10.1109/TMC.2014.2307293.

[15] X. Xu, Q. Huang, X. Yin, M. Abbasi, M. R. Khosravi, and L.

Qi, “Intelligent Offloading for Collaborative Smart City

Services in Edge Computing,” IEEE Internet Things J, vol. 7,

no. 9, pp. 7919–7927, Sep. 2020, doi:

10.1109/JIOT.2020.3000871.

[16] T. Tang, C. Li, and F. Liu, “Collaborative cloud-edge-end

task offloading with task dependency based on deep

reinforcement learning,” Comput Commun, vol. 209, pp. 78–

90, Sep. 2023, doi: 10.1016/J.COMCOM.2023.06.021.

[17] Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami, and M.

S. Hossain, “Intelligent task prediction and computation

offloading based on mobile-edge cloud computing,” Future

Generation Computer Systems, vol. 102, pp. 925–931, Jan.

2020, doi: 10.1016/J.FUTURE.2019.09.035.

[18] M. Du, Y. Wang, K. Ye, and C. Xu, “Algorithmics of Cost-

Driven Computation Offloading in the Edge-Cloud

Environment,” IEEE Transactions on Computers, vol. 69, no.

10, pp. 1519–1532, 2020, doi: 10.1109/TC.2020.2976996.

[19] L. Tan, Z. Kuang, J. Gao, and L. Zhao, “Energy-Efficient

Collaborative Multi-Access Edge Computing via Deep

Reinforcement Learning,” IEEE Trans Industr Inform, vol.

19, no. 6, pp. 7689–7699, Jun. 2023, doi:

10.1109/TII.2022.3213603.

[20] A. Shakarami, A. Shahidinejad, and M. Ghobaei-Arani, “An

autonomous computation offloading strategy in Mobile Edge

Computing: A deep learning-based hybrid approach,” Journal

of Network and Computer Applications, vol. 178, p. 102974,

Mar. 2021, doi: 10.1016/J.JNCA.2021.102974.

[21] S. Zhong, S. Guo, H. Yu, and Q. Wang, “Cooperative service

caching and computation offloading in multi-access edge

computing,” Computer Networks, vol. 189, p. 107916, Apr.

2021, doi: 10.1016/J.COMNET.2021.107916.

[22] G. Peng, H. Wu, H. Wu, and K. Wolter, “Constrained

Multiobjective Optimization for IoT-Enabled Computation

Offloading in Collaborative Edge and Cloud Computing,”

IEEE Internet Things J, vol. 8, no. 17, pp. 13723–13736,

2021, doi: 10.1109/JIOT.2021.3067732.

[23] Z. N. Samani and M. R. Khayyambashi, “Reliable resource

allocation and fault tolerance in mobile cloud computing,”

Journal of Information Systems and Telecommunication

(JIST), vol. 7, no. 2, pp. 96–109, 2019.

[24] J. Long, Y. Luo, X. Zhu, E. Luo, and M. Huang,

“Computation offloading through mobile vehicles in IoT-

edge-cloud network,” EURASIP J Wirel Commun Netw, vol.

2020, no. 1, p. 244, 2020, doi: 10.1186/s13638-020-01848-5.

[25] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and

A. Rabuffi, “CRAWDAD dataset roma/taxi (v. 2014-07-17),”

2014.

 Jaspreet Kaur

jaspreetsweetangel@gmail.com

Journal of Information Systems and Telecommunication
Vol.13, No.3, July-September 2025, 256-265

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

PSO-Optimized Power Allocation in NOMA-QAM for Beyond 5G:
A CFD and MFD Analysis

Jaspreet Kaur1*

1. Institute of Engineering and Technology, Lucknow

Received: 20 Sep 2024/ Revised: 04 Sep 2025/ Accepted: 05 Oct 2025

Abstract
This paper proposes a power allocation method based on particle swarm optimization (PSO) to enhance spectrum sensing

performance in downlink Non Orthogonal Multiple Access (NOMA) systems employing high-order Quadrature Amplitude

modulation (QAM) modulation for beyond 5G networks. By intelligently adjusting user power levels, the proposed approach

significantly improves detection reliability while maintaining stringent false alarm constraints, even under challenging low-

SNR conditions. The goal is to enhance spectrum sensing performance by maximizing the probability of detection (Pd) while

maintaining a constrained probability of false alarm (Pf). Cyclostationary Feature Detection (CFD) and Matched Filter

Detection (MFD) techniques are applied to evaluate detection performance under varying Signal to noise ratio (SNR)

conditions. Simulation results demonstrate that the optimized framework not only strengthens detection performance

particularly for high order QAM but also enhances overall system responsiveness. Also CFD surpasses MFD in higher SNR

scenarios due to its ability to exploit cyclic features of modulated signals, which are preserved even in moderately noisy

environments. The integration of PSO further enhances system performance, offering a practical and scalable solution for

next-generation Internet of Things (IoT)-enabled spectrum sharing environments.

