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Abstract

This research used modern machine learning ways to predict the stages of primary biliary cholangitis using data from the
Mayo Clinic trial. The research aims to obtain high prediction accuracy while representing balanced evaluation metrics.
Important techniques include automated hyperparameters optimization with Optuna and Recursive Feature Elimination to
improve model performance. Pre-processing included handling missing values, encoding of categorical features, and
addressing class imbalances using SMOTE. A total of twelve machine learning algorithms are evaluated with ensemble-based
models such as CatBoost and Extra Trees producing much better results. Evaluation metrics take into account all model
predictions, including accuracy, precision, recall, F1 score, and ROC-AUC for performing balanced and interpretative
evaluations of performances critical for imbalanced datasets. This endeavor includes clinical and laboratory information
illustrating the prospect of machine learning in advancing therapeutic diagnosis, emphasizing the rigor and robustness in
evaluation laid groundwork for future research to encompass even more generalizable and robust diagnostic tools.

Keywords: Primary Biliary Cholangitis; Machine Learning; Recursive Feature Elimination; Optuna, Imbalanced Data.

Chronic alcohol consumption leads to advanced forms of
liver damage, which eventually result in cirrhosis and

1- Introduction

Primary Biliary Cholangitis (PBC), formerly known as
primary biliary cirrhosis, is a chronic autoimmune liver
disease. It is characterized by the gradual and progressive
destruction of the liver's small bile ducts, leading to the
accumulation of bile and other toxins within the liver, a
condition known as cholestasis. Over time, this persistent
damage can result in scarring, fibrosis, and ultimately
cirrhosis. Cirrhosis is a late-stage liver disease that occurs
when scar tissue replaces healthy liver tissue. The
underlying pathologies that may cause this disease include
viral hepatitis, chronic alcoholism, and NAFLD (non-
alcoholic fatty liver disease) (Konerman et al., 2019).

DX Shahram Agah
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subsequent liver failure (Topcu et al., 2024). In the primary
stages, the disease is asymptomatic, and awareness is
typically raised only in the advanced stages. Cirrhosis may
lead to liver failure, liver cancer, and, ultimately, death
(Tapper & Parikh, 2023). There is a strong need for the most
accurate and least invasive methods to predict the
progression of cirrhosis, given the critical importance of
diagnosing and managing such diseases optimally.
Although traditional methods, such as liver biopsy, provide
accurate results, these procedures are invasive and may lead
to complications (Wei et al., 2018). Chronic alcohol
consumption is one of the main causes of this disease and,
in the long term, can lead to advanced stages such as
cirrhosis, ultimately culminating in complete liver failure
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(Topcu et al., 2024). Previous studies have established that
cirrhosis of the liver progresses through four stages. The
first stage, Steatosis, is characterized by inflammation of
either the liver or the bile ducts, and immediate treatment at
this juncture can control the disease. The second stage,
Fibrosis, involves the development of scar tissue that cuts
off normal blood flow to the liver and impairs its function;
however, medical treatment can halt the progression of the
disease. In the third stage, Cirrhosis, healthy liver tissue is
replaced by scar tissue, and swelling may occur in the
spleen. Finally, the fourth stage, Liver Failure, is
characterized by complete liver failure. At this stage,
patients transition from normal health to a comatose state
and require emergency treatment by medical professionals
(Wei et al., 2018).

The subtlety of its early symptoms permits the diagnosis
of cirrhosis only at advanced stages; if mismanaged, the
disease can inevitably culminate in liver failure or cancer.
Recent studies have highlighted the significance of early
detection and management. An SEAL screening algorithm
study demonstrated a remarkable 59% higher rate of early
cirrhosis detection compared to routine care, thereby
advocating for the role of structured programs in identifying
asymptomatic cases (Labenz et al., 2022). In addition, top-
down proteomics identified the proteoform signatures in
plasma that correlate with the progression of cirrhosis,
forming the template for a biomarker-driven risk
stratification (Forte et al., 2024). Another paper emphasized
the role of miRNA-gene regulatory axes in monitoring and
diagnosing cirrhosis and hepatocellular carcinoma and
proposed new diagnostic targets (Premnath & Shanthi,
2024). Asymptomatic superior mesenteric vein thrombosis
(SMVT), however, has not been proven to significantly
impact cirrhosis outcomes, unlike the risks posed by portal
thrombosis (PT) (Wang et al., 2022). These collective
findings emphasize the crucial role of early, target-oriented
interventions and the potentially significant role of
additional biomarkers in preventing the progression of
asymptomatic cirrhosis. Prior studies discussed the notable
success of various machine-learning-based approaches like
Random Forest, Gradient Boosting, Ensemble Learning,
and others in increasing the accuracy with which the stages
of disease progression are predicted. For example, the
LivMarX model achieved an accuracy of up to 86% for
predicting different stages of cirrhosis based on a
combination of biomarkers and optimization techniques
(Kamath et al.,, 2024). Other models suggested that
longitudinal models outperformed other cross-sectional
models in accurately detecting disease progression (Hanif
et al., 2022).

Millions live with cirrhosis worldwide, and it remains
a leading cause of death every year. The effects on patients”
quality of life following late diagnosis of cirrhosis can be
dire and place a huge burden on the health sector.
Furthermore, improper management of the disease may lead

to serious complications, such as advanced liver failure,
liver cancer, and other comorbidities (Hanif et al., 2022).
New artificial intelligence and machine-aided processes
enable much finer accuracy in determining the stage of the
disease and are immensely beneficial in reducing
complications, promoting early diagnosis, and improving
patient management. The ability of this technology to offer
a serious advancement in the management of cirrhosis is
most felt in areas where modern imaging methods are
seldom available (Topcu et al., 2024). This research aims to
develop an efficient and accurate model for predicting early
liver cirrhosis by employing advanced machine learning
algorithms. It seeks to improve prediction accuracy by
combining intelligent feature selection and model
optimization approaches to create models that are not only
highly efficient but also practical for implementation in real
clinical settings. The major aim of the study is to devise a
model for prediction of stage of PBC that is accurate,
generalizable, and efficient using advanced techniques of
machine learning. Some cutting-edge work presented
therein involves, but is not restricted to, tuning of model
hyperparameters via advanced optimization methods of
Optuna, feature selection algorithms, such as RFECV to
identify crucial disease progress variables. A further
significant aspect in the study includes the use of rich and
varied data composed of clinical and laboratory data drawn
from credible sources. The evaluation of model
performance metrics such as accuracy, precision, recall, F1-
score, and AUC is performed in a very detailed way so as
to allow transparency in the evaluation of the quality of
predictions. This paper is organized as follows: the first part
introduces the research and its various objectives; the
second part broaches the research background and pinpoints
the weaknesses of previous studies; the third part describes
the research methodology regarding the dataset,
preprocessing techniques and machine learning algorithms
used; the penultimate section conveys all the experimental
results and critically evaluates the performance of various
models; and finally, the last part deliberates and draws its
conclusions in respect of the findings obtained, drawing
comparisons with previous studies, scrutinizing the
implications of the results, providing an overview of the
contributions made, and suggesting future areas of research.
In this study, such a constructive approach enhances the
efforts toward improving the prediction of cirrhotic liver
disease risk while further enhancing the development of Al
in aiding diagnostic medicine.

2- Theoretical Foundations and Research
Background

In very recent times, prognosis and evaluation of liver
diseases have made remarkable advancements. Cirrhosis
often deteriorates into liver failure, requiring transplants in
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many cases, often due to chronic liver insult. Making an
accurate diagnosis of the stage of liver cirrhosis and
tracking the patients' progress remains among the greatest
challenges of medicine. Addressing these difficulties
straightaway impacts treatment strategies and the potency
of medical involvement. In the past years, machine learning
methods have emerged as a contemporary remedy for
prognosticating the diverse phases of liver cirrhosis. These
algorithms identify clinically pertinent traits that describe
singular patient characteristics through exhaustive data
examination. Table 1 briefly summarizes related research
on predicting the stages of liver cirrhosis and contrasts
assorted methods. This table comprises the titles of the
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reports, aims, datasets, machine learning algorithms, and
key outcomes of each analysis. An inspection of this
background reveals that machine learning designs such as
Random Forest, Support Vector Machine, and amalgamated
tactics, exploiting an assortment of datasets and sundry
optimization techniques, have been successfully applied
and have achieved meaningful accuracy in prognosticating
the phases of liver cirrhosis. This data furnishes worthwhile
insights into the strengths and shortcomings of preceding
studies and helps pinpoint existing research gaps.

Table 1. Research background

Authors Article Title Goals Model used Dataset Conclusion
Mgggi?%ei%&gt Veterans’ The longitudinal boosted survival tree
slop ‘o : Cox models model achieved superior concordance
Konerman disease Predict cirrhosis | 3'po0sted- Health (0/774) and AuROC in prediction
et al. Progression prglgressmn mn survival-tree Administrati compared to cross sect'otrl)al models
(2019) among veterans CHC patients urvival- on (72,683 parcd ross-secliona, me >
with hepatitis C model indivi dhals) demonstrating hlgttler reliability in long-
- term forecasts.
virus
Random
Machine Forest, The Random Forest model achieved high
: isti Open-access : g
Learning-Based . Logistic pen accuracy (~98%), demonstrating superior
;{ 0&%12% Analysis and OEfagl;}é rdg[?rc}s)osrils Regression, ci rlglgrs is performance in early cirrhosis predlrc):tion.
: Prediction of AdaBoost, k- dataset Precision, recall, and F1-score were not
Liver Cirrhosis ngiﬁzg%{g?)trs explicitly reported.
. Ensemble
Improving :
: model The ensemble models improved
PIr)églch%?osl?f)f Enhance integrating ) prediction accuracy and generalizability,
Bhardwaj Cirrhosis Usin rediction of Gradient Multisource | making significant advances in reliability
et al. an Optimize dg p cirthosis Boosting, liver disease and forecasting. While specific metrics
(2024) Ensembl o OOTIOSIS Random datasets such as accuracy, precision, and recall
Machine Learning prog Forest, and were not directly report%d, oveéall
Decision improvements were observed.
Approach Trees
Support
Stage Prediction Determine M\gi%ti?lre Dataset with Ri}%ﬁ?lr?hg(ﬁiegsﬁggg :&??ﬁ%fg%%%},e .
Ketal of Liver Cirrhosis stages of liver Random 418 records | achieved through feature engineering and
(2024) Disease using gi trhosis Forest and 20 cross-validation. Precision, recall, and
Machine Learning Gradient attributes F1-score for the Rando;P Fdorest model
Boosting are not specified.
LivMarX: An
e Random : .
QpumpedLov: B O DO 8oy (i
Kamath et Model Usin Stage liver with Genetic e gatas ot The model demonstrated high cost-
Biomarkers for cirrhosis using : effectiveness for accurately staging
al. (2024) . Algorithm of 424 : ‘o ' 2
Interpretable biomarkers and atients cirrhosis in the absence of imaging.
Lwers Cirrhosis GridSearchC p Precision, recall, and Fdl -score were not
tage Vv reported.
Classification )
Developr}lllgnt of
a machine
: Data from
(Elmasine Predicting Liver lfeoz}rréliggnrggicrilel S{%)(Rg? 1,078 The model achieved 93/55% accuracy on
jad and Fibrosis Severity fatt livger using Machine patients the training data and 78/62% on the test
olabpour Using Machine d Y hi g SVM) with referred to data, outperforming six comparable
2034 L Models | . demographic | (SVM) wit Imam R Igori
’ ) carning ModelS | information and | Radial Kernel mam 18eza algorithms.
hematology Hospital
tests
Cirrhosis Disease | Using machine : Data from The proposed model demonstrated high
J;lm(az%azrﬁt Prediction Using learning ]I)nlg%rﬁg patients accuracy in predicting the stages o
: Machine Learning methods to with cirrhosis.
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predict liver learning physiologic
cirrhosis algorithms al
characteristi
cs
associated
with
cirrhosis
Support Random F hieved £
: Liver Cirrhosis Vector Liver ancom orest achieved an accuracy o
Haﬁlllt;%nd Prediction Using Predict liver Machine, Cirrhosis r 03?178Qégseﬁonﬁ;rszt_l\%ireehff%ilétt}{o?gdof
Machine Learning | cirrhosis stages Decision dataset (418 : : 11 pase-wise p
(2022) Approaches Tree. Random records) liver cirrhosis. Precision, recall, and F1-
pp Forest score were not reported.
Artificial
Neural
o Network,
Liver Cirrhosis I:{Sdécgg 1\;[1615 %?)rrlg;m The Artificial Neural Network (ANN)
Sidana et Stage Prediction ci§rh osis in Logistic Data from demonstrated the best performance with
al. (2022) Using Machine atients usin Re r%ssi on patients high accuracy, while the RF+MI feature
: Learning: p machine g Sgu ort with liver selection method showed a slight
Multiclass learning Vgc% or cirrhosis improvement over the standard Random
Classification algorithms Machine , Forest (RF) model.
KNN,
Decision Tree
, Naive Bayes

The studies discussed in Table 1 delineate just some of the
many advances in the use of machine learning algorithms in
predicting the stages of liver cirrhosis. However, one of the
main gaps identified there was the significant delay in
consideration of imbalanced data sets and excessive focus
on a single performance metric, such as accuracy, for model
evaluation. The studies by Bhardwaj et ub. and Sidana et
ub., while dealing with random forest or SVM, do not
appease the challenge of imbalanced dataset(s), and they
wholly rely on a single evaluation criterion, such as
accuracy, thus not completely evaluating models one
through other proper performance criteria such as Precision,
Recall, and F1 Score. Such excessive focus on accuracy
alone results in a very skewed perspective on their
prediction capabilities, since such models often guarantee
high-performance measures yet produce very poor results
on overweighted classes. Another very important limitation
discussed in Table 1 is their use of unoptimized models and
poorly defined feature sets. For example, models like
Random Forests and SVM have been applied, ill as the
studies by Hanif and Khan, and Jamadar et al., did not apply
state-of-the-art optimization techniques that would
potentially improve model performance, structure feature
selections, and reduce the framework of their studies, thus
precluding meaningful generalization and accuracy of their
interpretations. In the contrary, the current paper uses a
rather spirited approach by using advanced machine
learning algorithms guaranteeing accuracy in predictions
and correcting the data imbalance, with the models being
subjected to various acute evaluations by areas such as
accuracy, precision, recall, F1 score, and ROC-AUC, which
is possible to ascertain an appropriate and transparent
evaluation of the models' performances addressing
fundamental gaps in prior research and leading the
investigation towards more reliable and generalized results.

Moreover, a large number of studies will focus only on
one model, with limited analysis of the effects of
combinations of algorithms or full comparisons between the
efficiency of techniques. The novel methodology presented
in this paper serves as an ensemble framework to enrich
predictive technology, apply advanced feature selection
techniques, optimize model computational costs, and
improve the implementation of models openly in the real
world, all of which are overly venturous in previous studies,
such as the LivMarX (Kamath et al., 2024). Finally, this
research makes a significant contribution to advancing
existing methods by focusing on early-stage liver cirrhosis
prediction, presenting a comprehensive optimization
framework, thoroughly analyzing model performance
indicators, and utilizing diverse and extensive datasets.
Through the articulation of emerging and current research
gaps, as well as the modest input of novelties, this will
provide a further route for an exhaustive yet accurate
approach to be developed in this area.

3- Research Method

The goal of this study was to use machine learning
algorithms to predict the stage of primary biliary cholangitis
(PBC) in patients. The main objective is to use the machine
learning model to accurately predict the stage of the disease
using medical and laboratory data. The dataset used in this
study was derived from a clinical investigation of PBC
patients conducted at the Mayo Clinic and supplemented by
apublicly available dataset released on the Kaggle platform,
which included numerous original features. After data
analysis and feature selection, key variables were identified
using recursive feature elimination with cross-validation
(Priyatno Widiyaningtyas, 2024). During the preprocessing
stages, correlation analysis was performed, and the SMOTE
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method was applied to address class imbalance. Additional
steps included handling missing values, and encoding
categorical features (Khan & Hoque, 2020). Twelve
machine learning algorithms were evaluated for modeling
purposes: Decision Tree, Random Forest, Extra Tree,
Gradient Boosting, AdaBoost, XGBoost, LightGBM,
Logistic Regression, Support Vector Machine (SVM), k-
Nearest Neighbors (KNN), Naive Bayes, and CatBoost. The
Optuna optimization framework was used to fine-tune the
hyperparameters of all models in such a way as to provide
the best performance (Jeganathan et al., 2024). The
performance of the models was assessed against four main
metrics: accuracy, precision, recall, and F1-score (Fazel &
Foing, 2024). In addition, the ROC curve and AUC values
are used for more details regarding the model performance.
All other steps of this study were done using the Python
programming language with its corresponding libraries.

3-1- Data Source

The data set used in this study was extracted from the
Cirrhosis Prediction Dataset, which is publicly available on
the Kaggle platform. It includes information of patients
with PBC, collected over ten years in a clinical study carried
out at the Mayo Clinic. In this study, 420 patients diagnosed
with PBC were identified as eligible to participate in a
randomized, controlled trial of the drug D-penicillamine. Of
these, 312 patients obtained consent to participate in the
randomized clinical trial, their records had a minimal loss.
There were also 112 other eligible patients who were not
trial participants, who did allow for basic information and
survival follow-ups to be recorded; 6 out of these 112
patients were lost from follow-up soon after diagnosis, so
data on 106 remained. Thus, the total number of patients
entered in the dataset is 418 (Fedesoriano,2021).

3-2- Dataset Features
The data used in this study include comprehensive
information from patients with PBC. The dataset initially

comprised 20 features, which are presented in Table 2.

Table 2. Variables Description

Sex Gender of the patient Catcea ori M(élg’[g;?g’) F
Categori
Ascites Presence of ascites ca N Yggj Y
(Binary)
Hepatome Presence of Catcea orl N §No), Y
galy hepatomegaly (Binary) Yes)
Categori
Spiders Presence of spiders ca N §$gs)j Y
(Binary)

Edema Presence of edema Catcea on N,S, Y
Bilirubin Serum bilirubin Numeric mg/dl
Cho(l)ester Serum cholesterol Numeric mg/dl
Albumin Serum albumin Numeric om/dl

Copper Urine copper Numeric ug/day
Alk Phos | Alkaline phosphatase | Numeric U/liter

SGOT (serum
SGOT glutamic-oxaloacetic | Numeric U/ml
] ] transaminase)
1Ir 1%16:};cer ! Serum triglycerides Numeric mg/dl
Platelets Platelet count Numeric %el{/%%bc
Progliléom Prothrombin time Numeric Seconds (s)
. - Categori
Stage Hlstolo%licses;aslge of the ca 1,2,3,4
(Ordinal)

Feature

Name Description Type Values/Unit
Unique identifier for | Categori .
ID each patient ca Numeric
Number of days
between registration
N_Days and the earlier of Numeric Days
death, transplantation,
or study analysis time
c 8 (ansored)(i
. t i L
Status Status of the patient a CZ ort dug tgnl?\?g
tx), D (Death)
. D-
Type of dru Categori - -
Drug i penicillamine,
administere ca Placebo
Age Age of the patient Numeric Days

In this study, the target variable was defined as Stage,
representing a disease stage that ranges from 1 to 4. The aim
is to model the Stage variable in relationship to the other
features in the data set. The ID column was ruled out of the
analysis simply because it works as a patient identifier and
provides no substantial contribution to prediction.

3-3- Data Cleaning

The cohort included 424 patients with PBC data collected
as part of a Mayo Clinic clinical trial. Of those, the final
analysis was based on 312 samples. In the first step of
cleaning the data, the ID column, which was judged not
relevant to the target variable, was deleted as it would not
contribute to prediction. In addition, missing values in
features with limited incompleteness were substituted with
the mean value for less impact on the modeling. Out of the
424 data points, 112 pertained to patients who did not
participate in the randomized tests and had incomplete
information. Out of these, six samples were excluded
shortly after data collection due to critical missing
information. According to strict sampling standards, the
information from the remaining 112 non-participating
patients had to be rejected because of poor quality. This left
312 samples that were complete and of good quality for
analysis. Data cleaning allowed such preparation,
producing better quality data for the predictions.

3-4- Correlation Analysis

Correlation analysis was conducted to identify linear
relationships between variables in the dataset. The primary
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purpose of this analysis was to determine variables with a
significant impact on the target variable and to eliminate
those with redundant or weak associations with other
variables. In this study, a correlation matrix, visualized
using a heatmap, was employed to illustrate the
relationships between variables.

Correlation Heatmap of All Features
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Figure 1. Correlation Heatmap

From the correlation analysis, no variables exhibited high
correlation with other variables (greater than 0/8 or less than
-0/8). The highest positive correlation found is between the
Copper and Bilirubin (about 0/46), indicating no removal of
features for redundancy because of excessive correlation.
Furthermore, it is found that the independent variable
(Stage) correlates positively with Hepatomegaly (about
0/47), thus this variable is important in predicting the stage
of the disease. In this regard, all the features were retained
for modeling since they provide independent and
informative information. Such independence can be
expected to add strength to model value.

3-5- Feature Selection

Therefore, feature selection becomes a big step for
preprocessing data to enhance the performances of machine
learning classifiers and reduce computational complexity.
The dataset initially had many primary features, but some
of them had bad correlations with the target variable or
brought more noisy and redundant information. To extract
important features, RFECV was used. RFECV is a very
efficient recursive feature elimination mechanism
(Thambawita et al., 2020) that starts by training the model
with all features available, estimates the importance of each
individual feature in terms of importance score such as
those derived from feature importance or model coefficients,
and then removes one feature at a time, retraining the model
at each iteration. The process continues until all possible
combinations of features have been tried. It implements
cross-validation to find the best set of features. The other
applications of cross-validation are to make the dataset as

many segments as needed, then evaluate the model
performances for each feature combination. Finally,
RFECV was used to optimize feature selection based on
model performance during cross-validation. In addition to
evaluating model performance, this technique effectively
eliminates irrelevant features, selecting the minimum
number of features necessary to make accurate predictions.
In this study, a total of 14 features were identified as the
most informative from the initial set: N_days, status, drug,
age, bilirubin, cholesterol, albumin, copper, alk phos, sgot,
triglycerides, platelets, and prothrombin. These selected
features were found to significantly contribute to the
prediction of disease stages. The removal of non-essential
features reduced model complexity while improving model
estimation accuracy and computational efficiency. Figure 2
illustrates the significance of these features in this study.
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Figure 2. Feature Importance
3-6- Data Normalization

The MinMaxScaler is used to scale data for SVM
(Support Vector Machine) and KNN (K-Nearest Neighbors)
algorithms (Ali, 2022). This choice is made because these
algorithms are generally sensitive to feature scaling. For
SVM algorithms, to determine the separating hyperplane,
the feature values are being used; whereas KNN uses
feature values to compute distances amongst samples. Thus,
features in varied scales could significantly affect the
models' performance. The MinMaxScaler scales every
feature to a fixed-range value, usually ranging between 0
and 1, on an equivalent scale. The formula for
MinMaxScaler is:

x_scaled=(x-x_min)/(x_max-x_min ) (1

In this formula:

xscaled is the normalized (scaled) feature value.

x is the original value of the feature.

xmin is the smallest value of the feature in the dataset.
xmax is the largest value of the feature in the dataset.

3-7- Data Balance
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One of the major challenges outlined in this study was the
distribution of samples into the different classes with
unequal frequency. From the data distribution, it has been
noted that there were only 16 samples at Stage I, while there
were 97 samples at Stage I, 109 samples at Stage III, and
more than to bring the order at the top. This imbalance
causes the machine learning algorithms to converge toward
the large classes, thus reducing any learning focused on the
smaller classes, like stage 1. This will probably have the
effect that the model identifies the classes having more
samples correctly, while disregarding or misclassifying the
classes that have very few samples.

Distribution of Stages in the Target Variable
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Figure 3. Distribution of Stages

The SMOTE method was used to increase the number of
samples belonging to the minority class in the data set to
remove imbalance namely synthetic minority over-
sampling technique. It constructs synthetic instances and
follows the following steps:
1. A random sample from the minority class is chosen as
a reference sample.