Keywords: Non Orthogonal Multiple Access (NOMA); Matched Filter Detection (MFD); CFD, PSO; Cognitive Radio

Networks (CRN); Next Generation Networks (NGN).

1- Introduction

The increase in the number of connected devices and the

rapid expansion of wireless services are creating an

unprecedented need for spectral resources, pushing

networks toward the capabilities envisioned for beyond

5G and 6G systems [1]. Because cognitive radio (CR)

technology allows for dynamic spectrum access and

opportunistic usage of unused frequency bands, it has

become a key paradigm to solve spectrum shortages [2].

NOMA has simultaneously become well-known as a

crucial method for enhancing spectral efficiency and

facilitating huge connections [3-4]. CR employs three

primary sensing methods to detect available spectrum:

Energy Detection (ED), Matched Filter Detection (MFD),

and Cyclostationary Feature Detection (CFD). It has been

found in recent surveys that over 75% of spectrum is

wasteful [4]. Therefore, it is crucial to make use of

unutilized spectrum. Primary users (PUs) possessing

license do not always use the allocated spectrum, causing

spectrum to be wasted. Assigning spectrum to unlicensed

users, frequently referred to as secondary users or SU, is

one method of increasing spectrum utilization when PUs

are discovered to be inactive [5]. Simultaneously, the

spectrum ought to be redistributed to the PUs whenever

they choose to utilize it, without affecting the SU’s

performance [6]. This implies that SUs should use the

spectrum whether or not PUs are present. There is great

potential for attaining high data rates and effective

spectrum usage when CR and NOMA are combined,

especially when using high order modulation techniques

like 64-QAM and 256-QAM [7-8]. These benefits,

however, come at the expense of more complicated

spectrum sensing and a greater susceptibility to fading and

noise, particularly in the low signal-to-noise ratio (SNR)

conditions typical of CR situations [9]. For secondary

users to operate dependably in shared spectrum scenarios

and to prevent detrimental interference with primary

users, accurate spectrum sensing is necessary [10]. This

study addresses the central question of whether an

intelligent power allocation strategy can enhance

spectrum sensing performance in CR-enabled NOMA

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

257

systems while maintaining strict constraints on false alarm

rates. We hypothesize that a Particle Swarm Optimization

(PSO)-based approach can dynamically allocate user

power in a manner that maximizes detection probability,

reduces sensing time, and maintains efficient spectrum

utilization even under challenging conditions.

Conventional sensing techniques, including CFD and

MFD, often exhibit degraded performance in low SNR

conditions, particularly when dealing with high-order

modulations [11-12]. Moreover, many existing studies

focus solely on detection algorithms without considering

adaptive resource allocation as part of the sensing

framework. Our work bridges this gap by integrating

PSO-based power optimization into the CR-NOMA

sensing process, offering a holistic solution that jointly

considers sensing accuracy and power efficiency. This

represents a substantial contribution toward enabling

practical, robust CR-NOMA implementations. The

motivation for this research lies in the growing demand

for agile and energy-efficient spectrum sharing techniques

capable of supporting high-throughput applications,

Internet of Things (IoT) deployments, and massive

machine-type communications. By optimizing power

allocation, we aim to achieve reliable detection

performance without excessive sensing overhead, paving

the way for practical deployment of cognitive radio

systems in next-generation networks. Motivated by the

need for improved detection in noisy NOMA-QAM

environments, this work proposes a PSO-based power

allocation framework to enhance spectrum sensing

performance. Key contributions include:

(i) Development of a PSO-optimized power allocation

scheme for NOMA systems with high-order QAM to

boost detection accuracy.

(ii) Comparative analysis of CFD and MFD for QAM-64

and QAM-256 modulation schemes.

(iii) Simulation results showing up to 47.91%

improvement in detection probability (Pd) over

conventional MFD, validating the approach in challenging

noise conditions.

This is how the rest of the paper is structured. Relevant

literature related to NOMA, QAM, MFD, CFD and PSO

is given in Section 2. The system model and the suggested

PSO-based optimization methodology are covered in

depth in Section 3. Simulation data, performance

comparisons, and information on the efficacy of the

suggested strategy are presented in Section 4. The paper's

conclusion and some future study directions are covered

in Section 5 and 6.

2- Literature Review

Lately, a number of research on spectrum

sensing techniques using NOMA have
demonstrated potential in fulfilling the spectrum needs of

several 5G applications. 5G mobile communications are

about to become worldwide. For an OFDM system, cyclic

prefix detection was proposed by Arun et al. [13]. The

recommended method's demand for previous knowledge

from the principal user is one of its key drawbacks. The

energy detection method of SS for OFDM system was

implemented by the authors [14]. The simulation results

show that while OFDM without CP performs better

towards Pf, OFDM system consisting of CP shows

improved throughput performance. Recent studies further

extended the applicability of NOMA-based cognitive

systems [21-22]. Recent advancements in spectrum

sharing and NOMA integration have focused on

intelligent resource allocation and IRS-assisted systems to

enhance performance in Beyond 5G networks [25-26].

Additionally, Bala Kumar and Nanda Kumar [28]

explored block chain-enabled cooperative spectrum

sensing in MIMO-NOMA CRNs for improved security

and sensing accuracy. For instance, Salameh et al. [29]

feature-based spectrum sensing to adaptively detect

primary user signals in fading channels without requiring

a fixed detection threshold while Zhai et al. [30] proposed

a joint optimization scheme combining active IRS and

multicluster NOMA to improve spectral efficiency. These

works underscore a growing trend toward intelligent,

adaptive spectrum management strategies. However, most

of these approaches either focus on physical-layer

improvements or overlook sensing complexity under

high-order modulation and low-SNR conditions. In

contrast, this study addresses the need for efficient

spectrum sensing by integrating PSO-based power

allocation with advanced detection techniques in high-

QAM NOMA-CR systems. Detailed literature specifically

for NOMA-QAM systems is given in Table 1.

Kaur & Srivastava, PSO-Optimized Power Allocation in NOMA-QAM for Beyond 5G: A CFD and MFD Analysis

258

Table 1 :- Literature Review relevant to proposed Work

S.No Reference Year Aim Findings

1 [15] 2010 Implement and examine a MIMO-OFDM system
Implementation and analysis done

using MATLAB simulations

3 [4] 2019 Enhance sensor performance at low SNR
3 dB gain with optimized NOMA

over O-NOMA

4 [1] 2019
Explore advanced spectral efficiency techniques in CRNs

using NOMA and 5G signals.

NOMA-CRN outperforms

conventional CR in spectrum
efficiency

5 [3] 2020
To Integrate NOMA into CR networks to enhance spectrum

efficiency and accommodate large number of users

High SE and large user support

shown in CR scenarios

6 [22] 2021 Use NOMA to efficiently utilize the spectrum
Allows SU to use several PU

types with and without

interference

7 [24] 2021
To Assess the effectiveness of NOMA in uplink

communications using fixed power coefficients.

Weak user power boost improves

performance, especially at low
SNRs

8 [27] 2021 Apply Swarm Intelligence to address future network issues
SI types classified; challenges and

research opportunities discussed

9 [26] 2022 Detailed review of 5G waveforms using sensing methods
Cyclostationary methods show 2

dB advantage over traditional

techniques

10 [28] 2024

Introduce block chain-enabled cooperative

spectrum sensing for 5G/B5G CR using
massive MIMO-NOMA

Demonstrated enhanced security
and reliability in spectrum sensing

using decentralized block chain

mechanisms in MIMO-NOMA
CRNs.

11 [29] 2025
Machine learning-driven, feature-based spectrum sensing

approach to improve NOMA signal detection in dynamic IoT

networks operating under fading channels.

Method Employs feature-based

spectrum sensing to adaptively
detect primary user signals in

fading channels without requiring

a fixed detection threshold.

2-1- Research Gap and Motivation

Despite the extensive efforts to enhance spectrum

efficiency using CR and NOMA techniques, several

challenges remain unaddressed. Most of the prior works

focus on static or suboptimal power allocation strategies,

often overlooking the impact of dynamic power tuning

under high-order modulation schemes. Furthermore, few

studies have explored the integration of advanced

optimization algorithms such as swarm intelligence for

real-time adaptation in CR-NOMA environments under

low-SNR conditions. Additionally, limited work has been

done to jointly optimize sensing accuracy and power

distribution while accounting for false alarm constraints in

high-QAM signal environments. As a result, a critical gap

persists in developing unified frameworks that can

adaptively optimize both detection performance and

spectral efficiency in practical CR scenarios. Motivated

by this gap, the present study proposes a novel power

allocation framework based on Particle Swarm

Optimization (PSO), tailored for CR-enabled NOMA

systems operating under high-order QAM. The approach

aims to achieve enhanced sensing accuracy, reduced false

alarm rates, and optimized throughput, all while

maintaining practical feasibility for next-generation

wireless systems.

3- Proposed System Model

This work investigates a downlink NOMA-based

communication system utilizing QAM modulation for

Beyond 5G scenarios. Multiple users are multiplexed in

the power domain and served concurrently over a shared

channel. Power levels for each user are dynamically

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

259

allocated using Particle Swarm Optimization (PSO) to

enhance overall detection performance while maintaining

user fairness. At the receiver, spectrum sensing is carried

out using both CFD and MFD, with performance

evaluated across different SNR values for QAM-64 and

QAM-256 schemes. The PSO algorithm optimizes power

allocation by maximizing the Pd under a constraint on the

Pf ≤ 0.5. These methods help the CR identify when the

spectrum is idle based on two hypotheses: H1(primary

user presence) and H0(absence of a primary user).