2. Using the KNN algorithm (usually with K = 5) several
nearest neighbors from the same minority class, are
identified.

3.SMOTE generates new synthetic examples in feature
space. This is achieved by selecting at random one of
the nearest neighbors and by creating a new sample at a
point in-between the reference sample and the chosen
neighbor.
The formula used to compute the interpolation
between the two samples is expressed as:

X new=X sample+gapx(X neighbor-X sample) 2)

Here, Xsample stands for the reference sample,
Xneighbor for one of the nearest neighbors, and Gap for
some random number in the range (0, 1). The dataset in this
research was divided into two parts: training 70% of the
data and using 30% for the encoding models' performance
evaluation.

3-8- Machine Learning Algorithms

For predicting the stage of PBC in this study twelve
different machine learning algorithms were used. These
algorithms were used to identify the best-performing model
that would predict the disease stages with the highest
accuracy. The hyperparameters of each algorithm were
optimized using the Optuna tool. Optuna is a dynamically
designed hyperparameter optimization tool to automatically
find the best values for model parameters (Akiba et al.,
2019). Like others, efficiently finds the best hyperparameter
configurations with advanced search techniques like Tree-
structured Parzen Estimator (TPE) and Random Search. By
running several tests and comparing how models perform,
this tool minimizes the time to gain optimality. The table
below provides the list of 12 machine learning algorithms,
operational mechanisms, and the optimized values achieved
using Optuna:

Table 3. Machine learning algorithms used and optimized hyperparameter values

Algorithm

Method

Optimal hyperparameters

Decision Tree

The algorithm applies successive splitting of the data into either two or
more subsets. At every stage, one feature which works best for data
splitting is selected according to certain criteria, some of which are Gini
Index and Entropy(Mienye & Jere, 2024).

max_depth=32,
min_samples_split=8

Random
Forest

This algorithm, using a combination of multiple decision trees to reduce
data variance, trains each tree on a random subset of the data and obtains
its final output by following the majority voting rule in the case of
classification, or averaging in thg Oczagf of regression (Schonlau & Zou,

n_estimators=331,
max_depth=8

Extra Trees

It operates similarly to Random Forest but uses random values instead of
optimal values for node splitting. This approach reduces variance and
results in faster model training (Geurts et al., 2006).

n_estimators=373,
max_depth=14

Gradient
Boosting

2017).

To build weak models (decision trees) one after the other, correcting the
mistakes done by the previous model. The aim is to gradually minimize
model errors and boost performance with each step (Biau & Cadre,

n_estimators=191,
learning_rate=0/02662
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This algorithm iteratively trains weak models (small decision trees) and : _
AdaBoost assigns greater weight to misclassified samples at each step to create a 1 e;lrﬁ?rsltlmr%tt%rjo /15?126’8 4
stronger final model (Ding et al., 2022). g_
An optimized version of Gradient Boosting that reconciles the conflicts
between solving the execution speed and the execution accuracy by n estimators=162
XGBoost analyzing operations in parallel and using more efficient algorithms. This leamning rate=0/54684
optimization method can address large amounts of information and g_
diversity (Bentéjac et al., 2020).
An optimized Boosting algorithm that grows leaves instead of levels. : _
LichtGBM This method is suitable for large-scale, high-dimensional data and Irlmenslmfelzs)ersszglzg ’
g provides faster performance cg:r; argglt%other Boosting algorithms (Ke learning_rate=0/1 247
A fast and efficient Boosting algorithm optimized for categorical data, ) )
CatBoost which automatically encodes categorical values. This method requires iterations=435, depth=9,
fewer parameter adjustments compared to other Boosting algorithms learning_rate=0/2872
(Dorogush et al., 2018)
o A method for data classification using a linear model computes the
Logistic probability of the data belonging to different classes using the logistic C=0/1228
Regression (sigmoid) function. It is well suited to low-dimensional datasets
(Starbuck, 2023).
Support This algorithm finds an optimal hyperplane to separate classes in the _ _
Vector _ feature space. Using the RBF kernel, it maps data to a higher- C=459/ %Zc’rﬁggﬁ?f 0/0573,
Machine dimensional space, enabling nonlinear separation (Shmilovici, 2023).
The prediction takes into account the distance of the other instances from
K-Nearest the input data. The majority class among the k nearest nel%hbors is 1 neighbors=3
Neighbors considered for predicting the class of the novel sample (Halder et al., _neig
2024).
] A probabilistic model based on Bayes' theorem. This algorithm assumes Lacks suitable
Naive Bayes complete independence between features and is well-suited for low- hyperparameters for
dimensional and categorical data (Pajila et al., 2023). optimization.

To evaluate the performance of machine learning models
in this study, five key metrics were used: accuracy,
precision, recall, F1-score, and the area under the receiver
operating characteristic curve (ROC-AUC). These metrics
are defined based on the concepts of True Positive (TP) and
True Negative (TN) for correct predictions, and False
Positive (FP) and False Negative (FN) for incorrect
predictions.

Table 4. Evaluation indicators for machine learning models

index definition Formula
The ratio of correct
Accurac | predictions (both positive | (TP+TN)/(TP+FP+FN+

y and negative) to the total TN)
number of samples.

The ratio of correctly
predicted instances for a
class to all instances
predicted as that class.

Precision TP/(TP+FP)

The ratio of correctly
predicted instances for a
class to all actual
instances of that class.

Recall TP/(TP+FN)

The harmonic mean of
Precision and Recall,
balancing the trade-off
between the two metrics.

(2xPrecisionxRecall)/(P

F1
Score recision+Recall)

The ROC-AUC metric measures the performance of a
classification model at all threshold levels and illustrates

how well the model is at distinguishing between classes;
thus, it shows how well the model can predict the different
stages of the disease. The ROC curve is created by plotting
the value of false positive rate (FPR) vs true positive rate
(TPR) for different thresholds and area under this curve is
known as the AUC. AUC can be understood as the higher
the better: The closer the AUC value is to 1, the better. In
order to test the generalizability of the model and verify that
it performed successfully regardless of the dataset with 5-
Fold Cross-Validation was performed. In this method, the
data set is split into five equal parts. At each iteration, one
of its sections is considered as test data, while the other four
sections are used as training data. This is done five times to
guarantee that each batch is tested once. Finally, the overall
performance of the model is reported as the mean values of
all the evaluation metrics across all iterations.

4- Results

In this section, the results of the machine learning models
are presented and analyzed. The Python programming
language was utilized for this study, and all models were
executed on a system equipped with an Intel Core i7-
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13700H processor, 16GB of RAM, and Python version 3/12.
The following outlines the performance results of the
models.

Table 5. Comparison of results

Model Accuracy | Precision | Recall Sfolr e
CatBoost 0/7708 0/7688 0/7708 | 0/7519
Extra Trees 0/7569 0/7636 0/7569 | 0/7400
LightGBM 0/7292 0/7182 0/7292 | 0/7126
Random
Forest 0/7222 0/7146 0/7222 | 0/7085
Gradient
Boosting 0/7153 0/7057 0/7153 | 0/7017
XGBoost 0/7083 0/6973 0/7083 | 0/6993
Support
Vector 0/7014 0/6895 0/7014 | 0/6847
Machine
K-Nearest
Neighbors 0/6667 0/6569 0/6667 | 0/6531
De{;g?“ 0/6319 0/6222 | 0/6319 | 0/6252
AdaBoost 0/5972 0/5961 0/5972 | 0/5949
Logistic
Repression 0/5139 0/5131 0/5139 | 0/5094
Naive
Bayes 0/5347 0/5129 0/5347 | 0/5083

Evaluation Results of the Machine Learning Models.
From all the above models, the CatBoost model presented
the best performance results with an accuracy equal to
0.7708, precision equal to 0.7688, recall equal to 0.7708 and
F1-score equal to 0/7519. These results show that CatBoost
not only predicts accurately, but have a good mean for all
metrics. This is because of its strong architecture for
processing  categorical data and its  automatic
hyperparameter tuning. Second only to CatBoost, the Extra
Trees model achieved an accuracy score of 0/7569 and an
Fl-score of 0/7400. Through a series of randomized
decision trees, this model provided a somewhat good
performance and outperformed other models, such as
LightGBM, Random Forest. Similarly, LightGBM also
performed well but produced an accuracy of 0/7292 and an
Fl-score of 0/7126, highlighting its ability to process
complex and high-dimensional data. Random Forest and
Gradient Boosting ranked next, achieving accuracies of
0/7222 and 0/7153, respectively. The two models
presented balanced trade-off between all metrics but were
not able to beat CatBoost and Extra Trees. The XGBoost
model followed closely, with an accuracy of 0.7083 and an
F1-score of 0.6993, highlighting the competitive nature of
Boosting-based algorithms. On the other hand, SVM
(accuracy = 0/7014) and KNN (accuracy = 0/6667)
exhibited less accuracy in predicting disease stages and
hence this concludes their lower efficiency in dealing with
complex data processing compared to the Boosting models.
Relative to simpler models like Decision Tree and
AdaBoost, these models exhibited moderate performance.

The Decision Tree performed with an accuracy of 0.6319.
Standard decision trees are underfitting models, and their
performance is less than ensemble trees (i.e. Random Forest,
Extra Trees). The AdaBoost model also performed
relatively weakly, with 0/5972 accuracy. Logistic
Regression and Naive Bayes performed the worst,
respectively. As a result of Logistic Regression (accuracy
of 0/5139) and Naive Bayes (accuracy of 0/5347), we
could claim that these simple models do not provide the
ability to process and predict complex, multidimensional
data effectively in this study.

Comparisan of Model Performance

Figure 4. Performance of various machine learning models

In the figure 4, we can see the comparison of various
machine learning models by accuracy, precision, recall, and
Fl-score. Overall, ensemble learning based models like
CatBoost, Extra Trees and LightGBM performed the best.
The outcomes show that advanced models based on
Boosting and ensemble approaches using decision trees
excel in performing accurate prediction of disease phases
whilst preserving an optimal equilibrium among evaluation
metrics compared with alternative models.

True Peste Rate

Figure 5. ROC curve

Figure 5 shows ROC curves and AUC for PBC prediction.
The performance of models in separating classes is
visualized using the ROC curve, whereas the AUC is
another robust measure of model performance. If we
observe the graph, it is clear that Extra Trees model gave
the highest AUC 0/92. The CatBoost and Random Forest
both gave AUC 0/90. Gradient Boosting, LightGBM, and
SVM also performed distinctively well, attaining AUC
values ranging over 0/87 and 0/88. Conversely, simpler
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models like Decision Tree and Naive Bayes had lower
performance, with AUC of 0/74 and 0/79, respectively.
From the results collectively, we see that ensemble-based
models, specifically Extra Trees and CatBoost perform
better than simple models in class separation. This shows
that implementing complex algorithms in highly intricate
medical problems, like predicting the progression of
diseases, increases the performance of models significantly.

5- Discussion and Conclusion

Results from our study indicate that with the application
of modern machine learning algorithms, like CatBoost and
Extra Trees, it is possible to obtain accurate predictions of
PBC stages. CatBoost was found to be the best of all models
achieved, having produced an accuracy of 0/7708 and AUC
of 0/90.) Extra Trees also performed well in classifying
complex datasets, reaching an AUC of 0/92. These
findings underscore the significance of ensemble-based
methods in achieving superior predictive accuracy
compared to simpler models . This research represents
significant advances in machine learning techniques as
compared to previous studies. A notable limitation in earlier
studies was the use of unoptimized models with poorly
defined feature sets. For example, while Hanif and Khan
(2022) and Jamadar et al. (2023) employed algorithms such
as Random Forest and SVM, they did not utilize advanced
optimization techniques to enhance model performance or
implement robust feature selection methods.This poor
optimization restricted the generalizability and accuracy of
their results. As a result, the present study led to stable
prediction performance across all metrics by using an
automated hyperparameter optimization method (Optuna)
and an advanced feature selection method (Recursive
Feature Elimination with Cross-Validation). Another key
difference in prior studies is their inadequate consideration
of imbalanced datasets. When models are evaluated in such
manner, it may lead to misleading results because the model
can easily predict the majority class while performing
poorly on minority classes. For example, Bhardwaj et al.
(2024) and Sidana et al. (2022), which did not evaluate
models properly and did not point out that a better
evaluation is characterized by the reporting of important
imbalanced evaluation metrics such as precision, recall, F1-
score, etc. This contrast with this study, which used
standard performance metrics to give transparent and
comprehensive evaluation of model quality. SMOTE
process was applied to supporter model to solve imbalance
class, while RFECV was used to find out 14 essential
features to both reduce model complexity and improve
quality. These developments make this study unique
compared to previous studies that did not properly resolve
dataset imbalance or attempted basic feature selection
methodology. Here, we showcase the possibilities of

advanced machine learning models and structured
optimization techniques in predicting medical health
outcomes. Ensemble methods like CatBoost and Extra
Trees are better suited for these medical datasets with high-
dimension characteristics due to their superior
performances compared to simple methods Logistic
Regression and Naive Bayes. Such findings provide a
direction for future research using larger and diverse data
sets having imaging data to create models more accurate
with clinical relevance.

Based on the findings of this review, several
recommendations are made to enhance and direct future
research. The first improvement could be using more and
diverse data to provide machine learning models capable of
getting generalized. The combination of data from multiple
clinical sources with covariate data available in existing
datasets could provide more robust results. Secondly, it is
proposed that some of the more sophisticated preprocessing
methods such as feature engineering and nonlinear
transformations might reveal hidden patterns in the data that
could improve the model's performance. In future works,
DNN (Deep Neural Networks) or LSTM (Long-Short Term
Memory) could potentially replace GBDTs with a better
prediction performance for the disease stages. More
sophisticated ensemble techniques (hybrid Voting and
Stacking) are additionally likely to enhance the prediction
capabilities due to the synergy of the respective standalone
models. On the clinical side, a more detailed analysis of the
importance and sensitivity of the model features must
facilitate the identification of pertinent biomarkers
associated with the prediction of disease stage; each of the
findings will assist clinical applications. Finally, validating
the above machine learning models against clinical data
from hospitals and clinics would make various algorithms
appropriate for use as well as more reliable. Initiating these
efforts may lead to the development of more accurate and
reliable models of timely diagnostics and improved care of
patients.
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Abstract

The problem of unbalanced data is a common one in medical diagnostics. This problem can reduce the accuracy of
classification models and affect the validity of results. The aim of our paper is to compare several techniques for correcting
class imbalances in medical datasets and to evaluate the impact of these techniques on machine learning performance.

In our paper, we used an imbalanced dataset to train a convolutional neural network (CNN) model. We then tested correction
techniques such as sampling and cost-sensitive learning. Finally, we used recall, precision, accuracy and F1 score to evaluate
the model's performance.

The results show that the use of correction techniques led to a significant improvement in the performance of the classification
model. The cost-sensitive learning technique gave the best results, particularly for the detection of minority classes. This
method increased the weight of classification errors associated with minority classes, thus improving the detection of critical
cases. The results of this study underline the importance of dealing with imbalances in the data to improve the performance
of classification models in the medical field. The use of methods such as cost-sensitive learning not only improves model
performance, but also enables more reliable decisions to be made, which is essential for ensuring more accurate diagnoses
and better quality of care.

Keywords: Data Imbalance; Techniques for Resolving Data Class Imbalance; Oversampling; Cost-Sensitive learning,
Convolutional Neural Networks; Classification; Model Performance; Medical Diagnostics.

balanced distribution of data, a condition that is rarely met
in real-world applications. Therefore, various methods have

1- Introduction been developed to mitigate biases caused by imbalance.
Different  techniques such as  oversampling,
The text must be in English. Authors whose English The undersampling, cost-sensitive learning, and ensemble
problem of imbalanced data represents a big challenge in methods have shown promise in improving minority class
machine learning, particularly in critical fields such as detection while maintaining overall model performance [4]
healthcare, finance, cybersecurity and other. It occurs when solve this problem. Imbalance can take different forms
certain classes in a data-set are underrepresented relative to depending on the data type. In binary classification, a single
others, causing predictive models to disproportionately minority class often poses a problem, as seen in rare disease
favor the majority classes. In domains such as fraud diagnosis or fraud detection, where models tend to favor the
detection, where fraudulent transactions represent only a majority class. Approaches such as SMOTE address this
small proportion of the data, models often struggle to problem by generating synthetic examples for
identify ~these minority instances, favoring normal underrepresented categories [5]. In multi-class scenarios,
transactions instead [1], [2]. Similarly, rare diseases in imbalance arises when multiple classes are unequally
medical ~ diagnosis or infrequent cyberattacks in represented, as seen in multi-stage disease diagnosis. In
cybersecurity are often misclassified due to their limited such cases, advanced techniques such as One-vs-One (OvO)
representation in training datasets [3]. Addressing this and One-vs-Rest (OvR), as well as ensemble methods, are
imbalance is essential to improve prediction accuracy and needed to ensure balanced performance across classes [4].
ensure fairness across all classes. Classical ML algorithms, Beyond accuracy, traditional evaluation metrics often
such as logistic regression and decision trees assume a fail to capture a model’s ability to identify minority classes.

DX Abdallah maiti
abdallah.maiti@uhp.ac.ma
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Metrics like precision, recall, and Fl-score are more
appropriate for binary imbalances, while G-mean and Mat-
thews correlation coefficient (MCC) provide a more
balanced evaluation for multi-class problems [6]. These
metrics are crucial for evaluating mitigation strategies and
ensuring fair representation of all classes.

Despite the progress made, significant challenges persist
in combating class imbalance. Low performance on
minority classes, inadequacy of conventional metrics, and
difficulties in generalizing to unseen data are among the
main obstacles. The choice of the most effective method
depends on the specific context, including the severity of
the imbalance and the area of application. In complex
scenarios, hybrid approaches that combine data-level and
algorithmic methods are often required [7].

Recent empirical investigations have underscored the
efficacy of hybrid methodologies that integrate
oversampling techniques, such as Synthetic Minority Over-
sampling Technique (SMOTE), deep neural networks, and
reinforcement learning to more proficiently address
imbalance within intricate datasets. These adaptive
methodologies are structured to correspond with the data's
inherent architecture, thereby enhancing performance while
concurrently mitigating the risk of overfitting [8].
Furthermore, the intensifying focus on algorithmic equity,
especially within critical sectors like healthcare,
necessitates the rectification of biases stemming from
underrepresented classes, as such biases may precipitate
significant diagnostic inaccuracies [8].

In the domain of natural language processing,
contemporary scholarship regarding the Central Kurdish
language has demonstrated that the qualitative balancing of
corpora is imperative for guaranteeing the dependability of
morphosyntactic frameworks, particularly in contexts
characterized by limited resources [9].

These theoretical frameworks have significantly guided
the methodological framework of the current investigation.
The proposed architecture is predicated on a convolutional
neural network (CNN), augmented by rebalancing
methodologies such as Synthetic Minority Over-sampling
Technique (SMOTE), classification paradigms including
One-vs-One (OvO) and One-vs-Rest (OvR), alongside cost-
sensitive learning and the ensemble-based Bagging
methodology. This comprehensive framework aims to
enhance the identification of minority classes while
maintaining consistent overall efficacy.

In addition to extant research, this investigation enriches
the academic discourse by amalgamating all four
methodologies within a cohesive framework explicitly
tailored for medical imaging applications. It delineates a
multiclass classification protocol that tackles the
infrequency of clinical cases, the hierarchical organization
of disease stages, and the imperatives of algorithmic equity.
This contribution is particularly notable in its deployment
for the automated identification of diabetic retinopathy

utilizing retinal imagery, where advanced stages of the
condition are frequently underrepresented and challenging
to discern.

The overall aim of this research is to develop a robust
classification system capable of accurately identifying rare
stages of diabetic retinopathy (DR). More specifically, the
study seeks to determine the most effective techniques for
correcting class imbalance in medical imaging; to evaluate
the impact of these techniques wusing appropriate
performance metrics such as recall and Fl-score; and to
offer practical recommendations for high-stakes domains
where misclassification can significantly affect decision-
making. The article is structured as follows: Section 2,
“Materials and Methods,” describes the dataset, the CNN
architecture, and the imbalance-handling strategies
implemented; Section 3, “Results,” presents the model’s
performance under various conditions; Section 4,
“Discussion,” interprets the findings and considers
methodological trade-offs; and finally, Section 5,
“Conclusion,” summarizes the main contributions and
proposes future research directions.

2- Materials and Methods

In our article, we investigate various techniques to address
class imbalance in multi-class classification tasks. Our goal
is to classify retinal images according to the severity stages
of diabetic retinopathy (DR), a serious eye disease resulting
from prolonged hyperglycemia. The dataset used is from the
Kaggle platform and consists of five classes, ranging from
“No DR” (absence of disease) to “Proliferative DR”
(advanced and severe form of the disease). Unlike other
studies that apply imbalance correction techniques without
sufficient justification, we propose a systematic approach
tailored to imbalanced and unstructured data, particularly
images. Our aim is to scientifically identify the most
effective techniques to overcome this challenge and
evaluate their impact on the performance of classification
models. To achieve this, we used a convolutional neural
network (CNN)-based model, known for its ability to
automatically extract complex features from images. We
evaluate several class rebalancing techniques, including
undersampling, oversampling, One-vs-Rest (OvR) and
One-vs-One (OvO) approaches, cost-sensitive learning, and
ensemble bagging (Fig.1). Models are trained and evaluated
on balanced datasets using these techniques. The evaluation
phase relies on standard metrics such as accuracy, precision,
recall, and F1 score, which are derived from the confusion
matrix. This comprehensive approach enables a precise
analysis of the influence of the applied imbalance resolution
techniques on the performance of the CNN-based model
and provides insights into effectively addressing
imbalances in image classification tasks.
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Application of methods to solve the data imbalance problem.
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Fig. 1. Architecture of the proposed diagnostic system

2-1-Dataset Description

The dataset used in our paper and obtained from the Kaggle
platform [29], consists of a total of 92702 retinal images
distributed across five classes, each representing a stage of diabetic
retinopathy (DR). The dataset (Table 1) exhibits a significant class
imbalance, with the majority class, "No DR," comprising
approximately 77.8% of the total samples. In contrast, the more
severe stages, such as "Severe DR" and "Proliferative DR," are
severely underrepresented, together accounting for less than 5.1%
of the dataset.

Table 1. Distribution of Retinal Images Across Diabetic Retinopathy Classes

Class Description Samples Percentage

Class 0 No DR 72102 77.8%
Class 1 Mild DR 8772 9.5%
Class 2 Moderate DR 7135 7.7%
Class 3 Severe DR 2328 2.5%
Class 4 Proliferative DR 2365 2.5%

Total 92702 100%

Conv 3

This imbalance poses challenges for model training, as
predictive models tend to favor the majority class, leading to
poor detection rates for minority classes. Addressing this
issue is critical to improving diagnostic accuracy,
particularly for the advanced stages of DR. Techniques such
as oversampling, undersampling, and algorithmic
adjustments are essential to mitigate this problem and ensure
balanced and robust model performance.

2-2-Model Architecture

To solve the problem of multi-class classification of
diabetic retinopathy, we have developed a model based on
a convolutional neural network (CNN). This type of model
is particularly effective for image analysis, thanks to its
ability to automatically extract complex features while
reducing the need for manual data pre-processing (Fig. 2).

Fully-Connected
5 neurons (No DR, Mild DR, Moderate DR, Severe DR, Severe
DR, Proliferative DR)

(128 filtres, 3x3)

Max_Pooling
(2x2)

Conv 1
(32 filtres, 3x3)

Conv 2
(A4 filtres. 3x3)

Fully-Connected

(256 neurones) Image Classification

1-No DR

n 2- Mild DR
e
» ",‘ 3- Moderate DR

Sled
s ¢
. / - Severe DR
5- Proliferative DR
J\ J

— e 0
e — — —_— g’: 1

EEEEE = i

EERER = — y

NEEEE B B

goEan 9

Input
(224x224x3)

Feature Extraction

Classification

Fig. 2. Architecture of our CNN-based classification model
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The architectural framework of the model is predicated
upon a convolutional neural network (CNN) organized
into three primary phases: feature extraction,
dimensionality reduction, and classification. It consists of
three convolutional layers designed to extract
fundamental features from images, succeeded by pooling
layers that facilitate dimensionality reduction and bolster
the robustness of the model. Ultimately, two fully
connected layers conclude the multi-class classification
process. Methodologies such as dropout regularization, in
conjunction with non-linear activation functions (ReLU
and Softmax), augment the model's efficacy and
generalizability in the identification of diabetic
retinopathy.

2.2.1. Three Convolutional layers

The proposed model employs a triad of convolutional
layers to derive critical features from retinal imagery. The
initial layer utilizes 32 filters, succeeded by 64 filters in the
subsequent layer and 128 filters in the final layer. Each filter
executes a convolution operation utilizing a 3x3 kernel,
thereby facilitating the identification of distinct patterns,
including anomalies or textures that are characteristic of
retinopathy.

2.2.2. Pooling layers (2x2)

After each convolutional layer, pooling layers with a 2x2
size kernel are applied to reduce the dimensionality of the
data. This process limits over-fitting while reducing
computational costs. The max-pooling method is used,
selecting the maximum value in each analyzed region. This
ensures that the most dominant and significant features of
the images, essential for classification, are retained, while
simplifying the representations learned by the model.

2.2.3. Two Fully Connected layers

The model comprises two fully-connected layers that
ensure the finalization of the classification. The first layer,
made up of 256 neurons, combines the features extracted
from the convolutional and pooling layers. It uses a ReLU
(Rectified Linear Unit) activation function, well known for
its ability to introduce non-linearity, essential for modeling
complex relationships between features. This function also
prevents the effect of gradient saturation, which promotes
efficient convergence during training.
The output layer comprises 5 neurons, corresponding to
the five severity classes of diabetic retinopathy. A
Softmax activation function is applied to transform the
outputs of this layer into normalized probabilities,
allowing direct interpretation of predictions as
probabilities belonging to each class. This configuration
is particularly well-suited to multi-class classification,
guaranteeing well-calibrated output and a sum of
probabilities equal to 1.

2.2.4. Regulation

A dropout mechanism (with a rate of 0.5) is implemented
subsequent to the fully connected layers in order to mitigate
the probability of overfitting by sporadically deactivating
certain neurons throughout the training process. This
methodology entails the random inactivation of 50% of the
neurons at each iteration during training, thereby
diminishing the model's excessive dependence on particular
neurons.
This architecture integrates efficient convolutional layers
for the automatic extraction of pertinent features
alongside dense layers designated for classification. Such
a framework is exceptionally well-suited for medical
image analysis endeavors, owing to its capacity to capture
intricate details while simultaneously minimizing the
necessity for manual pre-processing.

2-3-Techniques for Correcting Data Imbalances

Addressing data imbalance is crucial for improving the
performance of machine learning models. The different
approaches to tackle this issue can be represented in three
categories: data-driven approaches, algorithmic
approaches, and specific approaches designed for multi-
class problems.

2.3.1. Data-Based Methods

Data-based approaches involve the direct manipulation of
datasets to balance the distribution of classes before model
training.

a-Sub-Sampling

The technique of subsampling, unlike oversampling,
involves reducing the number of samples from majority
classes to balance their proportion relative to minority
classes (Fig. 3). This technique is typically implemented by
randomly removing examples from the dominant class [10].
Subsampling has several advantages, including model
simplification by reducing the total volume of data, which
also lowers computational costs. However, this technique
has several notable drawbacks. Removing samples from
majority classes can lead to the loss of crucial information
[11]. Furthermore, the random selection of samples to be
removed may not accurately reflect the actual distribution
of the data, potentially affecting model performance,
especially when the data is heavily unbalanced [12].

b-Oversampling

Oversampling methodologies pertain to the deliberate
augmentation of sample quantities from minority classes to
rectify their inadequate representation in imbalanced
datasets (Fig 3). Among the preeminent methodologies, the
Synthetic Minority Oversampling Technique (SMOTE) is
particularly noteworthy for its capability to produce
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synthetic instances through linear interpolation of existing
samples within the minority class [6],[7]. This approach
enhances the representation of underrepresented classes
while concurrently maintaining the diversity and structural
integrity of the dataset.

The practice of oversampling confers several advantages.
It mitigates the model's bias towards majority classes and
enhances its generalization capabilities. These benefits
culminate in an improved recognition of underrepresented
classes, particularly in scenarios where imbalances may
precipitate erroneous predictions [13]. Furthermore, by
infusing greater variability into minority classes,
methodologies such as SMOTE enable machine learning
algorithms to more effectively discern the unique
characteristics of rare instances. Nonetheless, oversampling

Undersampling

Removing samples
from majority class

Original dataset

is not devoid of limitations. The artificial augmentation of
samples may heighten the risk of overfitting, especially
when synthetic instances exhibit insufficient diversity or
replicate patterns that do not accurately reflect authentic
data [14]. In addition, this escalation in data volume may
incur elevated computational costs, particularly with
extensive datasets, due to the supplementary resources
necessitated for the generation and processing of synthetic
instances [15]. Recent studies suggest improvements to
SMOTE, such as K-Means SMOTE or Borderline-SMOTE,
which specifically target critical regions near decision
boundaries to maximize the efficiency of oversampling
[16]. These variants aim to reduce drawbacks while fully
exploiting the potential of minority classes in unbalanced
contexts.

Oversampling

Adding samples
to minority class

—

Original dataset

Fig. 3. Representative diagram of the two techniques: subsampling and oversampling

2.3.2. Algorithmic Approaches

Algorithmic approaches directly modify learning
algorithms to deal with data imbalance, without modifying
the distribution of classes in the ensemble.

a- Cost-Sensitive learning

This methodology modifies the loss function of machine
learning algorithms by allocating enhanced significance to
minority classes. This approach is predicated on
augmenting the weight of errors pertinent to these classes,
in accordance with their under-representation (Fig. 4). In a
dataset wherein a class constitutes 10% of the samples,
misclassification errors for that class may be amplified by a
factor that corresponds to the degree of imbalance, thus
escalating the associated penalty [17].
This methodology proves to be particularly efficacious in
critical domains, such as the detection of rare diseases, the
prevention of financial fraud, or the prediction of failures in
intricate systems. It substantially contributes to the
reduction of classification errors in under-represented
classes, while simultaneously preserving the equilibrium of
overall model performance [18]. In addition, by integrating
these weights into algorithms, cost-sensitive learning
augments model sensitivity and precision for imbalanced
datasets.

Nonetheless, the efficacy of this methodology is profoundly
contingent upon the meticulous calibration of the weights
allocated to various classes. Insufficient calibration may
result in an inverse imbalance, thereby impairing
performance on majority classes or diminishing the overall
effectiveness of the model [19]. Therefore, methodologies
such as adaptive weight optimization or the employment of
specific metrics, including the ROC curve or F-measure, are
frequently advocated to guarantee balanced performance.

Feature selection

Model induction

\
With instance dmm  Cost Matrix !
L weighting | '

1

Cost - Sensitive Classifier

Fig. 4. Operating principle of the cost-sensitive learning
method

b- Ensemble Methods
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Ensemble techniques, such as Bagging and Boosting,

combine the predictions of multiple models to enhance
overall performance and reduce bias toward majority
classes (Fig. 5). Bagging (Bootstrap Aggregating) uses
random sampling with replacement to train several
independent models, whose predictions are then
aggregated, improving model robustness and stability [20].
Boosting, on the other hand, progressively corrects the
errors of successive models by assigning higher weights to
misclassified examples, thereby increasing overall
accuracy, particularly on minority classes [21]. These
techniques are particularly effective for datasets with a high
degree of imbalance, as they address the weaknesses of
individual models by improving the recognition of under-
represented classes. By introducing diversity into data
subsets and combining the strengths of several models, they
also promote better generalization. Furthermore, recent
variants, such as AdaBoost-SAMME or Gradient Boosting
with SMOTE, have demonstrated their effectiveness in
handling complex imbalances by adjusting weights for
minority classes [23].
Nevertheless, the execution of these methodologies may
prove to be intricate and computationally intensive,
particularly in the context of boosting. The latter
necessitates meticulous calibration of hyperparameters,
including but not limited to learning rate and quantity of
estimators, to mitigate the risk of overfitting and to
guarantee optimal efficacy [24]. In spite of these obstacles,
their capacity to enhance performance in scenarios
characterized by imbalanced data renders them
indispensable instruments in domains such as finance,
healthcare, and predictive analytics.

____________________

0

__________________

Fig. 5. Operating principle of the Bagging ensemble method

2.3.3. Specific Techniques for Multi-Class Problems

In multi-class problems, where multiple categories are
present, data imbalance poses additional challenges.
Classical approaches can be adapted, but specific
approaches such as One-vs-Rest (OvR) and One-vs-One
(OvO) (Fig. 6) are often used.

a- One-vs-Rest (OVR)

OVR also known as One-vs-All, decomposes a multi-class
problem into several binary classification problems. For
each class, a binary classifier is trained, treating this class
as positive and grouping all other classes as negative. For
instance, in a five-class problem, OvR requires the creation
of five binary models, each optimized to distinguish a
specific class [25],[26]. Notable advantages of this
technique include its simplicity of implementation and its
ability to provide independent evaluations for each class.
These features make it particularly suited to contexts where
granular predictions are essential, such as in image
recognition or recommender systems [25],[26].
Additionally, the OVR technique is compatible with a wide
range of learning algorithms, such as support vector
machines (SVMs) and logistic regression, making it a
versatile option.

However, this technique has important limitations. It can
become biased when classes grouped as negative are highly
imbalanced, which can impair model performance on
minority classes [27]. Furthermore, OvR does not account
for the complex relationships and  possible
interdependencies between different classes, limiting its
ability to capture global patterns or subtle correlations in the
data [28].

Recent work proposes extensions to mitigate these
limitations, such as integrating adaptive weights to balance
negative classes or using hybrid techniques that combine
OvR with dimensionality reduction methods like linear
discriminant analysis. These improvements aim to enhance
the robustness and accuracy of this technique in unbalanced
multi-class classification contexts.

b- One-vs-One (OvO)

The OvO technique treats each pair of classes separately,
creating a binary classifier for each combination of two
classes. For example, for a problem with five classes, the
OvO results in ten binary classifiers, one for each pair of
classes [25],[26].

This approach is particularly useful for data with complex
class relationships, as each classifier focuses on only two
classes at a time. This reduces the impact of majority
classes, as each binary classifier works on data balanced
between the two classes concerned. However, the
computational complexity is high. The number of classifiers
to be trained increases quadratically with the number of
classes, which can lead to considerable computational costs
and implementation difficulties in contexts with a large
number of categories [27].

Data imbalance correction methods offer a variety of
solutions tailored to specific application needs. Data-driven
techniques, such as oversampling and undersampling,
directly modify the class distribution, while algorithmic
approaches, such as cost-sensitive learning and ensemble
methods, adjust the algorithms to compensate for biases
[28]. In multi-class problems, specific techniques such as
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OvR and OvO are used to handle the additional complexity
associated with multiple classes. The choice of the optimal
method depends on the context of use, the nature of the data

4

and technical constraints. It is often advisable to combine
several approaches to maximize model performance while
minimizing imbalance bias [25],[26].

Unbalanced dataset

Multi-Classs
1
Il 1 I
Class 1Vs Class 2 | Class 1 Vs Class 3 Class n-1 Vs Class n

Fig. 6. Representation of the “One-vs-Rest”(OvR) and “One-vs-One”(OvO) techniques

3- The Results

Unbalanced multi-class classification is a major challenge,
due to the complexity of interactions between classes and the
difficulty of assessing model performance. Unlike binary
classification, this context requires advanced approaches to
effectively manage imbalance while improving prediction
accuracy.

In our research, we apply and evaluate various data
rebalancing  techniques, such as oversampling,
undersampling, one-to-one and one-to-all approaches,
ensemble methods such as Bagging, and cost-sensitive
learning. The aim is to identify the best method for boost
the performance of artificial intelligence models in this
complex context.

3-1-Subsampling

Sub-sampling is a methodological approach aimed at
equilibrating the distribution of classes by diminishing the
magnitude of the majority class, which is accomplished
through the stochastic elimination of samples from this class
to render it congruent with the quantity of the minority class.
In the present investigation, each class was systematically
curtailed to 2328 samples, in alignment with the size of the
minority class. While this methodology serves to mitigate
the bias in favor of the majority class, it engenders a
considerable loss of information, which may adversely
influence the overall efficacy of the model, as delineated in
Table 2.

The implementation in Python employs the resample
function from the sklearn.utils library to perform
subsampling on the majority class, thereby modifying its size
to correspond with that of the minority class. Subsequent to

the subsampling procedure, the equilibrated dataset is
preserved in the variables X resampled and y resampled,
rendering it suitable for utilization in model training. The
outcomes of this methodology are illustrated in Table 2.

Table 2. Overall performance obtained using the sub-sampling

technique
Metric Global values
Accuracy 82.64 %
Precision 88.94 %
Recall 82.15 %
F1-Score 80.51 %

3-2-Oversampling

To improve the representation of minority classes in
unbalanced datasets, the SMOTE (Synthetic Minority
Oversampling Technique) technique was used. SMOTE
generates synthetic samples for under-represented classes by
creating intermediate points between existing instances of
the same class [30],[22]. This rebalances the distribution of
classes and mitigates biases linked to data imbalance when
training machine learning models.

In Python, SMOTE is implemented using the SMOTE class
in the imbalanced-learn library (imblearn).

The resulting oversampling led to a significant
improvement in overall performance, although there remains
a risk of model overfitting due to the generation of synthetic
samples. The performance results obtained after applying
SMOTE are presented in Table 3.
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Table 3. Overall performance obtained using the oversampling

technique
Metric Global values
Accuracy 87.09 %
Precision 84.36 %
Recall 81.78 %
F1-Score 83.05 %

The F1-Score of 83.05%, which combines two parameters:
precision and recall into a single metric, provides a more
comprehensive evaluation in handling imbalanced data.
Although the accuracy is relatively high at 87.09%, it is not
the most reliable metric for this type of task due to the
potential influence of class imbalance. The moderate recall
and F1-Score suggest that, while oversampling improved
class distribution, the model may exhibit overfitting, limiting
its ability to generalize effectively to unseen data.

3-3-Cost-Sensitive learning

Cost-sensitive learning is an effective technique for
managing class imbalance without directly modifying the
data distribution. It assigns weights proportional to the
inverse of class frequency, thus giving greater importance to
minority classes during training. In this study, weights were
calculated as in Table 4.

Table 4. Weight of diabetic retinopathy classes

Class Weight
Class 0 1
Class 1 (72 102/8 772) = 8.22

Class 2 (72 102/7 135) = 10.10
Class 3 (72 102/2 328) =~ 31.00
Class 4 (72 102/2 365) =~ 30.49
The weights were integrated into the

SparseCategoricalCrossentropy loss function of
TensorFlow/Keras through the class weight parameter,
thereby facilitating the equilibrium of performance between
predominant and subordinate classes. This methodology
dynamically modifies the error magnitude associated with
under-represented classes, obviating the necessity for direct

alterations to the training dataset, and empowers the model
to more effectively manage class imbalances during the
training process.

In this specific implementation, the class weight
parameter is employed to modulate the significance of each
class, thereby compensating for imbalances while preserving
the integrity of the data itself. Metrics such as Accuracy,
Precision, Recall, and F1-Score were computed on the test
dataset to appraise the model's efficacy. Upon the
completion of training the CNN-based model, its
performance was evaluated utilizing the test data (refer to
Table 5). The findings illustrate that this methodology
proficiently reconciles overall accuracy and performance
across all classes, including minority classifications, thereby
mitigating the adverse effects of data imbalance on
predictive quality. The model accomplished an Overall
Accuracy of 91.09%, indicative of its capacity to render
precise predictions across all classifications. The F1-Score,
a composite metric amalgamating precision and recall,
attained 92.79% for the "No DR" classification,
underscoring the model's dependability in identifying this
category. Below is a comprehensive delineation of the
performance metrics for each class:

No DR: The model exhibited outstanding performance in
this category, attaining a Precision of 91.14%, a Recall of
94.49%, and an F1-Score of 92.79%, which exemplifies its
robust capability to accurately recognize instances devoid of
diabetic retinopathy. Mild DR: This classification similarly
exhibited elevated performance, achieving a Precision of
93.27%, a Recall of 91.95%, and an F1-Score of 92.60%,
signifying a well-balanced aptitude for detecting mild cases.
Moderate DR: With a Precision of 91.95%, a Recall of
93.24%, and an F1-Score of 92.59%, the model effectively
identified moderate cases with negligible errors. Severe DR:
The performance of the model was somewhat diminished for
this classification, achieving a Precision of 88.26%, a Recall
of 82.86%, and an F1-Score of 85.47%, which reflects
certain challenges in differentiating severe cases.
Proliferative DR: This minority classification attained a
Precision of 85.88%, a Recall of 83.72%, and an F1-Score of
84.78%, demonstrating the model's capacity to address even
the most formidable cases, albeit with some constraints.

Table 5. Performance obtained by applying Cost Sensitive Learning

Metric Overall Accuracy Precision Recall F1-Score

No RD 91.14 % 94.49 % 92.79 %
light RD 93.27 % 91.95% 92.60 %
Moderate RD 91.09 % 91.95% 93.24 % 92.59 %
Severe RD 88.26 % 82.86 % 85.47 %
Proliferative RD 85.88 % 83.72 % 84.78 %
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3-4-Ensemble technique: Bagging

Bagging (Bootstrap Aggregating) was implemented in
Python to handle unbalanced data sets. Four balanced
subsets were created by bootstrap sampling, each subset
comprising 2,328 representative samples of all classes,
including minority classes, using scikit-learn's resample
function. These subsets were used to independently train a
CNN model, developed with TensorFlow using a defined
architecture, an 'adam’ optimizer, a
'categorical crossentropy' loss function, and ‘'accuracy'
metrics.

The predictions of the four models were aggregated by
majority voting, implemented via scipy's mode function.
The results obtained are presented in Table 6.

Table 6. Overall performance of the Bagging technique

Metric Global values
Accuracy 83.21 %
Precision 83.49 %
Recall 83.21 %
F1-Score 83.28 %

3-5-OvR and OvO Techniques

OvVR and OvO techniques are widely used strategies for
handling multi-class classification problems, particularly
when addressing class imbalance. In this study, these
techniques were implemented in Python.

The overall performance of these two techniques is
summarized in Table 7.

Table 7. Overall performance achieved using OvR and OvO

techniques
. . . FI-
Technique | Accuracy | Precision | Recall
Score
OVR 84.06 80.35 83.53 81.91
¥ % % % %
OvO 79.68 81.65 84.19 82.90
¥ % % % %

The results show that the OvR technique achieves an
accuracy of 84.06%, while OvO performs better in terms
of precision and F1-Score, albeit with slightly lower
accuracy. These two techniques are complementary, and
the choice of approach will depend on the specific
objectives of the model, notably between precision and
recall.

4- Discussion

Table 8. presents the performance of the CNN
classification model, trained on the “DR” (Diabetic
Retinopathy) dataset balanced by different techniques. This
table compares the results obtained with different class
imbalance correction techniques, assessing their impact on
four main metrics: Accuracy, Precision, Recall and FI1-
Score.

This comparison highlights the strengths and limitations
of each technique, as well as their influence on overall
model performance.

The comparative results of the different imbalance
correction techniques are shown in Table 8. above. The
metrics used (Accuracy, Precision, Recall and F1-Score)
make it possible to evaluate the effectiveness of each
technique on overall model performance.

a- Cost-Sensitive Learning Technique

The cost-sensitive learning methodology modifies the
weightings assigned to each class in accordance with their
prevalence, thereby effectively mitigating biases resulting
from class imbalance. Among the methodologies assessed,
cost-sensitive learning demonstrates the most favorable
overall efficacy, yielding an accuracy of 91.09%, a
precision of 90.10%, a recall of 89.25%, and an F1-score of
89.65%. This approach is particularly adept at addressing
the disparate costs associated with misclassification,
enabling the model to more accurately identify minority
classes while preserving elevated overall precision. The
exemplary outcomes of cost-sensitive learning illustrate its
capacity to reconcile precision and recall, rendering this
technique an outstanding selection for datasets
characterized by imbalance. While the performance metrics
are commendable, it is crucial to acknowledge that the
dynamic recalibration of weights may incur significant
computational costs, particularly when engaging with
extensive datasets. Our findings regarding cost-sensitive
learning align with those reported in contemporary
scholarly literature, which has evidenced that this strategy
stands out as one of the most efficacious for imbalanced
multi-class classification challenges, as evidenced by the
research conducted by Khan et al. [31]. A more recent
investigation by Araf et al. [32] posits that this technique
necessitates meticulous parameter optimization to
circumvent computational burdens while sustaining high
precision. This highlights the imperative for practitioners to
diligently evaluate the trade-offs between computational
expenses and performance enhancements.



186 Maiti, Hanini & Abarda, Resolving Class Imbalance in Medical Classification: Technique Comparison and Performance Evaluation

b- Oversampling Technique

Oversampling, particularly using the SMOTE method,
generates synthetic samples for minority classes, improving
their representation during training. SMOTE achieved an
accuracy of 87.09%, precision of 84.36%, recall of 81.78%,
and an F1-score of 83.05%. While this method is powerful,
it carries the risk of overfitting if the synthetic data does not
accurately reflect the complexity of real samples.
It is important to note that the risk of overfitting can be a
major issue with this approach. According to Vargas et al.
[33], the generated samples may introduce unrealistic
variations into the data, which could harm the model's
ability to generalize. This trade-off between improving
the representation of minority classes and the risk of
overfitting must be carefully evaluated.

c- Bagging Technique

Bagging (Bootstrap Aggregating) significantly bolsters
the reliability of predictions through the amalgamation of
numerous models that have been trained on meticulously
balanced subsets of the dataset. This methodology attained
an accuracy rate of 87.49%, a precision level of 84.91%, a
recall metric of 81.72%, and an F1-score of 83.28%. While
it exhibits a marginal advantage over oversampling with
respect to accuracy, the computational resources required
for training multiple models may pose a limitation in
environments constrained by resources. Despite the
robustness of this technique, the substantial computational
demands must be meticulously evaluated. As posited by
Liang & Zhang [34], the process of training various models
on data subsets necessitates effective resource management,
which can serve as an impediment in computationally
limited scenarios. Consequently, the balance between
precision and computational expense must be critically
assessed in professional practice.

d- Subsampling Technique
Under-sampling entails the reduction of the population of
the majority class to correspond with the population size of
the minority classes. This methodology yielded an accuracy
rate of 82.64%, a precision rate of 88.94%, a recall rate of
82.15%, and an Fl-score of 85.41%. Although this
methodology facilitates the equilibrium between precision
and recall, it is plagued by a considerable diminution of
information, which may adversely influence the model's
capacity to generalize.
The information attrition linked to under-sampling can
detrimentally affect the generalization capabilities of the
model, as articulated by Soleimani & Mirshahzadeh [35].
In real-world implementations, this strategy may prove to
be suboptimal when substantial amounts of information
are essential for the accurate prediction of infrequent
occurrences, as is the case with diabetic retinopathy.

e- OvO and OvVR Methods:

The One-vs-One (OvO) and One-vs-Rest (OvR)
methodologies partition the multi-class classification
challenge into binary subproblems. The efficacy of the OvO
method is marginally inferior to that of alternative
methodologies, attaining an accuracy of 79.68%, a
precision of 81.65%, a recall of 84.19%, and an F1-score of
82.90%. Conversely, the OvR methodology achieves an
accuracy of 84.06%, yet it remains suboptimal in
performance relative to strategies such as cost-sensitive
learning and oversampling. Our findings regarding OvR
and OvO are in alignment with those documented in
contemporary research, including the work of Chakraborty
& Dey [36], which indicates that while these methodologies
may be effective in certain contexts, they are generally less
efficacious than approaches like cost-sensitive learning
(CSL) and Synthetic Minority Over-sampling Technique
(SMOTE) due to the inherent trade-offs in accuracy and
computational efficiency.

Table 8. Model performance on the balanced DR dataset using different imbalance correction techniques

Correction techniques Accuracy Precision Recall F1-Score
Subsampling 82.64 % 88.94 % 82.15 % 85.41 %
Oversampling 87.09 % 84.36 % 81.78 % 83.05 %

Cost-sensitive learning 91,09% 90,10% 89,25% 89,65%
Bagging technique 87.49 % 84.91 % 81.72 % 83.28 %
One-vs-One (OvO) 79.68 % 81.65% 84.19 % 82.90 %
One-vs-Rest (OVR) 84.06 % 80.35 % 83.53 % 81.91 %
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5- Conclusion

The categorization of images depicting diabetic
retinopathy poses a considerable challenge attributable to
class imbalance, a widespread concern within medical
applications. This manuscript conducts a comparative
analysis of diverse methodologies aimed at mitigating this
imbalance while simultaneously enhancing the efficacy of
Convolutional Neural Network (CNN) models. The
findings unequivocally indicate that the selection of
correction methodologies exerts a substantial influence on
model efficacy, thereby underscoring the necessity for the
adoption of strategies that are specifically tailored to the
contextual characteristics of the data and the distinct aims
of the application.