Table 2.Comparison between traditional and proposed sensing technique

{
𝐻0 ∶ Xj(t) = Nj(t)

H1: Xj(t) = hjS(t) + Nj(t), j = 1, … … … . Nu
} (1)

The fitness function is defined as:

 F(P) = 𝑃𝑑(P) − λ. max (0, 𝑃𝑓(P) − 0.5) (2)

where P is the power allocation vector, lambda is a

penalty factor, and Pd(P) and Pf(P) are computed based on

the NOMA-QAM system model. Although PSO is a

widely established optimization technique, its

characteristics make it particularly suitable for power

allocation in dynamic CR-NOMA environments. PSO

efficiently handles multi-objective, non-convex

optimization problems without requiring gradient

information, which is especially important under real-

time, non-linear, and noisy conditions typical of cognitive

radio systems. Moreover, PSO’s low computational cost

and adaptability enable quick convergence in

environments where SNR and user demands fluctuate.

This makes PSO a practical and effective choice for

simultaneously optimizing detection probability and

power distribution in high-QAM scenarios. The novelty

of this work lies in embedding PSO within a joint

spectrum sensing and power allocation framework, where

the optimization process is directly influenced by

detection metrics (Pd and Pf). This unique application is

further distinguished by its evaluation under high-QAM

and CFD/MFD trade-offs. Comparison of proposed model

with benchmarking techniques is given in Table 2.

3-1- Matched Filter Detection

The MFD technique evaluates whether primary users are

present by comparing the detected signal with a reference

signal. The next step involves comparing the output with

a dynamic threshold. It is extremely effective in low SNR

since it optimizes SNR in presence of AWGN. The

formula for the test statistic is TMF = ∑y (n)*x (n). The

PU signal in this case is represented by (𝑥), the SU signal

by (𝑛), and the test parameter for MFD is TMF. It then

compares a threshold with the test statistics (TMF) to

ascertain availability of spectrum. The signal received

from Secondary and Primary user are roughly modeled as

random Gaussian variables as depicted in fig. (1).

Figure 1. Block diagram for NOMA MFD

S. No. Spectrum Sensing

Technique

Remarks

1 Conventional Energy

Detection

Simple to implement with low computational complexity.

Poor performance at low SNR (Pd = 0 at SNR < -12 dB).

Susceptible to interference be- tween PUs and SUs.

2 Conventional CFD Robust detection at low SNR (Requires prior knowledge of signal periodicity).

Moderate computational complexity due to autocorrelation.

3 Conventional MFD Effective at low SNR (Pd = 0.19 at SNR = 4 dB for QAM-256).

Requires prior knowledge of PU signal.

SUs can only use spectrum in absence of PUs.

4 Proposed Optimized MFD

& CFD

High Pd (0.83 at Pf = 0.5 for QAM-256, 47.91% improvement over MFD).

Robust at low SNR (Pd = 0.79 at SNR = -5 dB).

Increased computational complexity due to PSO optimization.

Kaur & Srivastava, PSO-Optimized Power Allocation in NOMA-QAM for Beyond 5G: A CFD and MFD Analysis

260

3-2- Cyclostationary Feature Detection

CFD is amongst the most significant technique for

advanced as it is able to identify the spectrum at low SNR

without the impact of noise. It uses signal's periodicity

features as it calculates mean and autocorrelation of the

signal. The spectrum correlation density functions and

cyclic autocorrelation are useful in order to estimate the

CS signals. The initial stage in CS is to use a number of

procedures, including filtering, encoding, and sampling,

to convert the signal into second-order CS.

 {y(+)} = {y (t + to)} (3)
 The (𝑟) is represented as cyclic auto-correlation

function at:

 βγ = {M/To} (4)

Figure 2. Block diagram for NOMA CFD

In a NOMA system, each subcarrier's power spectrum

density (PSD) can be characterized. For n-th subcarrier,

PSD can be represented as:

𝜑𝑛(𝑓) = 𝑃𝑛𝑇𝑠 (
𝑆𝑖𝑛𝜋𝑓𝑇𝑠

𝜋𝑓𝑇𝑠
)

2

 (5)

where, Ts stands for the symbol duration, φ is the PSD of

the next subcarrier, and Pn is transmit power that is

released by preceding subcarrier. A possible technique to

represent CFD using NOMA is as

 𝜑𝑛(𝑓) = |𝐻𝑛(𝑓)|2 (6)

The prototype filter's frequency spectrum with coefficient

h[n] and n = 0, 1... W-1 is represented as Hn(f) [6]. An

example of a frequency response's source is:

|Hn(f)|=h [
W

2
] +2 ∑ h [(

W

2
) 1] cos(2∏r)

W

2
-1

i=1

 (7)

 The following formula determines the phase angle:

Ph(u) = [sou, s1u, s2u … … sl − 1u] (8)

for u=1, 2...U

sj(u) = exp (jɵ0
(𝑢)

) (9)

j=0, 1, L-1, and where jɵ0
(𝑢)

 denotes random phase angle.