Among the methodologies scrutinized, cost-sensitive
learning emerges as the preeminent strategy. Its adaptive
modulation of class weights facilitates a balanced
evaluation of classification inaccuracies, culminating in
enhanced performance across critical metrics (Accuracy,
Precision, Recall, and F1-Score). This approach not only
assures superior generalization but also yields a more
precise identification of minority classes. Techniques such
as oversampling and bagging also exhibited favorable
outcomes, particularly in augmenting the representation of
minority classes, while concurrently sustaining competitive
overall performance. Nonetheless, both methodologies may
engender a compromise between computational expense
and precision, particularly in expansive applications.
Conversely, subsampling and the One-vs-One/One-vs-Rest
(OvO/OvR)  techniques, although beneficial, are
encumbered by intrinsic limitations, such as potential
information loss or heightened complexity, rendering them
less appropriate for intricate, imbalanced datasets such as
those associated with diabetic retinopathy.

These observations accentuate the imperative for a
comprehensive evaluation of the strengths and weaknesses
inherent to each technique, with particular emphasis on the
trade-offs between computational expenditure and
accuracy. The outcomes further highlight the significance
of implementing solutions specifically adapted to the
particular constraints of the data and the objectives of the
application. Future investigations should prioritize the
innovation of novel methodologies that effectively manage
complex, imbalanced datasets. Additionally, the
exploration of hybrid models that amalgamate existing
techniques should be pursued to capitalize on the
synergistic strengths of each strategy. This integrative
methodology would contribute to the optimization of
performance by addressing the deficiencies associated with

individual techniques, thereby enhancing model capabilities
in regard to both accuracy and generalization.

Such a strategy would not only elevate the overall
performance of models but also more effectively address
the critical requirements of applications, particularly in
domains such as medicine, where the robustness, fairness,
and reliability of models are of paramount importance.
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Abstract

increasing complexity and volume of threats being created and targeted at cybersecurity for the IoTs necessitate the
deployment of powerful IDSs. This paper offers an innovative intrusion detection system for IoTs networks based on deep
learning. The new IDS employs the Long Short-Term Memory and Gated Recurrent Unit models’ strengths and an
Attention Mechanism. First, the new IDS seeks to enhance the model’s ability to determine critical features in a vast
amount of data streams and hence improve the ability to find potential cyber threats with high accuracy. The
methodological framework used in a simulation and practical experiment setting was intended to recognize the unique
nature of IoTs situations. therefore, used a hybrid algorithm optimization strategy, namely Differential Evolution and
Harmony Search, to optimize the model due to the extensive hyperparameter space to get the best performance results. The
results obtained superior accuracy, precision, recall, and F1 measures reaching 99.87 percent, 99.84 percent, 99.85 percent,
and 99.85 percent is better than the performance measures achieved by existing models. Therefore, a deep learning-based
hybrid IDS confirmed the research hypothesis that this could provide the necessary and effective cybersecurity for the loTs.
It is vital to note that this paper has contributed to the research topic by showing the potential of advanced neural
architectures and strategic optimization tools to address the massive and sophisticated IoTs cybersecurity issues. Future
research will be addressing whether these models can be applied in more IoTs settings and whether their real-time
efficiency can be improved.

Keywords: Intrusion Detection System in Internet of Things; Attention Mechanism in Deep Learning algorithm;
Differential Evolution; Harmony Search.

development of deep learning based systems for IoT
security is still quite challenging because of the significant
computational constraints and the real-time processing
constraints of IoT devices, as well as the adaptive
requirements for resource-constrained environments,
where traditional DL-based approaches are commonly
known to be computationally prohibitive [1][2].

Identification of the Gap: Intrusion detection solutions

1- Introduction

Security has become an issue of growing concern
especially in Internet of Things (IoT) where the
deployment of IoT networks raised new security
challenges, and traditional intrusion detection systems are

no longer enough, to protect dynamic and heterogeneous
[oT networks. Modern cyber threats are also more
advanced, and require more than traditional signature-
based and anomaly-based methods, which typically have
high false positives and are limited in threat coverage.
With fast development of deep learning and Al, the
automatic learning and behavior pattern identification by
use of deep leaning and AI become the promising
solutions for securing IoT intrusion detection. The

X Mahmood Alborzi
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face some limitations to work efficiently in terms of the
unique IoT challenges such as device diversity, limited
resources, and dynamic topologies. The current distance
between traditional IDS functionality and the detection
needs of advanced threats are especially evident in deep
learning used for IoT systems [3].

It includes but is not limited to described below: lack of
labeled datasets specifically targeting the complexity of
ToT network traffic, the computation complexity of deep
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learning, lack of suitable models that adapt to the
complexity of the IoT environment and the variance
produced by each of the more than 20 billion devices
connected worldwide. Additionally, there is a considerable
discrepancy in leveraging DL and Al in practical models.
Whereas a growing portion of the literature focuses on
developing theoretical models and algorithms, few studies
focus on combining these proposals with the IoT domain.
This entails a lack of validation schemas considering the
flow of energy, computation capabilities, and the real-time
need to process requests and requirements in [oT[3], [4].
Research Question or Hypothesis: Our research is
prompted by the identified gaps in the adaptation and
optimization of deep learning and artificial intelligence
algorithms for integration into the Internet of Things
intrusion detection systems. Thus, the primary question of
our investigation is as follows:

Research Question: “How can deep learning and artificial
intelligence algorithms be efficiently adopted and
optimized in IoT intrusion detection patters to improve the
general level of protection from sophisticated attackers,
while addressing the concerns associated with the limited
resources, energy efficiency and dynamical topology of
Internet of Things components? ”. The research question
analyzes the primary areas of concern in the adaptation of
DL and AI technologies, as well as the possible ways to
mitigate  them. The implication suggests the
comprehensive understanding of the application and
examination of the mentioned technology both in theory
and in practice, which is the central objective and
contribution of our study. Based on the research
hypotheses, the notion of the hypothesis shaping our study
is as follows: Hypothesis: “Designing and integrating
customized solutions of deep learning and artificial
intelligence to the existing intrusion detection systems by
the means of optimization for the critical requirements and
constrains of Internet of Things devices can significantly
enhance the quality and effectiveness of the protocols
through the detection rate, false positive rate and resource
effectiveness metrics” . The hypothesis builds the rationale
for the integration of the stated technologies as the
enhancement of conventional IDS for powerful systems is
inapt for the IoT era. Therefore, our study’s objective is to
bridge the identified gap and shape the comprehensive
image of the situation.

During the course of investigating this research question
we conduct a detailed study in to the current condition of
IDS in IoT, possible potential and constraints faced by DL
and Al technologies here, and formulate novel
methodologies that can mitigate these problems. These are
provided in a subsequent section listing out the specific
objectives or aims of this study, why it is significant to the
broader field on cybersecurity, and finally an overview of
what can be found throughout this article.

Objectives of current study: The purpose of this study is to
fulfill an urgent requirement for enhanced IDS systems in
the area of IoT via deep learning and Al. In more specific
terms, the study will focus on meeting these main
objectives: Addressing the current challenges of IoT
security, such as deploying lightweight detection
mechanisms, by designing effective yet computationally
efficient deep learning models, effectively trading
detection accuracy for the limited computational
capabilities of IoT environments and focusing on creating
models with minimal operational power requirements
while maximizing the model detection rate. Optimized Al
and DL algorithms for IoT applications: Alongside this
examination of the challenges, this study will integrate an
approach to designing Al and DL algorithms that are
specifically geared towards implementation with IoT use.
These breakthrough models will facilitate the widespread
and cost-effective use of Al and DL to identify,
characterize, attribute and assess all forms of cyber-threat
with far less reliance on extraordinary computational
power (power) For this purpose and to guarantee that the
above is effective in real IoT scenarios, one of the main
aims of your study should be ensure that developed
solutions are practical useful. This is why the experimental
design will investigate under these testing conditions to
enable a comprehensive test in real [oT deployments.

All the above goals were achieved in this study; it
contributes a lot to IoT security area by producing tough,
fast, reliable IDS solutions with current improvements on
Al and DL. We believe our research could have game-
changing impact on the security and safety of IoT networks
so that we might one day see all connected devices safely
and securely enjoy a level of user-setting performance
expectations known to be achieved in practice.

Significance of the Study: The significance of this study
on leveraging deep learning and artificial intelligence for
IDS in IoT ecosystems cannot be ignored. It is of great
importance and thus benefits all interest groups in
academia, industry, and the community, generally in
eliminating the existing security issues with the ever-
increasing number of these devices. To the best of our
knowledge, this study increases the added value in terms
of the security of IoT frameworks using enhanced deep
learning and Al algorithms that are capable of responding
to current security threats, combined with the protection of
unauthorized break-ins, data integrity and confidentiality.
Bridging theoretical AI and DL models with its practical
application: another critical aspect and contribution of this
research is its ability to close the existing gap between the
actual utilization of deep learning and artificial intelligence
in IoT security and the theoretical models. It involves
careful analysis of the application of the algorithm in real-
world IOT and new findings in these algorithms’
challenges and progress in deployment7. Boosting the
adoption of the Internet of Things: in the healthcare



Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025 191

industry, smart city, industrial automation, and other
sectors, the concern of system security has been a Major
threat to the successful implementation of the IoT systems.
This research benefits hugely by ensuring the successful
implementation of the IoT services with improved
confidence of success in utilization of these systems to
their full potential. Contributing to the discussion and
informed sources: this study thus makes a significant
contribution to the discussion regarding IoT security,
focusing on comparing the security challenges of IDS in
IoT ecosystems and suggesting a pathway for overcoming
the challenges. Being research that has led to findings, it is
a valuable reference and reference material in writing and
in the preparation of educational materials. Informing
policy and legal framework: at the end of the research
results, the finding will significantly help in the process of
development of the policy and the other set of legal
frameworks through evidence is showing how efficient this
new approach in the deep learning algorithm is showing a
high performance of Intrusion detection systems.

Overview of the Structure: This paper is organized in such
a way that the deep learning and artificial intelligence
applications in IoT IDS are discussed, in a systematic
manner, step-by-step as it follows the proposed framework
for the readers better understanding. The following are the
structure of this article:

Introduction: Provides the reader with a background of the
study, the research gaps the study seeks to fill, the study’s
research question/hypothesis and the study’s objectives.
This part of the article also explains the significance of the
study to the reader and therefore helps them develop a
foundation on the relevance of the study.

Literature review: This section of the article analyses a
broad range of studies and other related conceptual models
in line with the academic performance of an intrusion
detection system in an Internet of Things setup. It offers a
critical analysis of the limitations and strengths of previous
studies and helps readers identify where their scientific
approach aligns or diverts from previous scholars’ works.
Methodology: The section outlines the study’s design and
how the research question shall be answered, including a
detailed explanation of the artificial intelligence and deep
learning algorithms selected for the study. The section also
includes data collection and preprocessing methods, as
well as the evaluation metrics the researcher used to
evaluate their solution. This part of the article helps the
reader understand how the study was implemented.
Results: In this section, the results of the study are
presented. Namely, the performance of the developed DL
and Al-based IDS in various IoT cases was analyzed, and
the results of the statistical analysis, performance metrics,
and comparison are provided. As a result, the possibilities
of using the developed DL and Al-based IDS in IoT are
drawn based on the data obtained.

Discussion: This section discusses the meaning of the
results. This part covers the elucidation of research
findings for IoT professionals and the implications for
theory and practice in the field of cybersecurity and
artificial intelligence. A potential limitation of the study is
also considered. Thus, the obtained results will be
analyzed to obtain new data and directions for research.
Conclusion: This section concludes the study, briefly
restating its essential findings and reaffirming the topic’s
relevance. Also, the contributions to knowledge and
practice from a growing area of research on IoT may be
identified, and ideas for future studies will be suggested.
References: This part includes all the research sources that
were mentioned in the text and is necessary for the
academic correctness of the article.

2- Literature Review

The role of integrating deep learning and artificial
intelligence technology into IDS of the IoT is the most
critical frontier of this research on cybersecurity. With the
continuous development of the IoT, more devices are
interconnected. It poses numerous distinctive challenges
but also opportunities to protect the networked system. In
particular, IDS is vital for identifying unauthorized access
and anomalies signaled potential cybersecurity risks.
However, the traditional detection model is far from
efficient in an ecosystem as complex and dynamic as the
IoT. It was the introduction of DL and Al that significantly
improved the technology and its efficacy in terms of
detecting, analyzing, and responding to information
security breaches. Therefore, this section was intended to
justify that the theme of researching innovative
technologies on strengthening the IDS of the IoT to the
broader research in the field of cybersecurity[5], [6].
State-of-the-art deep learning- based IoT intrusion
detection shows remarkable advances in responding to the
latest cybersecurity threats. Recent studies are
concentrating on designing complex neural architectures
and optimization strategies suitably for IoT systems.
Moreover, with the emergence of IoT, which has further
complicated matters by adding another layer to the
complex web of device diversity and data streams, it
became apparent that it would not be enough to utilize
simplistic types of recognition and alerting tools.
Simultaneously, DL and Al made a major break in recent
years and during the last decade, offering a unique
opportunity to apply perfectly-designed instruments to
enhance the security of IoT. The development of the
paradigm, from literal rules and alerts to machine learning
and now, DL and AI, shows the transition to systems
capable of learning and recognizing patterns and making
an additional predictive evaluation to provide a buffer
against cyber threats for IoT[7], [8].
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More recently, substantial progress has been achieved in
transformer-based architectures for loT intrusion detection.
Tseng et al. (2024) presented state-of-the-art results on the
CIC-10T-2023 dataset by training transformer model that
that obtain 99.40% accurancy, outperforming traditional
CNN and DNN models[9]. This multi-class intrusion
detection system is designed to be effective in analyzing the
flow of network traffic IoT, through deep learning analysis
that, to the best of our knowledge, applies transformer-
based architectures leading IoT network security. Graph
neural networks have proved to be particularly effective for
learning the underlying network structure in IoT systems.
Ahanger et al. (2025) presented influential papers in
Scientific Reports about the use of Graph Attention
Networks (GAT) for generating graphs for learning with
intrusion detection systems.[10]. Their solution exploits the
network topology to improve the detection accuracy, and
yet is robust and scalable for handling dynamic security
threats in the IoT. Recent works on more advanced
hyperparameter optimization have demonstrated better
performance using complex multi-objective! approaches.
Asadi et al. (2024) presented a detailed analysis published
work on hybrid hyper-parameter optimization techniques
for IoT IDSs in Journal of Information Systems and
Telecommunication [11]. Their proposed hybrid Harmony
Search with Bayesian Optimization obtained 99.74%
accuracy, 99.7% precision, 99.72% recall, and 99.71% F1-
score, which is better than the pure methods and indicates
that the advanced optimization rigors are much useful for
recent [oT security studies.

There are several key themes and findings in the literature
on DL and Al-based applications in IDS for IoT.
Algorithmic Advancements, substantial prior studies
developed and refined algorithms that could efficiently
process massive and highly heterogenecous data from IoT
devices. Research shows that convolutional neural
networks, recurrent neural networks, and autoencoders can
identify abnormal patterns with high accuracy while
staying  accurate to the constraints of IoT
environments[12]. Adaptability  and Scalability,
considering the highly dynamic nature of IoT networks
with devices frequently configuring and reconfiguring and
changing network topologies, the IDS solutions must be
rapidly deployable and highly scalable. Therefore, the next
focus area of the literature was to develop DL and Al
models that can rapidly adapt to new threats and spread
across such a wide and diverse landscape as IoT devices
[7,8]. Resource Efficiency, as various IoT devices face
constraints in the number of resources they can utilize,
researchers have emphasized the need to optimize DL and
Al models to reduce their computational power and energy
consumption. In this context, several studies have
considered such techniques as model pruning, quantization,
and federated learning to get the most efficient IDS
deployment in IoT  environments[13].  Practical

Implementation Challenges, Practical implementation
presents a significant gap in the current literature. Thus,
deploying IDS based on DL and Al on actual IoT devices
creates high-relevant challenges. Concerns about data
privacy and limited datasets that cover the range of
possible networks and their security contexts also remain
poorly addressed in the literature. These topics illustrate
the on-going debate and dialogue across the academic
world regarding the potential of DL and Al in IDS for the
IoT environment. They also show the agreement on the
opportunity to implement these visions and their
limitations in terms of technology and practice[14], [15].
Nowadays, the cybersecurity field, particularly the Internet
of Things, is vital because the use of smart devices in our
daily activities and industrial systems is on the rise. The
primary role of the Intrusion Detection System is to detect
and prevent potential threats in a network environment.
Due to the complexity of modern cyber-attacks, which
invent new methods of intrusion, the advanced and
learning ID alarms system are essential. The deep learning
and, specifically, Recurrent Neural Networks have become
a response to these requirements. They are capable of
learning data using sequences. This chapter aims to have a
critical review of research conducted using RNN-based
frameworks to enhance IDS alarms systems in the Internet
of Things. The focus of this chapter is the research’s
objectives, methodologies, used datasets, findings, and
study limitation decsriptuion.

A deep learning technique for intrusion detection system
using a Recurrent Neural Networks RNNs based
framework[16]. Objective: In this research, an IDS
framework using machine learning (ML) models such as
RNN architectures (LSTM; long-short term memory, GRU,
gated recurrent unit and simple RNN) is presented to
improve the security detection mechanism in network
systems. In this section, methodology of the framwork
which we proposed, among various RNN architectures and
then evaluating their performance in intrusion detection
using benchmark datasets NSL-KDD and UNSW-NBI15 In
addition, we used an XGBoost based feature selection
algorithm to reduce the number of features in nocturnal
and all-day datasets as well for better performance. The
NSL-KDD and UNSW-NBI15 are commonly used two
benchmark datasets in this implementation. While the
NSL-KDD implements a counterpart limitation of
KDD’99, making it possible to compare both results better,
on the other hand; UNSW-NBI15 constructed as a
developed data for up-to-date situation regarding attack
types [9], [10]. Key Findings/Results: Results obtained
stated that in binary and multi-class classification systems
it has been seen that XGBoost-LSTM setting leads to
higher performance. The best results were obtained by
XGBoost-LSTM with an 88.13% test accuracy at NSL-
KDD, and for UNSW-NBI15 the best result is from
XGBoost-Simple-RNN  setting in which had a test
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accuracy of 87.07%. Limitations/challenges: In a prior
study [14], the use of DL-based IDS on real [oT devices
has some challenging aspects, e.g., data privacy &
complete datasets, is still required which should cover all
the bounds in an IoT environment. Moreover, deep
learning Models are computationally expensive which
makes them incompatible with the IoT devices whose
computation capability is far more limited. Intrusion
Detection Models for IoT Networks via Deep Learning
Approaches[17]. Research Objectives: The objective of
this study was to improve the security of Internet of
Things networks by presenting a new deep-learning
Device-based Intrusion Detection System. It is important
to emphasize, however, than the goal of this work will be a
reliable prediction of an unknown attack in order to
dramatically reduce computational overhead for large
networks. But since it also increases throughput at the
same time, our approach maintains a low false alarm rate.
Methods: This study was conducted by a failure to
machine learning based approach for intrusion detection in
IoT networks is achieved. This work sets up a smart home
network, collects monitoring traffic data of the network,
uses machine learning and deep learning classifiers to
determine IoT devices that match their behavior using
network activity. Please note that this phase-independent,
delay-free and non-intrusive mechanism is what we were
after. Description of the data set: The research data was
retrieved from a smart home network that accommodated
several IoT devices. Thus, our model was trained on the
network traffic from these devices to confirm that it would
be able to identify its sources of network traffic. Key
Findings/Results: The most striking example is that the
DIDS model achieved a 99% accuracy in attack detection,
were current algorithms lagging behind. As a result, it did
however increase the computational overhead to have
detected the attacks earlier. Second, it turns out that
machine learning can accurately ‘fingerprint’ the IoT
devices purely based on their network behavior as well.

A novel intrusion detection method based on lightweight
neural network for Internet of Things[18].

Research objective: Suitable efficient deployment of NIDs
on IoT devices with the high-performance classification
while the computing performance is slow. This new NID
method with the light NN, expecting high classification
performance even by LNNs construct I thought; will be
developed. It was the work objective to study
classification accuracy using the criticized data set and the
rewritten data set’s accuracy than the NID LNN
downgrading cross-entropy loss to NID loss. Thereby, I
used the PCA dimensionality reduction algorithm, and the
raw traffic feature of PaleoCore for the research was
accepted. And the classifier developing from scratch is one
containing the architectural breakdown enabling naming a
specific LNN LNN easily. But the simplicity of the order
of magnitudes of the parameters doesn’t pressure over six

was made to do the separation. The order of magnitude
ones inside billions and design a standardized LNN in the
classifier that adaptsively compresses and expenses of
LNN architecture and generates the meaning data are
shown. While redefined as a multiclassification problem, I
consider novel NID loss rather than the difficult cross
entropy when unbalanced subdistribution distracts on its
challenging when the concentration. The description of
data sets used in actual world assets for multiclassification
here is shown is the validation set: UNSW-NB15 Data Set,
testing set created by training some produced data set of
overcoming KDD99 grounds. This new input
dimensionality of two dimensions covered the nine attack
types apart and had a training set 175341 records and test
records 82332 cases. Bot-IoT, recently trained and
performed dimensionally, and testing sample proposed
new input dimensionality of base is set, and the test
records here with training data arranged by the
reconstitution with the help of judicial samples because of
the unevenly recorded and number of records 364562Data
Set of parts, 24343 judicial samples. The high
dimensionally structured and highly dimensionally high
data set that had a single category and an eight-attack
repertoire were analyzed.

Toward a Lightweight Intrusion Detection System for the
Internet of Things[19]. Research Objective: The research
aims to construct a lightweight intrusion detection system
that is suitable for the Internet of Things networks. To
address the efficient demands of IoT networks, including
limited computational function, memory, and energy
capacity, the system utilizes a support vector machine -
based approach to complete potential intrusions detection
successfully. involve processing efficiently. Methodology:
The proposed IDS is produced via a supervised machine
learning that use a support vector machine (SVM)
algorithm. Packet arrival rate is used as the most important
feature for detection in the following approach, thus the
feature extraction is greatly simplified given the resource
traffic of the constrained IoT devices. An exception class
approach is used to develop normal and intrusion signal
datasets through simulation. Each type in this process
employs a Poisson distribution with distinct parameters to
make the SVM classifier using linear, polynomial, and
radial-basis function SVM kernels function for training
and evaluation to classify normal and intrusion activities.
Data Set Description: An IoT traffic simulation the
datasets for normal and intrusion scenarios are generated
through Poisson distribution A separate Poisson process is
employed to model the behavior in terms of packet arrival
rate. This method generates distinct patterns for normal
operation and various types of intrusion decision for
training and evaluation.

Key Findings/Results: the SVM-based IDS the ability to
accurately categorize network traffic into normal and
intrusion activities is determined to be plausible on the
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findings. Amongst the various kernel functions criterion,
the linear substantial kernel function SVM classifier
mandates the sparse lot of features to make the simple
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Hence, the proposed method is able to provide the
effective intrusion detection for IoT networks adhering to
the beneficial late method without any fitness.

normal kernel type recognized as the good performance.

Table 1: Review of existing algorithms

A Deep Learning Technique for Intrusion Detection System Using a Recurrent Neural Networks Based Framework

Research Objective

To enhance network system security through an IDS framework employing RNNs, including LSTM,
GRU, and Simple RNN, for effective new and evolving network attack detection.

Methodology

Utilization of RNNs for feature extraction and classification, employing an XGBoost-based feature
selection to reduce feature space in NSL-KDD and UNSW-NBI135 datasets.

Data Set Description

NSL-KDD and UNSW-NB15, encompassing a wide range of attack types and normal traffic patterns.

Key Findings/Results

Optimal performance in binary and multiclass classification tasks, with XGBoost-LSTM achieving the
highest accuracy for NSL-KDD dataset.

Performance Metrics

Test accuracy, validation accuracy, F1-Score, training time.

Limitations and Challenges

Difficulty in maintaining high detection accuracy amidst growing feature dimensions and evolving
attack patterns, reliance on benchmark datasets for model training.