So the representation of NOMA symbol can be shown as:

𝑌𝑘 = [𝑌𝑘,0, 𝑌𝑘,1 … … … … … … … … 𝑌𝑘,𝑙−1] (10)

 The phase angle is applied to the NOMA symbols as

follows:

𝑌𝑘
(𝑣) = 𝑝(𝑢) ∗ 𝑌𝑘 (11)

yu(t)= ∑ ∑ X
k

'
,I

(Umin)
h(t-

K'T

2

k-1

K'=0

L-1
I=0))e

j2∏It

T ejɵK'I+ ∑ dk,I
(u)

h(t-L-1
I=0

KT

2
))e

j2∏It

T ejɵK'I (12)

Lastly, the following represents the received NOMA

signal:

Y’(t)=∑ 𝑋
𝑘′,𝑙

(𝑈𝑚𝑖𝑛)
𝑒𝑗ɵ𝑘,𝐼𝐾−1

𝑘=0 ℎ(𝑡 − 𝑘𝑅0) (13)

We can infer from Eq. (13) that the NOMA - CR system

is capacious than traditional OFDM system. The block

diagram of the recommended technique is displayed in

Fig. 2. A sequential generation process generates a

random parallel symbol. IFFT is used to examine the

signal in the time domain, and once it has been transmitted

across a Rayleigh channel, SC permits many users to use

the sub-channel. The receiver uses SIC to decode the time

domain signal and FFT to translate it to the frequency

domain. In the end, a threshold is determined and if

received symbol's energy exceeds the threshold value,

identification will occur; otherwise, no detection will be

taken into account.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

261

Figure 3. Flowchart of MFD and CFD Technique using PSO

4- Simulation Parameters and Performance

Analysis.

In an effort to implement the suggested algorithm shown in

Fig. 3 MATLAB 2022 is used. Table 3. depicts the

simulation parameters for optimizing and analyzing NOMA

QAM CFD and MFD using PSO. Simulation results of

matched filter spectrum sensing method and

Cyclostationary feature detection based on NOMA are used

to comprehensively examine the results. This study

determines the threshold value at the NOMA system's

receiver end.

Table 3. Simulation Parameters

It is based on the idea that only detection will be presumed

if the signal received equals or exceeds the threshold value;

otherwise, no detection will be inferred. When assessing the

effectiveness of MFD and CFD, a constant threshold value

is taken into account because a changing threshold can

deteriorate the efficiency of spectrum sensing methods. To

Parameters Description Values

f frequency 16 MHz

M QAM order 64,256

BW Bandwidth 30 MHz

N Number of users 50

n Population size 100

SNR Signal to noise ratio -20dBto 5 dB

k FFT Size 1024

Last name 1, Last name 2 & Last name 3, Author Guide for preparing a paper for the journal of information …

262

investigate the role of thresholds in MFD and CFD

identification, QAM-64 and QAM-256 transmission

systems with 64 and 256 sub-carries were used. Table 4 and

Figure 4 display the Pd for various Pf values. Pf indicates the

false representation of noise as a desired signal. SNR = 10

dB was fixed in the current simulation to analyze the

effectiveness of MFD & CFD strategy for NOMA. It is seen

from fig.4 and table 4 that NOMA M-256 Pd is higher than

M-64. So it is inferred that NOMA-QAM-MFD 256 Pd is

better than QAM-64 as shown in fig (4).

Figure 4: Pd Vs Pf for M-QAM MFD

Table 4: NOMA-QAM MFD Pd vs Pf result

Pf/Pd

(MFD)
0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

NOMA

M-256
0 0 0 0.07 0.14 0.27 0.47 0.76 1

NOMA

M-64
0 0 0 0.05 0.09 0.18 0.33 0.56 1

Figure.5. Pd Vs Pf for CFD for M-QAM.

Table 5: Pd vs Pf for NOMA-QAM using CFD

Table 5 and Figure 5 shows the Pd vs Pf values for M-QAM

CFD. A comparative analysis demonstrates the clear

advantage of the proposed NOMA-CFD approach over

MFD. At Pf = 0.5 and SNR = 10 dB, CFD with QAM-256

achieves a Pd of 0.76, outperforming both QAM-64 (Pd =

0.68) and MFD, with an observed 44.28% improvement in

detection probability. Across the full range of Pf values,

CFD consistently maintains higher Pd, indicating superior

sensing reliability and robustness to false alarms compared

to conventional techniques.

Figure 6. Plot for MFD Pd against SNR.

Table 6. Pd against SNR for MFD in NOMA-QAM

SNR/Pd

(MFD)
-

20
-

16
-12 -8 -4 0 4 8 12 16

NOMA

M-256
0 0 0 0 0.19 0.965 1 1 1 1

NOMA

M-64
0 0 0.004 0.02 0.14 0.66 1 1 1 1

The Pd is displayed as a function of SNR in Table 6 and

Fig.6. We do analysis and simulations across a variety of

SNR values (10 dB to 20 dB) for MFD. For QAM-64 &

256, 100% Probability of detection (Pd) is achieved at 4 dB

and 6 dB, respectively. Therefore, QAM-Pd can be

considered better than QAM-256. For instance, at SNR = –

10 dB, MFD yields a Pd of 0.56 (QAM-256), while CFD

fails to detect (Pd ≈ 0). However, at SNR = 4 dB, CFD

rapidly improves to Pd = 1.0, outperforming MFD’s Pd of

Pf /Pd

(CFD)

0.01 0.11 0.22 0.28 0.33 0.39 0.44 0.50

NOMA

QAM-

256

0.22 0.46 0.59 0.61 0.66 0.69 0.73 0.76

NOMA

QAM-

64

0.12 0.32 0.45 0.51 0.56 0.60 0.65 0.68

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

263

0.97. This demonstrates CFD’s steeper gain in detection

performance once the SNR threshold is crossed.