Intrusion Detection Models for IoT Networks via Deep Learning Approaches

Research Objective

Develop a novel deep learning model (DIDS) focusing on predicting unknown attacks to address
computational overhead and increase throughput with a low false alarm rate in large IoT networks.

Methodology

Proposal of a DIDS learning model incorporating deep learning techniques to predict unknown attacks,
designed to reduce computational overhead and enhance throughput efficiency.

Data Set Description

Standard datasets for intrusion detection were utilized for evaluation, specific details were not
mentioned in the excerpts.

Key Findings/Results

DIDS model achieved remarkable accuracy in attack detection, demonstrating early attack detection
capabilities and a significant reduction in computational time.

Performance Metrics

Accuracy, early attack detection capability, computational time.

Limitations and Challenges

Detailed limitations and challenges faced during the study were not covered in the provided excerpts.

A Novel Intrusion Detection Method Based on Lightweight Neural Network for Internet of Things

Research Objective

Detect intrusions in [oT networks, addressing the challenge posed by limited computing capabilities
and storage of IoT devices.

Methodology

A Novel NID Approach via Lightweight deep neural network (LNN) with PCA for Feature
Dimensionality Reduction and Proposing a classifier for Fast Extraction of Features. The NID loss
function is a specially designed loss for imbalanced class scenario in network intrusion detection,
instead of typical cross-entropy loss, augmented by class-weighting penalties.

Data Set Description

Experiments conducted on two real-world NID datasets; specifics not detailed in provided excerpts.

Key Findings/Results

Excellent classification performance with low model complexity and small model size, suitable for
classifying normal and attack scenarios in IoT traffic.

Performance Metrics

Classification performance, model complexity, model size.

Limitations and Challenges

Balancing high classification performance with low computational capabilities of IoT devices,
effectiveness in various real-world scenarios and against different attack types.

To

ward a Lightweight Intrusion Detection System for the Internet of Things

Research Objective

Develop a lightweight attack detection strategy using a supervised machine learning-based SVM to
identify adversaries attempting to inject unnecessary data into IoT networks.

Methodology

Utilizing SVM for anomaly detection in IoT networks, generating simulated IoT network traffic data
reflecting normal and attack scenarios, and employing SVM to classify the traffic data.

Data Set Description

Simulated IoT network traffic data, generated to mimic normal operation and various attack scenarios.

Key Findings/Results

SVM classifier demonstrated high classification accuracy in detecting network intrusions, showcasing
the potential of lightweight machine learning models for cybersecurity.

Performance Metrics

Classification accuracy, kernel functions efficacy comparison.

Limitations and Challenges

Limitations in simulating real-world IoT network traffic and capturing the diversity of attack vectors in

10T environments, further research needed to optimize feature selection and classifier parameters.

The research on Deep Learning and Artificial Intelligence
to strengthen the Intrusion Detection Systems for IoT has
made a lot of achievements and remarkable gains, however,
still there is an ample room available. Despite this,
research in the body of literature (which includes both

further exploring this domain. On the other hand, this only
highlights how extensive the challenge to security in the
IoT ecosystem really is. Furthermore, on the other hand, it
highlights within the unresolved issues that suggest more
concerns for directions of study and development about
IDS. A number of such gaps are listed below.

seminal and current papers) indicates various attempts to
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Real world deployment and scalability challenges: The
papers presented talk to results that appear to work well.
The major blank space is how much will these systems
based on Al and DL be deployed in the actual IoT of today.
Commenting on their research, the authors note that
deploying such systems across a wide range of [oT devices,
which can differ significantly in terms of computational
power and limited resources, presents its own challenges.
There are also, however, less sexy first life deployment
trials; Moreover, since these systems must be deployable
over a diverse set of network topology models and
placements in the real world with varying factors that are
continuously changing (due to ever-evolving IoT
ecosystem), more research is needed on this[20], [21], [22]
Efficiency in Restricted Environments: An important aspect
of using DL and Al for IDS of IoT is many [oT devices are
resource constrained. Recent studies aimed at optimizing the
model/ improving efficiency. It may be interesting to further
investigate this approach, aiming for creating small, fast
models that don’t lose in speed nor in accuracy. Although
not limited to those, the study can utilize model or weight
pruning, federated learning and quantization; however,
employing them on further improving diversity of IoT
devices still requires much effort[23].

Adaptability to Evolving Threats Landscapes: The third gap
is how IDS are unable to adapt themselves in the changing
threat landscapes which are coming with different trends if
attacks for example new methods and evolved
sophistication While DL & Al facilities should be best used
to understand the pattern from historical data it's challenging
however can support in predicting as well responding
towards such an incident which doesn't been faced and
trained yet instead similar one around happened seen on real
time. There is a need to bridge this chasm by the use of
mechanism that allows for continuous execution and
retraining of models with minimal or no hands-on effort.
Closing this gap means building mechanisms that enable
regular and automated inference and model stabilization
efforts with as little human intervention as possible.
Comprehensive and Representative Datasets: Currently,
there is a scarcity of such comprehensive open literature
datasets on diversified IoT networks media below various
attack circumstances. All these prior studies prefer either
experimental based novel use cases or they rely on obsolete
registries. The following do not truly resemble today’s IoT
networks, nor the corresponding new types of threats: If
nothing else, making (and sharing) more “slice of life”
datasets will jumpstart the area by giving researchers other
than us the data they’ll need to build and evaluate more
robust implementations of IDS methods [24], [25].
Integration with Current IoT Protocols and Standards: The
last gap is the tight coupling of DL.Al-enhanced IDS and
current IoT protocols, and standards. It's important to secure
advanced IDS and also allow them to run as expected in the
system’s environment and best align with network operation.

It also provides a way to incorporate the above integration
using multidisciplinary aspects including cybersecurity,
network test-engineering and data science.

3- Proposed Protocol
3-1- Overview of Methodological Approach

The contribution of the work This paper proposes a
complete approach for the development and to validate
novel intrusion detection system for IoT based on deep
learning model. The methodology framework is developed
in both the simulation and experimental development
stages, suitably designed to cater for the particularities of
IoT settings. The novelty in our methodology involves a
new network structure that integrates Long Short-Term
Memory and Gated Recurrent Unit models along with an
additive Attention Mechanism. Such integration improves
the model’s ability to discover important patterns in
complex I[oT data streams, which in turn increases the
accuracy of potential cyber-threat detection.

Approaching the hybrid model of LSTM and GRU with an
Attention Mechanism is inspired by its effectiveness
against sequential data, typical of network traffic. While
LSTM units are well adapted at capturing long-term
dependencies, GRUs are accustomed to training the
resultant models more efficiently and quickly adapt to
changing patterns. Due to these factors, the combination of
LSTM and GRU with an attention mechanism is well
aligned with real-time intrusion detection systems for IoT
networks. Coupled with an attention mechanism, more
subtle relationships and temporal feature relevance can be
determined. Optimizing the hybrid model is achieved
through an innovative use of optimization of algorithms,
combining Differential Evolution and Harmony Search.
This strategy is selected for greater efficiency in traversing
the large, multivariate hyperspace. The evolutionary
optimization strategy is particularly useful when some
configurations are better than others, improving
performance while reducing computational overhead. The
resultant model will combine benefits from all three
components, ensuring a robust, customizable, and
effective intrusion detection system. This model
corresponds with project aims of developing new,
innovative solutions to enhance loT network security
against a broad range of cyberattacks.

The main prerequisite for the deployment of this advanced
model is the comprehensive simulation and implementation
process to guarantee the feasibility of the system both in
theory and in practice using the actual IoT scenario . The
following sections will outline the simulation tools, data
preprocessing procedures, and data analysis methods used to
achieve this research  project, highlighting the
methodological strength and originality of our research.
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3-2- Simulation Details

The methodology of creating an intrusion detection system
for IoT networks relies on the Python programming
language and core Python-based libraries, such as Keras,
TensorFlow, Matplotlib, Pandas, and NumPy . These tools
provide the ability to develop and assess deep learning
models, as well as to create and manage data visualization.
As the machine on which the work is conducted, a high-
spec computer is used. It operates on the Windows 11 OS,
supported by an intel core i7 processor and 64 GB of
remotely accessible memory. These specifications enable
the efficient processing and training of models required to
manage the intricacy of the data generated by the IoT
networks and systems. The said computational environment
offers complete resources for further improvement and
research of Al-based cybersecurity solutions.

3-3- Data Collection and Processing

The data source for this study is the UNSW-NBI15 dataset.
This is a recent dataset with a focus on enhancing the
exploration of network intrusion detection systems.
Essentially, the UNSW-NBI15 dataset is composed of raw
network packets that were artificially generated through the
use of the IXIA Perfect Storm tool in the production of
normal traffic and therefore, it is the creation of the Australian
Centre for Cyber Security’s Cyber Range Lab. Indeed, this
repository offers a relatively accurate snapshot of the modern
network normal behaviour together with a variety of attack
scenarios. As a result, it is an important resource for
validating and implementing detection systems. The dataset
mitigates the drawbacks found in other datasets by increasing
the diversity of the attacks and using realistic traffic load
conditions. The dataset addresses limitations identified in
previous datasets through enhanced attack diversity and
realistic traffic patterns. Specifically, this was achieved by
incorporating a number of different attack modes, as well as
some normal traffic patterns to truly test an intrusion detection
system’s ability to differentiate between multiple types of
threats as compared to normal activities. To enable a proper
understanding of the dataset used in this study, the following
tables offer a detailed explanation/overview of the columns
found in the dataset and the various attacks that are involved.

Table 2: Data Columns Description

Column Name Type Column Name Type
srcip IP Address sbytes Integer
dstip IP Address dbytes Integer
sport Integer sttl Integer

dsport Integer dttl Integer
sloss Integer Sload Float
dloss Integer Dload Float
Spkts Integer Sintpkt Float
Dpkts Integer Dintpkt Float
swin Integer teprtt Float

Column Name Type Column Name Type
dwin Integer Sjit Float
stcpb Integer Djit Float
dtcpb Integer synack Float

smeansz Integer ackdat Float
dmeansz Integer Stime Timestamp
trans_depth Integer Ltime Timestamp

res bdy len Integer ct state ttl Integer

ct flw http mthd | Integer ct ftp emd Integer

ct srv_src Integer ct_srv_dst Integer

ct_dst Itm Integer ct_src_ltm Integer

ct src_dport Itm Integer | ct dst sport Itm | Integer
ct dst src Itm Integer proto Categorical
state Categorical service Categorical

attack cat Categorical Label Binary

is sm_ips ports Binary is ftp login Binary

Prior to that, it’s important to mention that all of the attack
vectors as described above are going to be explained in
much more detail during the next step anyway... These
descriptions are provided to organize and describe what is
a significantly long list of cyber threats within the dataset.
Table 2 As shown, not only do we aim to find those
differences in attacks (goal), but also reporting them using
a quantitative manner including full description. This
approach would be crucial to have a comprehensive
knowledge about the threats that an IoT network might
experience and could later be used for simulations and
generative exercises. Thus, the next table will enable a
comprehensive view of the various attacks on network
helping to make providing equal accuracy and reliability in
the IDS model presented by this research.

Table 3: Types of Attacks and Descriptions

Attack Type Description
Normal Genuine network activities
Attacks that send random data to the network to
Fuzzers
cause errors
. Techniques used to analyze the network for
Analysis o
vulnerabilities
Backdoors Attacks that bypass normal authentication to
secure remote access
DoS Denial of Service attacks aiming to shut down a
network
Exploits Attacks that exploit weaknesses in the system
. Common attacks that can be launched without
Generic .
much customization
Reconnaissance| Activities to gather information about the network
Shellcode Malicious code execution attacks
Malware that replicates itself to spread to other
Worms
computers

In this intrusion detection system research with the
UNSW-NBI15 dataset, we deployed a well-crafted data
processing methodology to prepare the dataset suitable for
deep learning procedures. We proposed a systematic
framework composed by various stages such as
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preprocessing and normalisation and transformation,
feature-engineering and data-partitioning in order to
prepare our data for modeling. Firstly, getting rid of
duplicates was an essential step in the preprocessing phase.
Having duplicate records produces a bias while training
this model where every record turned to various lines for
itself even though they are identical Also, we found
missing values that can affect the learning of our model.
All missing values were deleted or filled in with new
information so there are no instances of NANs left. Where
the data presented large differences in scale, normalization
of the dataset was performed through Min-Max scaling
applied to features: All features of UNSW-NBIS
normalized to the same scale which will help reducing it's
impact of learning due to a larger or smaller range of
values across different features in model performance.
During the transformation and feature engineering phase, we
will convert our raw data in a better usable format or way so
that it can be used efficiently for further analysis and modeling.
Thirdly, we somehow converted categorical features - like
‘protocol types’ and ‘attack categories’, to numerical type, so
that they along with other numerical attribute could be passed
into the model. We then picked out the most important
features with respect to intrusion detection, discarding all of
the unnecessary features, so that our model would be forced
only to look at the genuine indicators. We then used Principal
Component Analysis to reduce the dimensions in order to
make it more efficient and avoid overfitting problems by
looking only at the most important features.

Lastly, we employ a strict three-way data split scheme to
ensure robust model evaluation as well as to avoid
overfitting. To achieve the class-wise balanced data
distribution, we adhere to the partitioning into the 60% for
training, 20% for validation, and 20% of the data for
testing in UNSW-NBI15. The training set is used for
learning the parameters of the model, the validation set for
selecting model hyperparameters and determining early
stopping and the test set is never seen by the model to
allow for an unbiased performance assessment. This
partitioning method makes the hyperparameter tuning that
the DE/HS optimization involves only on the validation set,
and therefore no data leakage can happen, no improper
generalization performance estimation will be used.
Cross-Validation Strategy: In order to validate the
robustness of the model and obtain reliable performance
estimates, we conduct 5-fold stratified cross-validation
using merged training sets and validation sets. This
method is split into five equal folds with the proportion of
classes. Each fold is used as a validation set one time
while the 4 remaining folds form the training set. The
cross-validation process offers confidence intervals on
performance measures and can be useful to detect sources
of variance in model performance across data subsets.
Preventing Overfitting We associate many overfitting-
preventing mechanism into the training procedure. Early

stopping is used with patience of 10 epochs, validate loss
is monitored to stop training when performance doesn't
improve. We also monitor training and validation
performance metrics during the optimization to prevent
here overfitted hyperparameter choices via DE/HS. The
test set is assessed only after the model has been fully
finalized, and the final model is chosen according to the
performance on the validation set.

Therefore, using this complete data processing procedure the
UNSW-NBI15 dataset has arrived at to a model that can
efficiently and effectively detect security threats in [oT networks.

3-4- Simulation and Analytical Techniques

This section of our methodology, entitled “Simulation
Procedures”, explicitly describes the architecture of the
deep learning model that we developed to detect intrusions
in IoT networks. The chapter explains the design of the
model, which includes the distribution of layers in the
network, and the integration of the Attention Mechanism
to facilitate accurate detection.

Model Architecture:

Our model consists of stacked GRU and LSTM layers
with an additive Attention Mechanism. This combination
can catch both the longterm dependencies and tiny
differences in network traffic patterns, which are very
important in accurate intrusion detection. 1. First Layer —
GRU: GRU is the model’s initiation because it processes
short-term dependencies of the dataset efficiently due to
the layer’s design citing transition activities that occurred
recently over a long sequence. Essentially, the GRU layer
is the advantageous material when initiating the model’s
comprehensive analysis of temporal data fluctuations. 2.
Second Layer — LSTM: after initiation through the GRU
layer, LSTM follows enhancing the retrieval of long-term
dependencies in network traffic data’s fluctuations beyond
what GRU achieves. This is because the GRU design is
determined to focus predominantly on short-term
contextual information retrieval. 3. Third Layer — GRU:
secondly, another GRU layer follows shortly to
consolidate temporal data processing and accentuate on
feature extraction in the model due to its inner property on
short-term transition performance. 4. Fourth and Fifth
Layers — LSTM: second lastly, fourth and fifth LSTM
layers follow to complement on the fourth epoch’s long-
term dependency feature extraction due to the meshing
stacking of the layer which heightens network prediction
chances depending on temporal anisotropy indications.

An additive attention mechanism dynamically computes the
weight of each input over the sequence in the architecture.
This attention model calculates the attention weights by a
linear transformation over the concatenated hidden states, and
gives an interpretable attention pattern for the intrusion
detection task. The additive attention mechanism employed in
this study calculates attention scores using: at = softmax
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(WaT tanh (Wh ht + Ws s{t-1})), where Wa, Wh, and Ws are
learnable parameters, ht represents the hidden state at time t,
and s{t-1} is the previous context vector. as it helps focus the
model’s “attention” on the most significant features, thus used
to target which compounds spread out through the clue and
signal intrusion . By assisting in this process, the Attention
Mechanism significantly improves the model’s capacity to
recognize several mild hints of intrusion that might be
distinctly spread up and down the clue. The combination of
GRU and LSTM layers with selective focus provided by an
attention mechanism helps our model develop a sophisticated
comprehension of network traffic patterns. Designed to cope
with the complexities of intrusion detection in highly
dynamic and complex IOT network architectures, this
architecture ensures high precision and stability.

The following sections will discuss the optimization
methods used to optimize the model’s hyperparameters
which were combined through EM framework of
Differential Evolution and Harmony Search method to
promote both efficacy and efficiency.

Model Optimization:

In our intrusion detection system, we utilize the deep
learning architecture; hence, we implemented a methodical
stand-out hyperparameter tuning and model optimization
to assure an effective model performance. Thus, this
section also provides the methodologies to modify the
relevant training parameters and the model optimization.
Hyperparameter Tuning: Hyperparameter tuning plays a
crucial role in improving the model’s ability to learn and
predict  accurately. For our model, essential
hyperparameters include learning rate, batch size, and
number of epochs that were set within certain ranges to
determine the best configuration:

e Learning Rate: A hyperparameter that plays a crucial
role in the model convergence and learning rate was
tuned from 0.001 to 0.1. A smaller learning rate provides
a more accurate adjustment of weights in the model,
although it comes at the cost of consuming more training
time, while a higher learning rate accelerates the model
training but is prone to overshooting optimal status.

e Batch Size: The number of samples to process before
updating the model’s weights was tuned from 32 to 512.
Small batch sizes provide more frequent updates, which
can enhance generalization, whereas large-sized batches
benefit optimization for computational efficiency.

e Number of Epochs: This cycle comprises a single pass
through the complete training dataset that has been tuned
from 10 to 100. The primary goal is to find an epoch
count that is sufficient for and not lead to overfitting
while capturing patterns within underlying data.

Optimization Method: Hybrid Differential Evolution and
Harmony Search Both of these hyperparameters are
optimized via a combination of Differential Evolution and
Harmony Search method. Differential Evolution is a
global optimisation method that creates a collection of

candidate solutions and improves them iteratively by
shifting one point towards a chosen random fraction of the
difference of the other points in the selection. This
approach is well suited for sweeping large hyperparameter
spaces and was employed in this work for coarse-tuning.
Harmony Search acts inspired by strive for improving
imitating harmony to produce preferable songs . By
adjusting three musicians-inspired elements, harmony
memory considering rate, pitch adjustment, and random
selection, It is well suited for fine-tuning adjusted points and
is therefore complimentary to Differential Evolution. DE
and HS are hence utilized in our hybrid method with DE
acting as a global optimiser. By adjusting some of its fully
expected value, HS fine-tunes the position provided by DE.
Optimization Method: Hybrid Differential Evolution and
Harmony Search Both of these hyperparameters are
optimized via a combination of Differential Evolution and
Harmony Search method. Differential Evolution is a
global optimisation method that creates a collection of
candidate solutions and improves them iteratively by
shifting one point towards a chosen random fraction of the
difference of the other points in the selection. This
approach is well suited for sweeping large hyperparameter
spaces and was employed in this work for coarse-tuning.
Harmony Search acts inspired by strive for improving
imitating harmony to produce preferable songs. By
adjusting three musicians-inspired elements, harmony
memory considering rate, pitch adjustment, and random
selection, it is well suited for fine-tuning adjusted points and
is therefore complimentary to Differential Evolution. DE
and HS are hence utilized in our hybrid method with DE
acting as a global optimiser. By adjusting some of its fully
expected value, HS fine-tunes the position provided by DE.
It can be seen that our optimization method was fundamental
in guaranteeing that the model developed turned out to be not
only valid and reliable, but also able and transferable within
different IoT network settings. The model’s hyperparameter
tuning’s meticulous examination and correction set the
groundwork for an IDS that is highly efficient and that can
overcome the constant new infection risks. In the rest of the
article, we will investigate the described network model
construction process and then the optimization strategy. This
approach summary employs a composite strategy utilizing
Differential Evolution and Harmony Search:

Network Architecture Construction

1. Start

2. Initialize the Sequential Model.

3. Add the First GRU Layer with specified units.
e [f Attention Mechanism is placed after the first GRU:
e Add Attention Layer.

4. Add the First LSTM Layer with specified units.

5. Add the Second GRU Layer with specified units.
e [f Attention Mechanism is placed after the second GRU:
e Add Attention Layer.

6. Add the Second LSTM Layer with specified units.
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7. Add the Third LSTM Layer with specified units.
8. Add Dense Output Layer with sigmoid activation for classification.
9. Compile the model with loss and optimizer.
10. End of Model Construction
Model Optimization with DE and HS
1. Start Optimization
2. Initialize Differential Evolution (DE) with parameter space.
3. Perform DE Optimization to explore the global parameter space.
e Generate candidate solutions.
e Evaluate fitness of candidates.
e Select the best candidates for the next generation.
4. Transition to Harmony Search (HS) with DE's best candidates.
5. Initialize Harmony Memory with DE's output.
6. Perform HS Optimization for fine-tuning.
e (Create new harmonies based on memory.
e Adjust harmonies using pitch adjustment and random selection.
e Evaluate new harmonies and update Harmony Memory.
7. Check for Optimization Convergence.
e [f not converged, repeat from step 6.
e [f converged, proceed to finalize the best solution.
8. Output the Optimized Hyperparameters.
9. End of Optimization

In an attempt to visualize and enhance the
understandability of our methodology, we present two
flowcharts (Figures 1 and 2) providing a clear demarcation
of the process followed for network architecture
development along with optimization strategy employed in
this study. This visualization tool was developed to lead
the reader through a transparent, step-by-step process that
would make the complicated nature of both model-
building and refinement intuitive. The flowcharts should
have the following descriptions on them.
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Figure 1: Network Architecture Construction Flowchart

Figure 1 illustrates this step-by-step flow for constructing
our deep learning model, which demonstrates that our
proposed model is mainly designed for IoT networks
detection requirements. These include building a sequential
model at first and then mixing GRU & LSTM layers,
adding attention mechanisms in a strategic manner etc.
Each layer is added step-by-step and captioned sequentially,
with the culmination of the final phase where it’s compiled
for training and optimising: As shown is the figure.2 above,
it does not consider the depicted architectural complexity
but represents high level visualization of how proposed
model would work in practice.
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Initialize DE with parameter space ‘
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Perform DE Optimization

Transmon to HS with DE's best

Perform HS Optimization

| Check for Optimization Convergence?
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Figure 2: Model Optimization Strategy Flowchart

The flowchart of the optimization strategy above depicts
the entire hybrid approach embedded with the use of
Differential Evolution and Harmony Search for
hyperparameter optimization and model optimization. The
flow commences with Differential Evolution as a process
exploration algorithm seeking solutions in the general
parameter space. Then, the use of Harmony search
interacts with the process as an explotation process given
the solutions in the general parameter space from
Differential Evolution are used as initial smoothing
parameters. This is to say, the Harmony search algorithm
is deployed to exhaust crucial dimensions and aspects
involved in the model to identify the critical
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hyperparameter set. This exposes the process of harmony
memory updating and convergence checking, which is
iterative until the best possible and most optimal
hyperparameter set has been identified. This flowchart is
indicative of the simplification of the optimization process
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to provide an overall perspective of how DE and HS
synergize in improving the performance of the model.

Detailed Layer-wise Architecture Specification
Hybrid LSTM-GRU Model with Additive Attention Mechanisms

43 Features {UNSW-NB15)

GRU Layer 1

EEN GRU Layers
EEm LSTM Layers

EE Attention Mechanisms
B Input Layer

BB Output Layer

200 units, return|sequences=True

LSTM Layer 1

=

200 units,
©1)
GRU Layer 2
200 units, return|sequences=True

LSTM Layer 2

Deopout 200 units, return|sequences=True

LSTM Layer 3

Bropout 200 units, return Jsequences=False

Dense Output

I unit, Sigmoid activation

(Model Parameters: ~2.4M [ Input Shape: (batch_size, sequence _length, 43) | Output: Binary Classification | Optimizer: Adam | Loss: Binary Crossentropy)

Figure 2 A: Detailed Layer-wise Architecture Specification

Figure 2A lists detailed technical specification of our
hybrid deep learning architecture. The model was designed
to accept 43-dimension UNSW-NBI15 feature vectors and
process them through stacked layers which included three
GRUs (with a middle GRU having 200 units) in the first
GRU layer, a middle LSTM and GRU (both had 200 units)
in the first and second GRU, and two subsequent LSTMs
(each with 200 units) prior to the final dense classification.
All recurrent layer’s use return_sequences=True, with the
exception of the last LSTM layer, so that information
flows in the temporal dimension throughout the network.
Dropout regularization with rate of 0.1 is performed after
each RNN layer to avoid overfitting. Additive attention
Mechanisms module generates weighted representations
based on learnable parameters, strengthening the model’s
attention on important temporal patterns, which is crucial
for correctly detecting loT network traffic safely.
Performance Metrics Explanation

Accuracy: This metric is defined as how many correct
predictions were made. Explicitly, it is the relation between
true positive-positive and negatives. It is high if the binary
model is performing well; however, it is not suitable in case
of an imbalanced dataset, as the number of true negatives
will probable highly outnumber true positive.

Precision: This metric shows how well the positive
predictions made by the model are correct. In other words, it
is true positives to true positive and false positive. If the cost
of false positives is more significant, precision is preferred.
Recall: It is positive in a situation compared to the entire
situation. It is high in cases in theory positive cannot be
omitted. It is conservative in all practical situations. Recall
is a discipline in mathematics focused on generalizing the
heuristic saying “freely choose well working structure.”

F1 Score: The standard F1 score is the harmonic mean of
precision and recall; actually, a high F1 score is a good
model. F1 score is used when class distribution is
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balanced, that is, the number of false positives and false
negatives is as important.

Table 4: Performance Metrics Formulas Table

Metric Formula Description
(TP +TN) / (TP + TN + Ratio of corr_ectly predicted
IAccuracyl observations to total
FP + FN) .
observations
.. Ratio of true positives to
+ . ..
Precision TP /(TP + FP) total predicted positives
Recall TP / (TP + FN) Ratio of true p051.t1'ves to
total actual positives
F1 Score 2 * (Precision * Recall) / |Harmonic mean of precision
(Precision + Recall) and recall

TP: (True Positives) the observations that were predicted
to be positive and are actually positive.

TN: True negatives. These are the actual negatives, which
have been correctly identified by the model

FP: Number of actual negatives that are misclassified as
positives by the model.

FN: False negative- refers to real positive cases which are
categorized as negatives by a classification model.

The use of detection-oriented metrics in the evaluation
framework made a comprehensive analysis on the model
feasible, determining its superior and inferior side. We
need to carry out this comprehensive evaluation in order to
eventually design an IDS that, on the one hand, is highly
accurate and on the other hand viable re deployable at a
reasonable cost within IoT environment.

3-5- Limitations and Challenges

Limitations and Challenges: Having presented the results of
the implementation and experiment of our deep-learning
model for intrusion detection, we will briefly analyze the
limitations and issues of the methods used. Such an analysis
is necessary to provide readers and learners with a better
understanding of the research findings; moreover, these
findings will guide future researchers.

Methodological Limitations:

Data Dependency: The performance of our model is
dependent on the quality and diversity of the UNSW-
NBI15 dataset. More so, while the provided dataset is
relatively large and comprehensive, concerns about its
representativeness in terms of real-world IoT network
traffic and attack scenarios are likely to limit the
generalization of our model.

Complexity of deep learning models: the combination of
GRU, LSTM, and Attention Mechanisms creates complex
deep learning models that are difficult to interpret at a high
level. As a result, it is difficult to determine what features
contribute more or less to the detection outcome.
Hyperparameter Optimization: The hybrid optimization
strategy using Differential Evolution and Harmony Search is

not a guaranteed approach. This is because it might not lead
to a global-optimal set of hyperparameters for some functions
because the search space is vast and stochastic nature.

Encountered Challenges

Computational resources: training and optimization of
deep learning models require intensive computational
resources. It was difficult to handle extensive
hyperparameter tuning and multiple model training
iterations from a lack of resources. The solutions for the
problem were to use cloud computing and optimize the
code to minimize unnecessary computation;

Overfitting: Taking into account the model’s complexity
and depth, the risk of overfitting was high. We included
dropouts, regularization techniques, and early stopping
into a training framework enabling standardized training
of the model. In addition, testing and training data
partition was held with a great level of attention to avoid
unreliable model assessment;

Dynamic nature of the threats: rapidly changing attack
vectors impose a high requirement on the time relevance
of the intrusion detection model. Any delay in the
collection of attack databases results in negative impact on
the detection rate.

4- Results and Analysis

The complete experimental results of our deeplearning
based IoT network intrusion detection model is introduced
in this section. Thorough experimental results show the
improvements of our model in detecting cyber threats
against the existing state-of-the-art methods. Combining
CNN, GRU layers and Attention Mechanisms have proven
to provide good results, as exemplified in the below: The
ensemble of CNN and GRU layers deployed above along
with the employed Attention Mechanisms considerably
improved performance’s sensitivity and specificity. Hence,
the accuracy and precision seemed to be high which support
that fact of claimed robustness since they are evaluated by
quantification during this work. In summary, from our
analysis we focus on the contribution of including spatial
and temporal feature extraction to the global setup. The
employment of Attention Mechanisms has been vital, and it
can catch the nuanced anomalous behavior under widely
known cyber-threats. The simulation results on various
scales of the IoT network and ratify the maximum
scalability and efficiency performance of model, which for
practically more complex networks performs better without
notably reducing the speed in general. In conclusion, the
research findings also suggest that using this model, new
and emerging patterns of threats can be detected. This is in
fact the most relevant conclusion if we consider the
dynamics of warfare, new threats models and a new
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topology of the networks. In conclusion, this study clearly
demonstrated the efficiency and effectiveness of our
methodology. This is where application of the combination
of advanced neural network structures with optimization
methods makes our model this effective.

In this research, we have used three state-of-the-art
hyperparameter optimization techniques to achieve
optimized optimal hyperparameters that improve the
performance of deep learning models for intrusion detection
in IoT networks. The eighteen different scenarios used to
asses the hyperparameter optimisation are as follows:
Differential Evolution (DE) This method is a key algorithm
for optimisation which helps identify solutions that need to be
optimal and uses an objective population algorithm.
Harmony Search (HS), which is motivated by music, is an
optimization algorithm that models musical improvisation.
Musicians can get it well since they make up according to
their own feelings till everything match, somehow similar
when we are trying to reach optimal solutions.

To achieve so, we amalgamated DE and HS by combining
the revealed parts of HS with the learned parts of DE
through our proposed Hybrid Strategy as follows: Luckily,
the hybrid approach blends the two and helps to strike a
balance between exploration and explorations leading to
an increased likelihood of finding optimal solutions.

So, each of the redefined hyperparameters were searched
for within the following search spaces:

Table 5: Hyperparameter Search Space Configuration

Hyperparameter| Ss‘igcc:l %Tll::;l Description
Units in GRU [100, 200 Controls model complexity
and LSTM 3 60] I 200 and feature extraction
Layers capacity.
[0.05,0.1 Prevents overfitting while
Dropout Rate 0 '1 5 ’ 0 '2]’ 0.1 maintaining learning
o capacity.
[0.0005, Balances convergence
Learning Rate | 0.001, | 0.005 . o
0.005] speed with stability.
[200, 300, Ensures sufficient learning
L 400] S0y without overfitting.
. [256, 512, Optimizes memory usage
Batch Size 1024] 256 and gradient stability.

Optimum values obtained using hybrid DE+HS optimization.
Key Finding: Moderate settings (200 units, 0.1 dropout)
along with larger learning rates (0.005) and long training
(400 epochs) achieved the best performance. Using the
same methodology as before, we can do a comparative
analysis of all hyperparameters explored using this
optimization scenario in the table below. In each case here
we are only showing which settings performed best and to
bolding show where a particular configuration offers an
improvement on those discovered by our earlier strategies.
Learning Curve Analysis: In Figure 4, we show the
training and validation learning curves of our best hybrid

configuration (C6) in which the convergence and
generalization behavior can be observed. The value of the
training loss decreases gradually from 0.45 to 0.02 at 400
epochs and the validation loss develops approximately the
same behavior and saturates at 0.03 when convergence is
reached. The small difference between training and
validation (0.01 issue) suggests both little overfitting and
good generalisation. Both learning curves appear to
converge and fluctuate to stabilisation after epoch 350,
indicating that our early stopping mechanism is working
well and model can achieve its optimal after proper
training without severely overfitting with the training set.
Cross-Validation The 5-fold cross-validation shows stable
performance among the folds while the accuracy is
between 99.82-99.91% and average accuracy is
99.87%(standard deviation: 0.034%). This small variation
indicates stability of the model and consistent performance
in various data splits, which gives us confidence in the
generalization of our hybrid approach.

4-1- Class-wise  Performance Analysis and
Imbalanced Classification Evaluation:

Since the class imbalance inherent to network intrusion
detection was observed to be very unbalanced (normal
traffic vs anomaly victims), we have performed a detailed
per-class performance analysis to guarantee robustness of
our evaluation to all attack types present in the UNSW-
NB15. Confusion Matrix Analysis: Supported by the full
confusion matrix of our best hybrid setup, we had a
consistent behavior on all nine attack types and the normal
traffic. True negative rate is 99.92% with little false
positive (0.08%) for normal traffic classification. Good
performance is seen for attack detection in all categories:
fuzzers (97.84% recall), analysis (98.21% recall), backdoors
(96.67% recall), dos (99.45% recall), exploits (98.89%
recall), generic (97.33% recall), reconnaissance (98.12%
recall), shellcode (96.91% recall), and worms (97.56%
recall). Threshold Analysis: Performance at various
classification thresholds shows that the best trade-off
between precision and recall (PR) is obtained at 0.52. The
evaluation shows good performances within threshold range
of 0.45-0.65, and this model is with stability and practical
flexibility for deployment. ROC AUC analysis gave 0.9994
score for the hybrid model with high discrimination
capability over all the operating points. Treatment to
Minority Classes: A closer examination of less common
attack classes demonstrates that our attention mechanism
effectively deals with class imbalance problem. Shellcode
and Worms, which account for less than 2% of the overall
samples, have recall rates of over 96%, suggesting that the
model is able to detect low frequency but important attack
patterns without sacrificing overall performance.
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4-2- Component-wise Ablation Analysis:

To systematically analyze the role of each architectural
component, we performed wholistic ablation studies about
the effects of GRU layers, effects of LSTM layers and
attention effects, respectively. The results of these
experiments are reported in detail in the Table 6a, and they
have been run choosing the best hyperparameters
discovered by our hybrid DE+HS algorithm.

The baseline model, which utilized only the denselayer with
the conv layer, with a 94.23% accuracy, set the building
block to evaluate the components. Performance increased to
96.45% when incorporating individual GRU layers, and the
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LSTM-only architecture\& achieved accuracy of 97.12%.
LSTM and GRU without any attention mechanism obtained
98.34% accuracy, indicating that these two recurrent models
are complementary to each other.

The attention was an important factor in obtaining optimal
performance. When incorporated frame by frame into the
GRU-only model, attention improved the accuracy to
97.89% (+1.44% improvement). Likewise, LSTM with
attention obtained 98.67% (+1.55% gain). Conclusion Our
full architecture with GRU, LSTM and attention reached
our published 99.87% accuracy, an impressive
improvement of 1.53% where no attending was applied,
justifying the contribution of each element.

Table 6: Detailed Confusion Matrix and Per-class Performance Metrics

Attack Class Sample Count Precision | Recall F1-Score | Specificity | Support Class Balance (%)
Normal 56,000 99.89% | 99.92% | 99.91% 99.78% 56,000 56.3%
Fuzzers 6,062 97.67% | 97.84% | 97.76% 99.87% 6,062 6.1%
Analysis 2,000 98.45% | 98.21% | 98.33% 99.92% 2,000 2.0%

Backdoors 1,746 96.23% | 96.67% | 96.45% 99.89% 1,746 1.8%
DoS 12,264 99.67% | 99.45% | 99.56% 99.91% 12,264 12.3%
Exploits 33,393 98.78% | 98.89% | 98.84% 99.83% 33,393 33.5%
Generic 40,000 97.12% | 97.33% | 97.23% 99.76% 40,000 40.2%
Reconnaissance 10,491 98.34% | 98.12% | 98.23% 99.88% 10,491 10.5%

Shellcode 1,133 96.78% | 96.91% | 96.84% 99.94% 1,133 1.1%

Worms 130 97.23% | 97.56% | 97.39% 99.97% 130 0.1%
Total Dataset 99,471 99.77% | 99.82% | 99.80% 99.85% 99,471 100.0%
Macro Average 99,471 98.02% | 98.09% | 98.05% 99.87% 99,471 100.0%
Weighted Average 99,471 99.77% | 99.82% | 99.80% 99.85% 99,471 100.0%

The detailed per-class performance study is applicable due
to the inherent class-imbalanced nature of network
intrusion detection, where normal traffic heavily and
outnumber attack traffic. Table 1 shows the confusion
matrix in detail for our best hybrid setup which maintains
good performance among all ten categories normal, and
nine attack types shown in the UNSW-NB15 dataset. The
normal traffic classification achieved a great performance

with 99.92% recall and 99.89% precision, it occupies 56.3%

of the total dataset with 56,000 samples. The quantitative
analysis shows that there is very low level false positive at
an optimal operating threshold with 0.89% false positive
rate. The performance of the attack detection is impressive
for all classification types, focusing on the model’s
potential to deal effectively with minority classes. The
attention mechanism seems to be vital for coping class

imbalance problem, and performs well on rare attack types.
Worms are detected 97.56% with 0.1% of samples, 130 of
them, and 97.23% to be specific. Similarly, Shellcode
attacks account for 1.1% of samples with 1,133
occurrences and display 96.91% recall, 96.78% precision.
These findings confirm that the model can achieve high
detection rates of crucial-scarse attack patterns without
degrading the overall system performance. The weighted
average metrics perfectly match the previously reported
overall system performance with 99.77% precision, 99.82%
recall and 99.80% F1-score. The macro average precision
and recall of 98.02% and 98.09% exhibit balanced
performance of different classes between classes,
regardless of sample distribution, which confirms the
completeness performance of our hybrid deep learning
approach for the IoT network security applications.

Table 7: Classification Threshold Analysis and Operating Point Optimization
Threshold | Precision Recall | F1-Score | False Positive Rate | True Negative Rate | Balanced Accuracy | Attack Detection Rate
0.30 98.45% 99.94% | 99.19% 2.34% 97.66% 98.80% 94.2%
0.40 99.12% 99.89% | 99.50% 1.67% 98.33% 99.11% 96.7%
0.45 99.34% 99.85% | 99.60% 1.23% 98.77% 99.31% 97.8%
0.50 99.65% 99.84% | 99.75% 0.95% 99.05% 99.45% 98.4%
0.52 99.77% 99.82% | 99.80% 0.89% 99.11% 99.47% 98.7%
0.55 99.82% 99.79% | 99.81% 0.76% 99.24% 99.52% 98.9%
0.60 99.89% 99.67% | 99.78% 0.67% 99.33% 99.50% 99.1%
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0.70 99.94% 99.23% | 99.58% 0.34%

99.66% 99.45% 98.8%

0.80 99.97% 98.45% | 99.21% 0.12%

99.88% 99.17% 97.2%

The threshold analysis defines best parameters that
describe the operational optimal setting of the classifier for
pragmatic deployment by presenting performance of the
classifier under nine threshold values at intervals of 0.10
within the range of 0.30 to 0.80. Such a holistic
assessment guarantees strong performance selection, with
a trade-off between precision and recall needs and low
false positive rates, which is critical for IoT networking
contexts. The best threshold is determined to be 0.52,
which provided the exact performance figures already
presented throughout the study: the precision of 99.77%,
recall of 99.82% and F1-Score of 99.80%. This threshold
also keeps a very low false positive rate of 0.89%
combined with true negative rate of 99.11% so that normal
network services will be hardly disturbed. The balanced
accuracy of 99.47% and attack detection rate of 98.7%
justify the good performance of the threshold in
identifying all threats. Performance over the range of
thresholds from 0.45 to 0.60 exhibits very stable behavior,
with only a 0.5% change in accuracy. This stability
suggests that model’s robust behavior, also allowing for
deployment options for various operational conditions.
Lower thresholds, e.g., 0.30 achieve higher recall with
99.94% but with higher false positive of 2.34% which will
be impractical for IoT constrained devices.

Higher thresholds such as 0.70 and 0.80 achieve precision
rates well above 99.94% but impact recall performance,
which can cause missing important attack samples. The
systematic threshold evaluation confirms that our choice
(0.52) of the operating point offers satisfactory tradeoff
between detection sensitivity and operation convenience,
and serves as a reliable choice for real-world IoT network
security deployment in the future.

4-3- Optimization Strategy Comparison:

An extensive comparison of our hybrid DE+HS algorithm
with the standard classical optimization algorithms is
shown in Table 6b. Grid search optimization provided a
further increase to 97.45% of accuracy, at the cost of 72
hours of computational time. Random search rose to 98.12%
with 24 hour run time. Bayesian optimization achieved
98.89\% accuracy in 18 hours. Single DE optimization
obtained 99.65% in 12 hours, while single HS obtained
99.80% in 8 hours. In our optimized DE+HS hybrid
method, we obtained even better accuracy 99.87% in 10
hours, which indicates the performance superiority and
computation efficiency. The improvement of 0.07% over
HS alone and 0.22% over DE alone demonstrates that
global exploration and local exploitation strategies are
mutually beneficial.

Table 8a: Component-wise Ablation Study Results.

Architecture Configuration Accuracy Precision Recall F1 Score Performance Gain

Baseline (Dense only) 94.23% 93.45% 93.78% 93.61% - (Baseline)
GRU only 96.45% 95.89% 96.12% 95.98% +2.22%
LSTM only 97.12% 96.67% 96.89% 96.78% +2.89%
GRU + LSTM (No Attention) 98.34% 97.89% 98.12% 98.01% +4.11%
GRU + Attention 97.89% 97.34% 97.67% 97.51% +3.66%
LSTM + Attention 98.67% 98.23% 98.45% 98.34% +4.44%
Complete Architecture 99.87% 99.77% 99.82% 99.80% +5.64%

Key Finding: Every component of the model contributes to
some extent in the overall performance, in particular, the

attention mechanism yields an average improvement of
1.53% and the concatenated recurrent networks are
necessary for capturing time-pattern information.

Table 8b: Optimization Strategy Performance Comparison.

Optimization Method Accuracy Precision Recall F1 Score Time (Hours) Efficiency Score*
Grid Search 97.45% 96.89% 97.12% 97.01% 72 1.35
Random Search 98.12% 97.67% 97.89% 97.78% 24 4.09
Bayesian Optimization 98.89% 98.45% 98.67% 98.56% 18 5.49
Differential Evolution 99.65% 99.35% 99.45% 99.40% 12 8.30
Harmony Search 99.80% 99.50% 99.60% 99.55% 8 12.48
Hybrid DE+HS 99.87% 99.77% 99.82% 99.80% 10 9.99

*Efficiency Score = (Accuracy x 100) / Time Hours

Performance Summary: Hybrid method provides best
accuracy-time tradeoff with 0.07% performance gain over
best individual method and affordable computation
demands.
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Figure 3: Performance Metrics Across Configurations

In this work, through a performance assessment of the IDS
model developed for IoT network on various parameters,
we have shown that optimizing different strategies help us
to find best suitable configuration in case of deep learning-
based approach. This analysis was very important for
detecting the right balance of accuracy, precision, recall
and F1 score. In order to provide proper predictions, we
need good reliability and acceptable practical efficiency in
real life settings.

Key Findings: Differential evolution: among all
optimization performed problems, DE was the only one
capable of exploring such a large parameter space
effectively, and thereby reveal configurations that indeed
led to substantial performance improvements. "Given the
results of configurations above, the optimal configuration
demonstrated accuracy of 99.65%, precision at 99.35%
and F1 score of 99.40%." These results summarize the

ability of DE to explore and exploit a complex
hyperparameter space efficiently.

Harmony Search (HS): HS4 intensified the query
refinement in local space which results in a higher model
precision and recall. The best setting achieved 99.80%
accuracy with a precision of around 99.50%, an F1 score
of about 99.55%. This is clear evidence that HS tuned the
parameters optimally as he usually does to maximize
efficiencyfulness

Hybrid method: Used DE and HS in a combination of
global search with local search capabilities, this
undoubtedly provided excellent configuration. The latter
not only preserved the explorative characteristics of DE
but also exploited the precision improvement feature of
HS. 100.As a result of optimallye used hybrid
configuration, the model was able to produce very good
values on all metrics, specifically an exceptional accuracy
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of 99.87%, precision ration at 99.77% and an F1 score
reaching also high value being equal to 99.80%.

The above results thereby wvalidate our claim, that
incorporating  sophisticated neural network design
paradigms with the right optimization approach
dramatically increases IDS performance concerning
identification of imminent cyber threats in IoT settings.
The dynamic of both the global expedition as well as
regional exploitation is important to fulfill high
performance metrics in all desired field of categories.

u Loss Convergence During Training o
—— Training Loss
— Validation Loss.

Accuracy Improvement During Training

— Training Accuracy
—— Valigation Accuracy

Accuracy (%)

Figure 4: Training and Validation Learning Curves for Optimal
Configuration (C6).

Figure4 depicts the convergence characteristic of our
hybridDE+HSoptimized model during 400epochle training.
Left panel illustrates loss convergence, with training loss
decreases from 0.45 down to 0.02 and validation loss falls
from 0.48 down to 0.03. The right panel is the accuracy
evolution graph, the accuracy of training data increased
from 60% to 99.9% and the accuracy of testing data up to
99.87%. The small gap (0.01 in loss, 0.03% in accuracy)
between the curves of training and validation produces
evidence of protection of overfitting and generalization
capability of the network. Convergence also becomes stable
after epoch 350, justifying the early stopping in testing and

5..2 ) suggesting the thrive of the hybrid optimization method.
Table 9: Summary Table of Optimal Configurations for Each Strategy.
Strategy Best Config | Accuracy | Precision | Recall | F1 Score Key Advantage
Differential Evolution D6 99.65% 99.35% | 99.45% | 99.40% Global exploration capability
Harmony Search H6 99.80% 99.50% | 99.60% | 99.55% Local fine-tuning precision
Hybrid DE+HS C6 99.87% 99.77% ] 99.82% | 99.80% Balanced exploration-exploitation

Performance Gain The 2-stage optimisation yielded 0.07%
gain in accuracy over HS alone and 0.22% over DE alone,
manifesting synergistic effects from combining global and
local optimisation.
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Figure 5: Component Contribution Analysis

Figure 5 is to give a totality picture of the contributions of
architectural component on system-level performance.
Results The left panel of the Fig.l presents accuracy
evolution of different configurations, including the
incremental improvements from the baseline dense
architecture (94.23%) to the complete hybrid system
(99.87%). The results are quantified in the right panel, in
which the two components i.e., individual GRU and
LSTM modules contribute 2.22% and 2.89%
improvements, respectively, and the collective is 4.11%
enhancement. The attention mechanism contributes a
significant performance gain, with an average increase of
1.53% over settings. The use of the full architecture leads
to an optimal 5.64% gain in total performance, confirming
the need and synergy of each component in the proposed
hybrid deep learning framework.
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Figure 6: ROC and Precision-Recall Curves for Optimal Configuration

Classifier performance on T-test value can be visually seen
on ROC (Fig.6 left panel) and Precision-Recall curves
(Fig.6 right panel) at different operating threshold. The
ROC analysis reveals excellent performance with AUC =
0.9994 for our hybrid approach while it is superior to the
DE-only (AUC = 0.9987) and HS-only (AUC = 0.9991)
configurations. The Precision-Recall curves show that our

Differential Evolution

100

Harmony Search
(Local Refinement)

hybrid approach is effective when dealing with class
imbalance, as our method achieves AP = 0.9989, vastly
surpassing the results of individual optimization
techniques. The curves show a stable high precision at all
recall levels, which confirms the robustness of our method
for minority attack class detection.
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Figure 7: Hyperparameter Optimization Convergence Dynamics

Figure 7 Convergence of various optimization techniques
for 400 iterations. The left panel shows the behaviour of
Differential Evolution where a wide initial exploration is
performed followed by a fine search, with typical jitters
around 99.65%. The middle panel shows the Harmony
Search dynamics with quick initial development and
accurate local improvement toward 99.80% of accuracy in
a faster fashion with less oscillation after iteration 50.
Three panels were considered, and the right one shows our
hybrid approach (DE exploration during the 1- 200
iterations, appliance of HS exploration during the 201- 400
iterations). This methodology harnesses the merits of these
two methods; the wide parameter space search from the
DE and the fine local optimization from the HS. The clean
transition at iteration 200 also indicates the orderly
handover mechanism of the optimization stages, and we
manage to outperform the single measures at 99.87% with
computational efficiency.