Table 6 and Figure 6 shows the Pd for various Pf values.

SNR = 10 dB was fixed in the current simulation to measure

the effectiveness of the CFD strategy for NOMA. It is seen

that for NOMA QAM CFD Pd value is 0.76 for Pf of 0.50

as compared to 0.68 Pd value for NOMA QAM-64. Also

Table7.Pd vs SNR for NOMA-QAM with CFD.

SNR(dB)/P

d
-25 -20 -15 -10 -5 0 +5

NOMA

QAM-256
0.1

1
0.1

6
0.3

3
0.5

6
 0.7

9
0.9

7
1

NOMA

QAM-64
0.1

0
0.1

5
0.3

0
0.5

0
 0.7

4
0.9

1
0.9

8

Table 8. BER vs SNR of NOMA-QAM MFD & CFD

Pf /Pd 0.0

1
0.0

6
0.1 0.1

5
0.2 0.2

5
0.3 0.4 0.5

0
Optimiz

ed Pd of

MFD

0.3

3
0.3

7
0.3

9
0.4

0
0.4

2
0.4

3
0.4

5
0.4

7
0.4

9

Optimiz

ed Pd of

CFD

0.5
1

0.5
9

0.6
3

0.7
0

0.7
3

0.7
5

0.7
9

0.8
1

0.8
3

results improve by 44.28% when compared with MFD

technique. The figure illustrates that NOMA-QAM-256 Pd

is better than QAM-64. Also it is clear from results that

NOMA-CFD outperforms the results of MFD.

Figure.7. Pd Vs SNR for CFD.

The table 7 and Fig. 7 depicts results of Pd vs SNR of

NOMA-QAM CFD. We examine and model Pd throughout

a spectrum of SNR ranging from -25 to 5dB. From obtained

results it is evident that at 0 dB and 5dB in the case of QAM-

64 and QAM-256, Pd reaches an ideal value of 100%.Thus,

it may be said that QAM- 64 Pd is superior to QAM-

256's.The superior low-SNR performance of MFD is due to

its reliance on known signal templates. In contrast, CFD

requires stronger signals to detect Cyclostationary features

but eventually surpasses MFD in higher-SNR regions,

making it better suited for mid-to-high-SNR cognitive

environments.

Figure 8. BER vs SNR of NOMA-QAM MFD & CFD

As SNR increases, the BER lowers, as Fig. 8 and Table 8

demonstrate. For M-256, a BER of 0.309 is obtained at 6

dB using the MFD technique and 0.212 at 12 dB using the

CFD technique. Matched Filter Detection MFD

consistently achieves lower BER compared to CFD across

all SNR levels due to its reliance on known signal patterns.

CFD shows limited improvement at low SNR but performs

better as SNR increases beyond 10 dB. Overall, MFD is

more reliable for low-SNR environments, while CFD

requires stronger signals to reduce errors.

Figure 8 reinforces these findings, showing that MFD

achieves a BER of 0.309 at 6 dB, while CFD only achieves

0.212 at 12 dB. This indicates that while MFD offers lower

BER in noisy environments, CFD benefits more from clean

conditions. As observed in Tables 5 and 7, Pd increases with

SNR for both MFD and CFD. Notably, MFD achieves a Pd

of 0.97 at 0 dB for QAM-256, while CFD reaches similar

performance only at higher SNR levels (>4 dB). This

indicates that MFD is more suitable for low-SNR

environments due to its coherent detection mechanism.

Last name 1, Last name 2 & Last name 3, Author Guide for preparing a paper for the journal of information …

264

Figure 9. Optimized Pd using MFD and CFD using PSO

Table 9. Pf against optimized Pd using PSO for CFD in NOMA-QAM

BER

of

CFD 0.484 0.491 0.493 0.495 0.496 0.312 0.212
BER

of

MFD 0.39 0.37 0.339 0.309 0.272 0.237 0.199
SNR 0 2 4 6 8 10 12

Table 9 and Fig. 9 shows PSO-optimized Pd vs Pf plot using

PSO in MFD and CFD technique. Results improved and

high value of Pd was achieved for lesser Pf values showing

improved detection performance (Pd of 0.75) at reduced

false alarm rates (Pf of 0.33). At Pf = 0.3, PSO-optimized

CFD achieves Pd = 0.79, which translates to a 35% increase

in successful PU detection compared to MFD. This is

critical in CR-IoT applications where minimizing missed

detection reduces interference and improves network

reliability. CFD surpasses MFD in higher SNR scenarios

due to its ability to exploit cyclic features of modulated

signals, which are preserved even in moderately noisy

environments. The integration of PSO further enhances

detection performance by adaptively selecting parameters

that maximize Pd under false alarm constraints. Despite its

superior performance, CFD exhibits higher computational

complexity compared to MFD, making it less suitable for

real-time or resource-constrained IoT nodes. Additionally,

PSO requires tuning and incurs optimization overhead,

which may limit deployment in ultra-low-latency scenarios.