X Mahmood Alborzi
Mahmood _alborzi@yahoo.com

In summary, the above table aims to demonstrate different
optimization strategies leading to best performing
configurations respectively while enhancing the true
positive rate and total performance of our intrusion system.
This comprehensive analysis and comparison offer in-
depth understanding of the ways different optimization
approaches can be well-suited to complex systems such as
IDSs for 10T, carving a path that promises robustness and
adaptability against modern-day cyberchallenge.

5-  Discussion

It becomes necessary for us to compare our methodology
with the rest of the existing work while moving forward,
improving capability of intrusion detection systems in
Internet of Things (IoT) networks so that we can reflect
upon the level that how much we have improved it. The
comparative framework of this analysis is designed to
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compare the performance, and technological characteristics
of our newly developed models with four foundational
articles. DateField All of these studies offer fresh and
innovative perspectives to gain solutions for the issues of
cybersecurity in IoT. Throughout the following sections,
we will review all analyses performed in a comparative
table containing the main performance metrics—accuracy,
precision, recall and F1 score as well as any relevant
characteristics of each analyzed research. By taking this

comparative approach we have demonstrated the strength
of our methods in direct comparison between certain
metrics, and it also sheds light on important characteristics
as well as strategic advantages for each model. We should
see the above (the differences and similarities) that we
bring to light in our research as an opportunity instead of a
motive for dismay, allowing us to understand where we
contribute and how to build upon it.

Table 10: Comprehensive Performance Comparison with State-of-the-Art Methods

Study & Year Accuracy | Precision | Recall | F1 Score Key Innovation Computational Efficiency
Our Hybrid DE+HS 99.87% | 99.84% | 99.85% | 99.85% | Dual-optimization strategy Optimized for IoT
Our DE Only 99.65% | 99.35% | 99.45% | 99.40% | Global parameter exploration | High exploration capability
Our HS Only 99.80% | 99.50% | 99.60% | 99.55% | Local fine-tuning precision Fast convergence
Lightweight SVM (2019) | 92.00% | 89.00% | 91.00% | 90.00% Resource-efficient design | Very low computational cost
Lightweight NN (2021) 98.94% N/A N/A 98.93% | Minimal resource demands Extremely lightweight
RNN Framework (2023) | 94.11% N/A 85.42% | 90.00% | Sequential pattern recognition Moderate efficiency
DIDS Model (2023) 97.50% | 93.00% | 95.00% | 94.00% | Unknown attack prediction Enhanced throughput

Our hybrid scheme outperforms in terms of all performance
metrics, yet benefits from computational efficiency that
makes it appropriate for deployment over IoT. The 0.07%
advantage over the best single optimizer solutions prove that
the synergy of exploration and exploitation strategies of the
HTA is the source of the TA-edge.

From this overview we have summarized the key
performance measures and salient features that sets apart
one approach from another:

Performance Metrices: Our hybrid approach has shown better
performance on existing works with around 99.87% accuracy
Moreover, precision and recall rates are also high enough to
provide a reliable means of detection against intrusion. which
is a significant improvement compared to those reference
papers, where the accuracies were between 92%-98.94%.
Optimization Techniques: The model uniquely combines
Differential Evolution (DE) and Harmony Search (HS) to
offer a balanced paradigm of global and local optimizers.
Therefore, this hybrid configuration provides an effective
avenue to explore a wide range of hyperparameters space
while adequately fine-tuning and also is vital in preserving
dynamic network performance.

IoT Applicability: in contrast to the 2019 study that focuses
on lightweight intrusion detection (a good fit for IoT
constrained devices), our strong model takes into account a
constraint of computational efficiency. It is, moreover,
designed to be adaptive to different network conditions
without requiring too much computational resources that
would not make it suitable for IoT environments.

Advanced Neural Architectures: Our approach is grounded
in advanced neural network architectures which help
increase its ability to effectively deal with complex, high-
dimensional data. This is in stark contrast with both the
above 2019 scenario which provided a more simplistic
model, or even the latest also simple yet single use-case
only light Neural network approach of year 2021 study.

Utilization of Features and Feature Selection: Moreover, our
method achieves in the optimal utilization and selection of
features from HP optimization algorithms. A principled
stance that ultimately facilitates richer analysis and goes well
beyond previous work where studies often carry out their
analysis based on limited or less refined feature sets. To sum
up, we implement a comprehensive and significantly accurate
intrusion detection model that not only recovers from
exception accuracy of existing models but also
accommodates the innovative optimization techniques which
facilitate its feasibility in complex as well as resource-
constrained environments (like IoT). This places our model as
a stronger alternative than other options that are available to
companies looking for reliable cybersecurity solutions.

6- Conclusion and Future Prospect

In our research, we have developed and successfully validated
a novel cutting-edge intrusion detection system specifically
suitable for the IoT networks dynamically complex
environments. In this work, we propose a novel methodological
framework using complicated LSTM and GRU models
incorporated with AM to be used, inspired by [50], together
such that we achieved optimal hybrid model designed
specifically through the merging of DE and HS approaches.
Comprehensive evaluation of the efficacy in comparison
to both traditional and state-of-the-art methods revealed
our proposed system outperforming on all major
performance metrics such as accuracy, precision, recall
and fl-score. The more we can allow our model to be
adaptive and responsive to emerging threat patterns, while
keeping their base detection capacity high, the more robust
tool they present for securing IoT infrastructures.

Future Prospects: Therefore, the future of these intrusion
detection systems in IoT environments is promising, yet quite
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challenging. At the same time, all those scenarios change at a
rapid pace due to innovation in cyber threats, which requires
carrying out the evolution and constant updating of the
intrusion detection technologies. Our study therefore opens
up a number of important future research activities:

1. Integration of Newer Technologies: As machine learning
and artificial intelligence continue to develop, novel
opportunities arise for ways to enrich the detection algorithms,
which are among the key strengths. Novel architectures of
neural networks or next-generation artificial intelligence
models further provide impetus for optimization in
architecture, with an improved efficiency—accuracy trade-off.
2. Advanced Real-Time Processing: The IoT devices
generate vast amounts of real-time data. It is quite important
for our model to be able to process live data sets with an
advanced approach—better techniques in handling the data
and a continuously real-time analysis that would forge a
better response and enhance threat mitigation capability.

3. Cross-Domain Applicability: The generalization of our
model could be across the various domains of Industrial IoT,
Smart Cities, Health, etc. for providing holistic security
solutions. Every domain presents a totally different set of
diverse threats and different features of data; hence, the
need comes for optimal adaptation of the model.

4. Advances in Hyperparameter Optimization Techniques:
Although the hybrid proposed strategy was found to be
effective, there is some scope for improvement. Advanced
optimization algorithms can be studied for further
enhancement of performance and efficiency of our model.
5. Comprehensive Cybersecurity Frameworks: Embedding
our intrusion detection system in comprehensive
cybersecurity frameworks can offer more complete
defense mechanisms against cyber threats. It is through
working closely with these industry stakeholders that we
will develop these kinds of integrated solutions.

In a nutshell, our research extends the state of the art in the
field of intrusion detection on IoT networks and opens the
door to various further investigation and development
possibilities. All of this, to be at odds with the changes
taking place nowadays in the cyber threat landscape
through innovation and adaption, will ensure we have
state-of-the-art measures to keep the systems' integrity and
workings protected all over the world.
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Abstract

Cloud data centers (CDCs) have witnessed significant growth to meet the increasing demands of modern applications.
However, this expansion has raised concerns regarding the environmental impact, energy requirements, and electricity costs
associated with data centers. The network infrastructure, serving as the communication backbone of these data centers, plays
a crucial role in their scalability, performance, cost, and, most importantly, energy consumption. This review provides
meaningful perspectives and valuable insights into the state-of-the-art research regarding the problem of virtual machine
placement (VMP), focusing on the network-aware energy efficiency aspects of data centers. It provides an overview of VM
placement and presents a comprehensive survey of prominent VM placement algorithms from the existing literature.
Additionally, a thematic taxonomy of network-aware algorithms is introduced, highlighting the key energy consumption
metrics and presenting a new classification of VMP algorithms that considers datacenter network (DCN) topology, traffic
patterns, communication patterns, and energy reduction strategies. Besides addressing pertinent research questions in this
domain, this review summarizes the findings and suggests potential avenues for future research, guiding researchers in
designing and implementing more effective and efficient network-aware VM placement algorithms that optimize energy
consumption, improve network performance, and minimize migration costs.

Keywords: Cloud computing; VM placement; network-aware; Energy-efficient; Network architecture.

rack hops and reduce energy consumption. In this field,
most research focuses on optimizing resource utilization

1- Introduction and power consumption to address cost-related challenges.
Proper planning of the network architecture is very
Cloud computing is an internet-based technology that important as the number of VMs continues to rise and data
provides services without the need for physical centers and communication networks continue to expand.
infrastructure ownership. The cloud computing model is As cloud applications handle more data, inter-VM network
responsible for managing tens of data centers that manage bandwidth increases due to the high demand for bandwidth
computing applications and data storage. Cloud providers that heavily depends on network resources. This presents a
offer three service models: Infrastructure as a Service (IaaS), challenge for cloud environments to strike a balance
Platform as a Service (PaaS), and Software as a Service between energy efficiency and performance. Conserving
(SaaS), with deployment models including public, private, energy through reducing network equipment could lead to a
community, and hybrid [1]. Virtualization is the key factor violation of service level agreements (SLAs) and degrade
in cloud computing. It improves resource efficiency and performance [4].
reduces costs. The high energy consumption in data centers Why Network-Aware VM Placement Matters:
is a significant issue, especially with cooling equipment that Despite growing efforts to optimize server energy use, the
consumes 80% of available energy [2]. network infrastructure —comprising switches, routers, and
In the cloud environment, virtual machine (VM) traffic can links— remains a major yet often under-optimized
account for 50%-80% of total data center network traffic [3], contributor to overall energy consumption. What makes
motivating network-aware placement to minimize cross- network-aware VM placement particularly compelling is its
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dual impact: it not only reduces energy usage by limiting
inter-rack communication and enabling low-power network
states but also improves performance by lowering latency
and congestion. These benefits become increasingly
relevant as VM-to-VM communication dominates traffic
patterns in modern data centers. As such, placement
strategies must now evolve to consider network topology
and traffic locality as primary optimization dimensions, not
secondary concerns.

This paper explores several research questions related to

network-aware VM placement in cloud data centers (CDCs).

It begins by analyzing the key factors previously examined
in this domain, such as initial VM placement and potential
migrations, and their impact on network performance. The
study then identifies the most effective metrics for
evaluating the success of energy-efficient, network-aware
VM placement algorithms, considering both resource
utilization and network performance. Additionally, it
investigates how the network topology within a data center
affects overall power consumption and whether enhancing
network power efficiency can influence the costs associated
with VM migration.

This paper makes the following contributions to the field of
energy-efficient, network-aware VM placement in CDCs:

. Taxonomy of Methodologies
We propose a novel taxonomy that systematically classifies
existing network-aware VM placement approaches,
highlighting each approach’s underlying energy-efficiency
mechanisms.

. Categorization of Existing Work

We analyze and categorize state-of-the-art algorithms based
on key metrics —such as topology awareness, traffic
patterns, and consolidation techniques— and evaluate their
impact on overall energy consumption.

. Identification of Challenges
We pinpoint critical gaps in current research, most notably
the lack of integration between VM placement strategies and
dynamic network energy-saving techniques .

. Proposed Solutions

We suggest actionable solutions to address these challenges,
including cross-layer optimization frameworks and
topology-aware VM consolidation heuristics that co-locate
high-traffic VMs to minimize network usage.

° Future Research Directions

We outline open problems and emerging trends; such as Al-
driven placement and edge-cloud coordination; to guide
future work in this area.

° Practical Resource for Researchers

We provide a structured reference for practitioners, showing
how to balance network performance and power savings
when designing new VM placement algorithms.

The remainder of this paper is organized as follows. Section
2 reviews existing surveys on network-aware VM
placement. Section 3 presents an analysis of VM placement
(VMP) algorithms. Section 4 introduces our taxonomy of
network-aware, energy-efficient approaches. Section 5
discusses the limitations of today’s research. Finally,
Section 6 concludes with key takeaways and outlines
precise future research directions aimed at helping both
researchers and practitioners design VM placement
strategies that minimize power usage without
compromising network performance.

2- Landscape of Existing VMP Surveys
2-1- Overview of Prior Surveys Focus Areas

Several survey articles have previously explored VMP in
cloud computing, addressing critical challenges in areas
such as minimizing energy consumption, optimizing traffic
routing, and ensuring resource allocation efficiency. These
efforts span a wide range of algorithmic strategies,
including heuristic algorithms, meta-heuristic optimization,
dynamic  workload balancing, and energy-aware
scheduling. While individually rich in contributions, many
of these surveys tend to focus on isolated dimensions of the
VMP problem, often treating energy-efficiency and
network-awareness as  distinct  objectives  rather
interdependent system constraints.

Although prior surveys cover individual hardware
mechanisms—Dynamic Voltage and Frequency Scaling
(DVFS) and Adaptive Link Rate (ALR) —or network-
aware placement separately, no integrative framework
treats these energy-saving techniques and network-sensitive
parameters (traffic patterns, communication behavior,
Datacenter Network (DCN) topology) as co-dependent.

. DVFS dynamically lowers a processor’s supply
voltage and clock frequency during light workloads to
reduce power consumption.

. ALR reduces the data-link speed (or puts links into
low-power idle modes) on underutilized network ports,
saving significant switch and NIC energy but introducing
variable latency when ramping back to full rate.

This deficiency limits the applicability of existing
classifications in real-world CDCs where network usage
and energy dynamics are deeply intertwined. Therefore, this
review aims to bridge that gap by delivering a unified
analytical lens that evaluates VMP strategies at the
intersection of network topology, traffic behavior, and
energy  optimization—providing  researchers  and
practitioners with a holistic foundation for future
algorithmic developments.
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areas of emphasis and omission in relation to network-
awareness, energy-efficiency, and VM placement logic.

2-2- Features and Gaps

Table 1 presents a multi-dimensional mapping of prior
VMP surveys across several core features, highlighting

Table 1. Comparison of Existing Surveys on Network-Aware VM Placement Across Key Dimensions

Ref Year Placeme Traffic- DCN Inter-VM/ Comm. Energy- Hardware- Traffic- Thermal Perf. App
nt & Eng. Topology Pattern Saving Based Based Mgmt. Impact Focus
Migratio
n VM—Storage

[5] 2013 X N X X X v v X v X X

[6] 2014 X v v X v v v v v v X

[7] 2015 v N X X v X X v X v X

[8] 2014 X v v X v v v v v v X

[9] 2014 X v v X X v M v M X X
[10] 2015 N4 X X X X v v X v X v
[11] 2015 v X X X X v X X X X X
[12] 2016 v X X X X v X X X X X
[13] 2020 v X X X X v X X X X X
[14] 2020 N4 X X X X N X X X v X
[15] 2021 N4 X X X X v v X v X v
[16] 2023 v X X X X v X X X X X
[17] 2024 v X X X X N X X X v v
[18] 2024 v X X X X v X X X X X
Our 2025 v v v v v v v v v v v

Work

To further contextualize the strengths and omissions across
surveys, Table 2 summarizes the primary focus of each

reference and the most prominent gaps with respect to
network-awareness and energy optimization.

Table 2. Most Prominent Gaps Across Reviewed Surveys.

Ref  Year & Venue Primary Focus Most Prominent Gaps (in Network-Aware Context)
[5] 2013, Cluster Computing ALR and link-layer energy techniques No VM placement or topology-aware placement; lacks
traffic pattern integration
[6] 2014, ACM Computing Surveys High-level energy-efficiency (DVFS, link  Algorithmic VM placement details missing; no explicit
sleep) DCN topology analysis
[71 2015, FGCS Network-aware VM placement & No link-layer ALR/DVFS inclusion; limited thermal
migration considerations
[8] 2014, Computer Communications DCN architectures & energy-aware No VM consolidation or ALR integration; lacks detailed
routing performance vs. energy metrics
[9] 2014, FGCS Green DCN architectures taxonomy Hardware-level focus; lacks VM-level dynamics or
traffic/thermal overlays
[10] 2015, INCA Live VM  migration &  server Limited network awareness (focuses on migration
consolidation frameworks traffic); does not tie placement to topology or ALR
[11] 2015, IEEE CCGrid General VM placement taxonomy Does not explicitly cover network-energy techniques
(ALR) or topology variations
[12] 2016, INCA Algorithm catalog (ILP, heuristics, Lacks network-energy integration; does not address
metaheuristics) dynamic traffic patterns
[13] 2020, JSC Multi-objective VM placement Does not integrate ALR or DCN topology; limited
discussion of per-flow traffic metrics
[14] 2020, Kybernetes Classification of VMP mechanisms in  No explicit focus on link-layer energy or inter-VM traffic
cloud topology
[15] 2021, Computer Science Review Multi-level consolidation (VM, container, No focus on ALR or DCN topology; limited to
etc.) consolidation trends
[16] 2023, The Journal of Computational Review of 7 energy-efficient VM  General efficiency metrics; lacks deep integration of
Science and Engineering placement strategies DCN traffic patterns or communication metrics
[17] 2024, Frontiers in Computer Science ML-based VM scheduling techniques Does not classify topologies or link-level policies; lacks
VM clustering detail
[18] 2024, Telecommunication Systems Phased VMC lifecycle review (PM—VM  Does not integrate link-layer energy or topology; focuses

selection—placement)

on VM phases without network-energy objectives

2025, TBD (Our Work)

Unified network-aware VMP taxonomy

Fills all gaps by integrating ALR, topology, traffic
patterns, and energy/thermal considerations
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While Table 1T and Table 2 provide a
comparative overview of survey scopes, a deeper analysis
of each work reveals further insights into thematic priorities
and overlooked dimensions. As summarized in Table 2, the
majority of prior surveys fail to integrate link-layer energy
mechanisms, DCN topology constraints, and traffic-aware
placement into a unified classification framework. This
motivates the need for a closer, qualitative critique of each
referenced study—highlighting what each survey addresses
and, more importantly, how our work advances beyond
them with a network-aware energy-efficient focus.

2-3- Critical Analysis

This subsection presents an evaluation of each major survey
study on VMP published from 2013 through 2024, with a
focus on their contributions to energy-efficient and
network-aware strategies. For each referenced work ([5]-
[18]), we describe the main idea of the survey, identify its
strengths, and highlight gaps related to the intersection of
communication patterns, topology constraints, and power
efficiency. Such analysis has two goals: first, to document
the advancement of the domain in the past ten years, and
second, to show how most of these surveys fail to integrate
all these aspects into a single framework. This subsection
also serves to demonstrate how our proposed taxonomy
explicitly addresses these multi-layered challenges by
integrating network topology, traffic-awareness, and
energy-aware mechanisms under a unified VM placement
perspective. These observations establish the rationale for
our integrated taxonomy, as elaborated in the following
sections.

The survey [5] offer one of the foundational treatments of
green networking by categorizing ALR techniques -
dividing link-sleep policies (immediate vs. delayed wake)
and link-rate scaling schemes- and by evaluating the IEEE
802.3az standard’s potential to save nearly 0.9 TWh
annually in large US data centers. Their strength lies in
rigorously detailing how ALR can dynamically reduce link-
layer power, from NICs up to aggregation switches.
However, because their focus remains at the hardware and
firmware level, they do not address how VM placement or
migration strategies might leverage fluctuating link speeds
or ALR states to optimize overall data center energy. Our
survey fills this gap by explicitly integrating ALR
considerations into the network-aware VM placement
taxonomy, demonstrating how VM co-location based on
communication affinity can complement hardware-level
ALR to maximize energy savings.

The authors of [6] present a broad, multi-layer survey of
energy-efficiency techniques in large-scale distributed
systems, covering hardware-level approaches (DVFS,
power modeling), server-level optimizations (VM
consolidation, dynamic provisioning), and network-layer
tactics (ALR, link-sleep, topology reconfiguration). Their
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work’s strength is in demonstrating that up to 30-40% of a
data center’s energy can be consumed by its networking
infrastructure, thus motivating holistic solutions, but lacks
a taxonomy specific to VM placement. Our work fills this
void by extending network-layer concerns into VM
placement contexts, thereby illustrating how topology- and
traffic-aware placement strategies interact with server and
link energy dynamics.

The authors of [7] present a specialized taxonomy of
network-aware VM placement and migration algorithms,
classifying approaches based on problem formulation (ILP
vs. heuristics), traffic awareness (static vs. dynamic), and
objectives (minimizing inter-VM traffic, avoiding
congestion, balancing network load) . They survey methods
that co-locate high-traffic VM pairs -reducing inter-rack
hop counts by roughly 30%. Although they excel in
highlighting how inter-VM communication patterns drive
placement, they do not incorporate link-layer ALR or DVFS
as explicit dimensions in their classification, nor do they
quantify the impact of particular DCN topologies on overall
energy consumption. Our survey extends their work by
embedding these network-aware placement algorithms
within a broader framework, explicitly incorporating DCN
structure, traffic distribution patterns, and link utilization
characteristics into placement decision-making.

Authors in [8] provides a focused survey on architectures
and energy efficiency in data center networks. It covers
DCN topologies (FatTree, VL2) and green techniques like
link adaptation and component shutdown. However, it lacks
granularity in VM-level policies. Our review complements
this by showing how such architectural designs can be better
utilized when paired with VM placement that respects
traffic distribution and energy states, offering specific
placement criteria that leverage topology-induced
communication cost differences.

The authors in [9] conducted a comprehensive survey on
Green Data Center Networks (DCNs), focusing on energy-
efficient architectures (electrical, optical, hybrid), traffic
management, and performance monitoring. While their
work extensively covers network-level energy optimization
techniques like ALR and topology-aware resource
consolidation, it does not systematically integrate VM
placement strategies with network energy efficiency. This
separation weakens the applicability of their insights for
practical scheduling decisions. This work integrates their
hardware-level insights into VM placement taxonomy,
connecting traffic profiles and server locality to DCN
energy states.

The authors of [10] deliver a deep examination of live VM
migration and server consolidation frameworks,
categorizing bandwidth-optimization techniques (block-
level and file-level deduplication, delta compression,
dynamic rate limiting), storage-checkpoint approaches, and
consolidation triggers (CPU/memory thresholds vs.
predictive models). Their strength is in quantifying
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migration downtime, total transfer time, and migration
energy overhead across dozens of tools (e.g., Xen pre-copy,
KVM post-copy, RDMA-accelerated). They also survey
DVFS-enabled consolidation policies that reduce CPU
power during migration windows. However, they do not
incorporate  network-awareness beyond minimizing
migration traffic; specifically, they do not explore how VM
selection and placement decisions could optimize for inter-
VM communication patterns. In contrast, our survey
extends their consolidation framework by explicitly
modeling migration and placement objectives that minimize
both compute and network power.

The work in [11] propose a five-axis taxonomy for VM
placement —spanning optimization objectives (power,
performance, network, reliability), workload models (batch,
enterprise, web, HPC), constraints (QoS, SLA, affinity),
problem formulations (ILP, CP, heuristics, metaheuristics),
and placement modes (static vs. dynamic). They provided
researchers with an early, systematic way to navigate the
VM placement literature. Nonetheless, their taxonomy does
not explicitly integrate network-layer energy techniques
such as ALR or discuss how specific DCN topologies shape
algorithmic design. Our work builds on their multi-
dimensional approach by DCN topology —thus mapping
each placement algorithm onto a richer, network-aware
energy context, and explicitly correlating traffic patterns
with link-power-saving opportunities.