5- Conclusion

 This study introduces a PSO-optimized power allocation

framework for NOMA-QAM systems in cognitive radio

environments, targeting enhanced detection using CFD and

MFD techniques. The proposed model significantly

improves detection performance, particularly for high-order

modulation schemes like QAM-256, achieving up to

47.91% gain in Pd over traditional MFD approaches. CFD

demonstrates superior robustness at low SNR and reduced

sensing time when optimized via PSO. These improvements

contribute to more reliable and energy-efficient spectrum

access, addressing the demands of IoT-enabled Beyond 5G

networks. Future work will explore integration with IRS-

assisted channels and deep learning-based sensing

optimization for dynamic environments.

6- Future Research Directions

Future research can extend the proposed PSO-based power

allocation framework to support advanced modulation

schemes like OFDM and OTFS. Incorporating adaptive

sensing techniques, such as machine learning-based

threshold selection or reinforcement learning, may further

enhance detection in dynamic environments. Additionally,

integrating Intelligent Reflecting Surfaces (IRS) to improve

signal quality and spectral efficiency, especially in

obstructed scenarios, is a promising direction. Finally,

validating the system's scalability in large-scale IoT

deployments and testing it on real-world platforms would

strengthen its practical relevance.

References
[1] Kumar, A., Bharti, S., & Gupta, M. (2019). FBMC vs. OFDM:

5G mobile communication system. International Journal of

Systems, Control and Communications, 10(3), 250-264.

DOI:10.5815/ijwmt.2023.05.01

[2] Haykin, S., Thomson, D. J., & Reed, J. H. (2009). Spectrum

sensing for cognitive radio. Proceedings of the IEEE, 97(5),

849-877. DOI:10.1109/JPROC.2009.2015711

[3] Kumar, Arun, et al. "NOMA based CR for qam-64 and qam-

256." Egyptian Informatics Journal 21.2 (2020): 67-71.

DOI:10.5815/ijwmt.2023.05.01

[4] Kumar, Arun, and P. Nandha Kumar. "OFDM system with

Cyclostationary feature detection spectrum sensing."

ICTExpress 5.1 (2019): 21-25.

DOI:10.1016/j.icte.2018.01.007

 [5] Liang, Y. C., Chen, K. C., Li, G. Y., & Mahonen, P. (2011).

Cognitive radio networking and communications: An

overview. IEEE transactions on vehicular technology, 60(7),

3386-3407. DOI: 10.1109/TVT.2011.2158673

[6] Datla, D., Wyglinski, A. M., & Minden, G. J. (2009). A

spectrum surveying framework for dynamic spectrum access

networks. IEEE [7]Transactions on Vehicular Technology,

58(8), 4158-4168. DOI: 10.1109/TVT.2009.2025380

[8]Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009).

Breaking spectrum gridlock with cognitive radios: An

information theoretic perspective. Proceedings of the IEEE,

97(5), 894-914. DOI: 10.1109/JPROC.2009.2015717

[9] Tumuluru, V. K., Wang, P., & Niyato, D. (2011). A novel

spectrum-scheduling scheme for multichannel cognitive radio

network and performance analysis. IEEE Transactions on

https://doi.org/10.5815/ijwmt.2023.05.01
https://doi.org/10.5815/ijwmt.2023.05.01
https://doi.org/10.1016/j.icte.2018.01.007

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

265

Vehicular Technology, 60(4), 1849-1858. DOI:

10.1109/TVT.2011.2117951

[10] Navrátil, P. A., Childs, H., Fussell, D. S., & Lin, C. (2013).

Exploring the spectrum of dynamic scheduling algorithms for

scalable distributed-memoryray tracing. IEEE transactions on

visualization and computer graphics, 20(6), 893-906. DOI:

10.1109/TVCG.2013.261

[11] Nandhakumar, P., & Kumar, A. (2016). Analysis of OFDM

system with energy detection spectrum sensing. Indian J. Sci.

Technol, 9(16), 1-6. DOI: 10.17485/ijst/2016/v9i16/92224

[12] Saberali, S. A., & Beaulieu, N. C. (2014, October). Matched-

filter detection of the presence of MPSK signals. In 2014

International Symposium on Information Theory and its

Applications (pp. 85-89).

IEEE.DOI:0.1109/ISITA.2014.7001426

[13] Kim, K., Akbar, I. A., Bae, K. K., Um, J. S., Spooner, C. M.,

& Reed, J. H. (2007, April). Cyclostationary approaches to

signal detection and classification in cognitive radio. In 2007

2nd IEEE international symposium on new frontiers in

dynamic spectrum access networks (pp. 212-215). IEEE. DOI:

10.1109/DYSPAN.2007.39.

[14] Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S.

(2006). NeXt generation/dynamic spectrum access/cognitive

radio wireless networks: A survey. Computer networks,

50(13), 2127-2159. DOI: 10.1016/j.comnet.2006.05.001.

[15] Tu, C. C., & Champagne, B. (2009). Subspace-based blind

channel estimation for MIMO-OFDM systems with reduced

time averaging. IEEE Transactions on Vehicular Technology,

59(3), 1539-1544.DOI: 10.1109/TVT.2009.2036728.

[16] Zhou, Y., Wang, Y., Wang, T., Zhang, K., & Zhang, W.

(2011, May). Iterative inter-cell interference coordination in

MU-MIMO systems. In 2011 IEEE 73rd Vehicular

Technology Conference (VTC Spring) (pp. 1-5). IEEE. DOI:

10.1109/VETECS.2011.5956799.

[17] Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano,

A., Soong, A. C., & Zhang, J. C. (2014). What will 5G be?.

IEEE Journal on selected areas in communications, 32(6),

1065-1082. DOI: 10.1109/JSAC.2014.2328098

[18] Srinu, S., & Sabat, S. L. (2013). Cooperative wideband

sensing based on cyclostationary features with multiple

malicious user elimination. AEU-International Journal of

Electronics and Communications, 67(8), 702-707. DOI:

10.1016/j.aeue.2013.01.002.

[19] Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2008).

Optimal multiband joint detection for spectrum sensing in

cognitive radio networks. IEEE transactions on signal

processing, 57(3), 1128-1140. DOI:

10.1109/TSP.2008.2008540.

[20] Na, D., & Choi, K. (2019). DFT spreading-based low PAPR

FBMC with embedded side information. IEEE Transactions

on Communications, 68(3), 1731-1745. DOI:

10.1109/TCOMM.2019.2952549.

[21] He, Z., Zhou, L., Chen, Y., & Ling, X. (2018). Low-

complexity PTS scheme for PAPR reduction in FBMC-

OQAM systems. IEEE Communications Letters, 22(11),

2322-2325. DOI: 10.1109/LCOMM.2018.2863908.

[22] Kumar, A., & Gupta, M. (2018). A review on activities of

fifth generation mobile communication system. Alexandria

Engineering Journal, 57(2), 1125-1135. DOI:

10.1016/j.aej.2017.06.014.

[23] Bairagi, A. K., et al. (2020). Coexistence mechanism between

eMBB and uRLLC in 5G wireless networks. IEEE

transactions on communications, 69(3), 1736-1749. DOI:

10.1109/TCOMM.2020.3046635.

[24] Mounir, M., et al. (2021). A novel hybrid precoding-

companding technique for peak-to-average power ratio

reduction in 5G and beyond. Sensors, 21(4), 1410. DOI:

10.3390/s21041410

[25] Kumar, A., et al. (2021). An Efficient Hybrid PAPR

Reduction for 5G NOMA-FBMC Waveforms. Computers,

Materials & Continua, 69(3). DOI:

10.32604/cmc.2021.019092

[26] Miah, M. S., Schukat, M., & Barrett, E. (2020). Sensing and

throughput analysis of a MU-MIMO based cognitive radio

scheme for the Internet of Things. Computer communications,

154, 442-454. DOI: 10.1016/j.comcom.2020.02.040

[27] Ramamoorthy, R., et al. (2022). Analysis of cognitive radio

for lte and 5g waveforms. Computer Systems Science &

Engineering, 43(3).DOI: 10.32604/csse.2022.019943.

[28] Pham, Q. V., et al. (2021). Swarm intelligence for next-

generation networks: Recent advances and applications.

Journal of Network and Computer Applications, 191, 103141.

DOI: 10.1016/j.jnca.2021.103141.

[29] Bala Kumar, D., & Nanda Kumar, S. (2024). Block chain-

enabled cooperative spectrum sensing in 5G and B5G

cognitive radio via massive multiple-input multiple-output

non orthogonal multiple access. Results in Engineering, 24,

102840.DOI: 10.1016/j.rineng.2024.102840

[30] Salameh, H. B., & Hussienat, A. (2025). ML-Driven Feature-

Based Spectrum Sensing for NOMA Signal Detection in

Spectrum-agile IoT Networks under Fading Channels. IEEE

Sensors Journal. DOI: 10.1109/JSEN.2025.3524968.

[31] Zhai, Q., Dong, L., Cheng, W., Li, Y., & Liu, P. (2023). Joint

optimization for active IRS-aided multicluster NOMA

systems. IEEE Systems Journal, 17(4), 6691-6694. DOI:

10.1109/JSYST.2022.3228965.

	first pages 51.docx
	1- Code 9352
	2- Code 9725
	3- Code 9180
	4- Code 9070
	5- Code 7968
	6- Code 8580
	7- Code 8051