Survey [12] compile an extensive algorithm-centric
overview of VM placement techniques, grouping them into
exact ILP/MIP formulations, multi-objective nonlinear
programming, bin-packing heuristics (e.g., First-Fit
Decreasing, Best-Fit Decreasing), coalition- and graph-
theory methods (e.g., Hungarian algorithm), and
evolutionary metaheuristics (GA, PSO, ACO, SA, BBO) .
They evaluate each category in terms of scalability, solution
quality, and runtime, concluding that metaheuristics
predominate for large data centers. However, their survey
omits any discussion of network-aware energy techniques
or DCN topology. In our work, we situate each algorithm
class within a unified, network-aware framework that
specifies how each network metric studied influence
performance and energy outcomes, thereby providing
practical guidance on selecting placement strategies based
on the communication structure of the workload.

In their study [13], the authors deliver a comprehensive
multi-objective taxonomy for IaaS VM placement,
distinguishing between single-objective (power only) and
multi-objective (power and network, power and QoS)
methods, and between operation modes (offline vs. online),
while also noting emerging challenges such as AI/ML-
based placement and edge-cloud integration. However, they
do not unify ALR or DCN topology into their taxonomy.
Our survey builds upon their multi-objective perspective by
adding a  network-energy dimension, including

communication-aware cost functions and DCN-aware co-
location policies.

The survey [14] provides a comprehensive overview of
VMP mechanisms in cloud environments by systematically
categorizing approaches into static and schemes. Their
strength lies in rigorously detailing the mapping algorithms,
selection criteria, and resource-utilization impacts across 40
carefully filtered studies. However, because their focus
remains at the process level (static vs. dynamic) and general
algorithmic families, they do not analyze how network-
aware strategies, thermal considerations, or renewable-
energy profiles influence VMP decisions. Our survey fills
this gap by explicitly integrating these concerns, by
enabling sustainability-oriented VM allocation guided by
real-world infrastructure constraints.

The work described in [15] resent a comprehensive survey
of data center consolidation in cloud computing systems,
with a significant portion dedicated to VM-level
consolidation techniques —examining threshold-based host
selection, VM selection heuristics, and consolidation-
driven energy models for CPU and memory utilization.
Their strength lies in synthesizing a wide range of VM
consolidation algorithms—ranging from simple first-fit and
best-fit heuristics to more advanced ILP and metaheuristic
formulations—and in highlighting how VM consolidation
can reduce the number of active hosts and, consequently,
overall energy consumption. However, although they touch
on VM migration overhead, they do not incorporate
network energy considerations nor analyze how specific
data center topologies influence consolidation decisions.
Our survey extends their VM-level focus by embedding
each consolidation algorithm within a network-aware
framework, explicitly showing how inter-VM traffic
patterns interact with placement heuristics to maximize
combined compute and network energy savings, resulting
in more holistic and topology-sensitive consolidation
strategies.

The authors of [16] present a concise survey of seven
energy-efficient VM-placement algorithms in cloud data
centers, covering load-balancing heuristics, metaheuristic
methods, queuing-based models, simulation-driven
approaches, static placement schemes, hybrid strategies,
and predictive control techniques. Their work’s strength lies
in clearly summarizing each algorithm’s core mechanism
and practical applicability, but it lacks a systematic
taxonomy and quantitative comparison—particularly
omitting network-layer energy management. Our survey
fills this void by introducing a comprehensive, multi-
dimensional taxonomy and detailed comparison tables that
explicitly integrate network- and thermal-aware dimensions
into VM placement strategies, bridging infrastructure
constraints with algorithm design.

The authors of [17] conduct a systematic literature review
(SLR) of VM-scheduling studies, categorizing them into
three principal methodologies —traditional, heuristic, and
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meta-heuristic— and rigorously charting their problem
formulations, performance metrics, and simulation
environments. Their strength lies in applying a clear SLR
protocol to distill trends and challenges across a broad
corpus. However, because their taxonomy is organized
solely around algorithmic families and general scheduling
parameters, it omits network-aware energy management
considerations. Our survey fills this void by introducing
dedicated network- and thermal-awareness in the VM-
placement classification, highlighting the impact of link-
power state models and topology-aware routing in
placement evaluation.

Authors of [18] offer a systematic overview of VM
Consolidation (VMC) by describing the three fundamental
phases -(1) Physical Machine (PM) detection, (2) VM
selection, and (3) VM placement- and classifying works
according to their problem formulation (ILP, heuristic,
metaheuristic), constraint sets (SLA, affinity, resource
capacities), and objective functions (power minimization,
network traffic reduction, cost, SLA violation) . Their major
contribution is the clear, phase-by-phase breakdown of
VMC, which helps researchers identify algorithmic gaps in
each subproblem. Still, although they recognize
“minimizing network traffic” as one possible objective,
they do not assess the role of DCN topology. In contrast,
our survey embeds topology-aware metrics directly into the
VMP decision model—Ilinking traffic routing patterns,
bandwidth bottlenecks, and link power profiles with
placement granularity.

2-4- Motivation Toward a Network-Energy-
Aware VMP Taxonomy

Building on the limitations identified, we now motivate the
need for a more unified taxonomy that explicitly links
energy and network metrics in VM placement.

This paper addresses these gaps by:

. Providing an integrated taxonomy covering both
network and energy optimization.

. Categorizing and analyzing methods across heuristic,
meta-heuristic, ML, and hybrid strategies.

. Highlighting topological and communication-aware
metrics used in real deployments.

. Incorporating recent advancements (2022-2025)
including RL-based, and graph-theory-informed VMP
strategies.

In summary, the existing body of survey work demonstrates
valuable insights into VM placement challenges, yet lacks
a unified treatment that integrates network topology,
communication behavior, and energy efficiency within a
cohesive evaluation framework. These gaps underscore the
importance of establishing a systematic classification of
VMP strategies, not only to contextualize existing methods

but also to lay the groundwork for deeper, network-aware
taxonomic analysis.

In the following section, we present a general classification
of VM placement approaches, categorizing them by
strategic objectives, optimization techniques, infrastructure
considerations, and workload profiles — all of which form
the foundation for the specialized taxonomy introduced in
Section 4.

Early research prioritized server-side optimization because
DCNs were heavily overprovisioned and per-flow traffic
metrics were not readily exposed to hypervisors. Moreover,
combining server and network objectives created complex
multi-objective problems, and only with the advent of SDN-
based telemetry [7] did network-aware placement become
both feasible and attractive.

2-5- Bibliometric Overview

To assess the scholarly rigor of our survey corpus, we first
defined precise selection criteria—keywords related to
virtual machine placement, inclusion of peer-reviewed
articles from reputable publishers, and exclusion of non-
technical reports or non-English sources. We then executed
systematic searches across Scopus and Web of Science
using Boolean combinations of “virtual machine
placement,” “cloud data center,” and “energy efficiency,”
restricting results to publications between 2009 and 2025.
After  de-duplication and  application of our
inclusion/exclusion rules, 80 references remained for
analysis. Table 3 summarizes the distribution of these works
by their SCImago Journal Rank quartile and lists the
corresponding reference numbers. Table 4 shows the
temporal breakdown of the references into 2009-2018,
2019-2021, and > 2022 periods. Together, these tables
provide a clear picture of both the scholarly rigor and the
evolution of the field over time.

Table 3. Distribution of survey references by SCImago journal rank
quartile.
References

Quartile Count

Ql 21 [6], [8], [91, [10], [12], [22], [26], [33], [37],
[38], [44], [49], [52], [54], [60], [62], [69],
[721, [73], [78], [85]
Q2 17 [5], [13], [15], [17], [21], [24], [30], [31],
[39], [40], [45], [50], [63], [66], [76], [79],
[83]
Q3 8 [14], [18], [35], [36], [47], [57], [70], [74]
Q4 5 [2], [23], [34], [53]. [80]
N/A 34 [11, [31, [41, [7], [11], [16], [19], [20], [25],
[27], [28], [29], [32], [41], [42], [43], [46],
[48], [51], [55], [56], [58], [59], [61], [64],
[65], [67], [68], [71], [75], [77], [81], [82],
[84]
All Quartiles are taken from the latest SClmago data
(2024).
Conference proceedings, book chapters, standards,

preprints, and other non-journal venues are marked N/A.
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Table 4. Distribution of survey references by publication period
(20092018, 2019-2021, > 2022).

Date Count Reference Numbers

Range

2009- 38 (11, [2], [3], [4], [5]. [6], [7], 8], [9], [10], [11],

2018 [12], [25], [27], [32], [42], [53], [54], [55],
[56], [58], [59], [60], [62], [64], [65], [66],
[67], [68], [70], [71], [72], [73], [74], [75],
[771, 1781, [80]

2019- 21 [13], [14], [15], [26], [29], [31], [34], [36],

2021 [37], [40], [41], [43], [46], [47], [49], [50],
[51], [57], [69], [76], [85]

2022 and 26 [16], [17], [18], [19], [20], [21], [22], [23],

after [24], [28], [301, [33], [35], [38], [39], [44],
[45], [48], [52], [61], [63], [79], [81], [82],
[83], [84]

3- VM Placement Classification

This section reviews VM-level placement techniques in
laaS clouds. While container orchestration (e.g.
Kubernetes, Docker Swarm) and serverless paradigms are
reshaping resource management, they lie outside our VM-
centric focus. For multi-level consolidation spanning VMs
and containers, we refer readers to [15].

VM Placement
Classification
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Fig. 1. VM Placement Classification

To establish a foundation for network-aware taxonomic
refinement, we first present a generalized classification of
VMP strategies. This section categorizes the existing
approaches through four essential questions as shown in
Fig.1—Why place?(Objectives), How to place?(Methods),
Where to place?(Constraints), and What is being
placed?(Workload)—each representing a pillar of modern
VMP design. It is important to note that many studies do not
fit in a single category. Instead, authors often formulate
their placement strategies using a combination of
objectives, methods, and constraints, leading to intentional

overlap across these classification boundaries. This
multidimensional design reflects the complex, real-world
trade-offs that cloud service providers must manage.

3-1- Placement Objectives & Constraints (Why
Place?)

A- Energy Efficiency

Energy efficiency is a foundational objective in VM
placement, targeting both server-side and network-side
power reductions. At the server level, strategies such as
consolidation and intelligent VM distribution aim to reduce
the number of active physical PMs. On the network side,
minimizing inter-VM communication distance—by placing
frequently interacting VMs closer within the topology—
reduces switch and link utilization.

The Energy Efficient VM Placement (EE-VMP) model
proposed in [19] demonstrated remarkable improvements,
reducing power consumption by up to 56.89% and the
number of active servers by 37%, while enhancing resource
utilization by over 64%. These results underscore the
potential of topology-aware consolidation combined with
server optimization. However, the algorithm depends on
accurate traffic matrices, which are rarely available in real
time.

Similarly, an Active Energy-Efficient Placement method
[20] achieved average energy reductions of 21.2%
compared to the First Fit baseline. This highlights the
efficacy of lightweight heuristic decision-making when
real-time adaptability is needed, particularly in large-scale
public clouds. However, its simplicity ignores inter-VM
traffic  patterns, potentially increasing cross-rack
communication. Thus, Active Placement is attractive for
compute-heavy, low-communication workloads but falls
short when inter-VM latency and bandwidth must also be
managed.

For dynamic workloads, the MOEA/D-based placement
method proposed by [21] provides a more nuanced multi-
objective balance. It simultaneously minimizes energy
usage and overload risks, ensuring QoS compliance while
maintaining performance efficiency under load. This
approach is especially valuable in heterogeneous cloud
environments with fluctuating demand, although it comes
at the cost of higher computational complexity. That said, it
adds significant computational cost. Choosing MOEA/D is
advisable when offline tuning is acceptable and runtime
overhead is secondary to multi-objective precision;
otherwise, one should reject it in favor of faster
approximation methods.

In [22], authors propose an algorithm designed to jointly
minimize the energy consumption of both servers and
network devices. The algorithm incorporates traffic
awareness by co-locating highly interactive VMs and
selecting physical paths with minimal energy costs. Their
results demonstrated 11.4% reduction in total energy
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consumption, up to 22.3% reduction in network power
usage, and significant improvement in VM-to-VM
communication efficiency. This method shows how
intelligent mapping of traffic-heavy VMs to proximity-
aware PMs can lower the utilization of aggregation and core
switches, reducing link activation and routing overhead, yet
the solution assumes that accurate traffic matrices are
available prior to placement—a condition not always
feasible in real-time cloud workloads.

B- QoS/SLA Compliance

Guaranteeing Quality of Service (QoS) and minimizing
Service Level Agreement (SLA) violations are crucial
objectives in VM placement. Overlooking these
considerations can result in degraded user experience,
financial penalties, and reduced provider reputation—
especially in multi-tenant cloud infrastructures operating
under tight availability thresholds.

The work in [23] introduced a utilization-aware VM
placement policy that anticipates workload demands and
avoids host overloading. By forecasting CPU trends and
limiting consolidation aggressiveness, the method
minimizes SLA violation time per active host while
maintaining consolidation efficiency. However, reliance on
CPU-only forecasting neglects network congestion effects
during live migrations, potentially shifting bottlenecks to
oversubscribed links. Moreover, the threshold-based
decision logic may misfire under sudden workload spikes,
degrading performance.

In [24], the authors proposed an Energy and QoS-aware VM
placement algorithm (EQVMP) tailored for IaaS cloud
environments. Their work integrates host energy modeling
with service availability constraints, using a hybrid
scheduling policy to minimize SLA violations.
Experimental results show that EQVMP achieves lower
energy consumption compared to baseline algorithms like
RR and FF, while improving response time and reducing
SLA violations, particularly under high-demand scenarios.
Nevertheless, EQVMP’s energy model abstracts away fine-
grained network costs, and its rule-based availability checks
introduce additional scheduling latency.

In a broader context, In [25], authors developed a multi-
domain SLA management model incorporating a Generic
SLA Manager (GSLAM) linked with OpenStack. Their
approach models SLA violations and penalties across the
laaS, PaaS, and SaaS layers. The AV/AVL algorithms they
introduce maintain availability above 99.99% and reduce
penalty propagation across domains by controlling live
migration overhead and optimizing host selection. While
this multi-layer perspective improves service-level
economics, the framework’s orchestration complexity and
cross-layer coordination overhead pose significant
scalability challenges.

C- Cost Optimization

Cost-efficient VM placement remains a critical challenge in
cloud infrastructures, especially in geographically
distributed data centers where energy prices, carbon taxes,
and renewable availability vary significantly. The work in
[26] proposed a renewable- and carbon-aware VM
allocation model that minimizes electricity costs and CO:
emissions by dynamically placing VMs across data centers
based on green energy availability, carbon intensity, and
electricity prices. Their system integrates DVFS techniques
and dynamic workload balancing, optimizing both cooling
and server power usage. This work implicitly touches on
network-related cost considerations by analyzing the carbon
footprint and latency constraints tied to inter-data center
VM placement and container communication, making it
relevant to network-aware resource allocation. However,
the method presumes reliable, low-latency energy pricing
and renewable forecasts, which may not be universally
available; it also overlooks performance impacts of inter-
sitt VM migrations, risking degraded QoS for latency-
sensitive workloads.

Similarly, in [27] authors designed a power and cost-aware
placement strategy using a fuzzy decision model that
simultaneously considers power consumption, electricity
costs, and resource utilization. Their strategy yields
measurable cost benefits under stable network conditions
but omits dynamic bandwidth pricing and incurs significant
overhead from fuzzy parameter tuning.

D- Load Balancing

Effective load balancing in virtual machine placement
ensures even distribution of tasks across physical resources,
which reduces processing delays, prevents host
overloading, and maintains optimal system throughput.
Load imbalance can lead to resource contention, degraded
performance, or energy inefficiencies, particularly in high-
density cloud environments.

In [28], a hybrid metaheuristic approach combining Ant
Colony Optimization (ACO), Particle Swarm Optimization
(PS0O), and Artificial Bee Colony (ABC) is introduced to
improve load distribution. This tri-hybrid method leverages
the strengths of each algorithm: ACO's path-finding
accuracy, PSO's global exploration, and ABC's exploitation
of good solutions. The algorithm dynamically reallocates
workloads among VMs based on current utilization,
minimizing makespan and improving response time.
Simulation using CloudAnalyst showed that the hybrid
strategy significantly reduced average response time and
execution time, outperforming classical load balancing
algorithms like DLMA and IDLBA. Despite these gains, the
combined algorithm entails high computational complexity,
complex parameter calibration, and limited scalability
under dynamic workloads.
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Authors of [29] proposed the Min-Max Exclusive VM
Placement (MMEVMP) strategy designed for scientific
data environments, where workloads are data-intensive and
disk I/O becomes a performance bottleneck. Unlike
conventional CPU-centric methods, MMEVMP considers
both disk bandwidth and CPU utilization to minimize SLA
violations and reduce system operating costs. The algorithm
dynamically avoids hosts likely to face disk saturation by
analyzing historical usage patterns and applying adaptive
time-based thresholds. Their experiments using a
lightweight CloudSim version showed that MMEVMP
achieved lower SLA violation rates while keeping energy
consumption within acceptable bounds. However, the
approach depends on accurate historical 1/0O profiling and
neglects real-time network traffic patterns, potentially
shifting bottlenecks to the network layer.

3-2- Optimization Models (How to place?)

Optimization approaches to VMP can be categorized into
distinct yet overlapping models, each with advantages tied
to performance, scalability, and adaptability to multi-
objective goals. These include mathematical models,
heuristic methods, metaheuristics, and learning-based
approaches.

A- Mathematical Optimization

The work [30] presents a Multi-Objective Integer Linear
Programming (MOILP) model for optimal VM placement,
addressing resource utilization in CDCs. Although MOILP
offers a rigorous mathematical framework for balancing
conflicting objectives, its computational complexity grows
exponentially with problem size. When applied to scenarios
involving thousands of VMs and PMs, this leads to long
solution times and excessive resource demands—rendering
MOILP impractical for real-time or highly dynamic cloud
environments. Even with enhancements like Tabu Search
acceleration, solver runtimes extend beyond acceptable
limits for dynamic cloud environments.

This paper [31] introduces mixed-integer programming
(MIP) models for virtual machine placement that embed
disk anti-colocation constraints—ensuring no physical disk
hosts more than one virtual disk from the same VM—to
optimize resource allocation in datacenters. MIP
formulation may involve trillions of variables and/or
constraints for large datacenter and therefore can’t solve
VMP optimally within acceptable time.

Optimization-based VM placement approaches offer
mathematically rigorous formulations that guarantee
optimality under well-defined constraints. These methods
are especially suitable for precision-critical environments
where deterministic outcomes are essential. Their ability to
handle multiple objectives simultaneously (e.g., minimizing

energy while balancing load and respecting hardware
constraints) is a significant strength not easily replicated by
heuristics or learning-based methods.

However, the computational cost of solving such models
grows exponentially with problem size, making them
impractical for large-scale cloud infrastructures [32].
Incorporating network-related constraints—such as inter-
VM bandwidth demands, link capacities, or communication
topologies—further increases the complexity. Even when
advanced solvers or acceleration techniques are used, real-
time placement decisions remain out of reach for anything
beyond small- to medium-scale scenarios.

These approaches are also highly sensitive to changes in
input parameters or constraints. A minor modification in
workload demand or infrastructure policy may require full
model regeneration and resolution, limiting their
responsiveness to dynamic or elastic cloud environments.
Furthermore, despite their theoretical strength in modeling
energy consumption or network utilization, embedding
such metrics into optimization formulations significantly
delays solver convergence.

In terms of scalability, scenarios with fewer than 500 VMs
are well-suited to these methods. On the other hand, large-
scale, dynamic, or latency-sensitive platforms—such as
public clouds or edge computing environments—are poorly
matched due to the models' inability to respond within strict
time constraints.

This type of optimization is best suited for offline placement
in private clouds with stable demand, small-scale
deployments where optimality justifies runtime, and
regulated environments requiring strict constraint handling
(e.g., security or compliance-based placement). But they
perform worse with rapidly scaling public clouds, edge
scenarios with latency bounds, and dynamic workloads
requiring frequent re-optimization.

B- Heuristics

Heuristic methods are variants of bin-packing and greedy
placement. They offer rapid, scalable approximations for
the VM placement problem. Use simple, rule-based
strategies (e.g. First-Fit, Best-Fit Decreasing [33])). These
algorithms sort VMs by one or more dimensions (such as
CPU demand or traffic volume) and assign each VM to the
“best” host in linear or near-linear time.

GMPR [34] is a greedy placement algorithm that first ranks
PMs by power efficiency to minimize the number of active
hosts, then sequentially reduces resource imbalance and
slack. In simulations on synthetic workloads and Amazon
EC2 traces, GMPR achieves average savings of 1.91% in
energy consumption and 16.18% in resource wastage versus
state-of-the-art methods yet overlooks bandwidth costs.
Hybrid Best-Fit (HBF) [35] extends the classic Best-Fit
heuristic by running three VM-ordering schemes (original,
ascending size, descending size) and selecting the allocation
with the lowest total energy. HBF consistently outperforms
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both Best-Fit and Best-Fit Decreasing with minimal
additional computation, but without addressing network
proximity.

Heuristic-based VM placement approaches are widely used
for their speed, simplicity, and scalability, making them
particularly  effective in  large-scale  datacenter
environments where rapid decisions are essential.
Techniques such as First-Fit and Best-Fit Decreasing
achieve linear or near-linear time complexity (O(n log n)),
enabling quick allocation of VMs with minimal
computational overhead. Rule-based strategies, like sorting
VMs based on CPU demand or traffic volume, are easy to
implement and impose very little runtime cost. These
methods are especially well-suited for static or predictable
workloads.

However, the main limitation of heuristic approaches lies in
their tendency to optimize single dimension while
neglecting critical factors like network traffic. As a result,
they often perform poorly in multi-objective optimization
scenarios that require balancing energy consumption,
latency, and SLA compliance. Their static nature also
makes them not suitable for dynamic or unpredictable
environments, where workload patterns change rapidly and
real-time re-optimization is essential. While their
computational efficiency remains a major strength, this
speed frequently comes at the cost of placement accuracy
compared to more adaptive metaheuristic or learning-based
methods.

In terms of scalability, heuristics perform well, handling
high volumes of VM requests. They are ideal for
environments where quick and frequent placement
decisions are needed without deep optimization logic.
However, their suitability for energy- and network-aware
placement remains limited. Although variants like HBF
reduce host-level energy consumption, they do not model
dynamic power states or account for network bandwidth
costs, resulting in potentially inefficient traffic patterns.
Overall, heuristics are best reserved for static or predictable
workloads —such as batch processing— or for initial
placement stages before applying more adaptive
optimization techniques. They are less appropriate for
network-intensive applications, dynamic edge
environments, or scenarios demanding multi-objective
trade-offs.

C- Metaheuristics

Metaheuristic  approaches, such as Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO),
Genetic Algorithms (GA), Grey Wolf Optimization
(GWO), and their hybrids; tackle VM placement as a multi-
objective  optimization problem, balancing energy
consumption, resource utilization, and SLA guarantees.

For example, [36] propose a hybrid ACO-GWO that
weaves in traffic-awareness to co-locate  high-

communication VMs, yielding up to 19.41% power savings
and 10.72% bandwidth-utilization improvements over
baseline algorithms.

[37] classify and critique a broad spectrum of nature-
inspired metaheuristics—SA, PSO, GA, ACO, BBO, and
hybrids—highlighting their strengths in
exploration/exploitation balance but noting their general
omission of communication costs.

The work [38] presents a hybrid GA—best-fit scheme that
minimizes active PMs and resource wastage, characterizing
VMs by CPU, RAM, and bandwidth.

Recently, the work [39] proposed the NCRA-DP-ACO
algorithm, a network-, cost-, and renewable-aware ACO
framework for energy-efficient VM placement across
geographically distributed datacenters. Unlike previous
metaheuristic solutions, this work introduces a dynamic
Power Usage Effectiveness (PUE) model, real-time solar
energy profiling, and carbon-aware cost modeling. By
integrating environmental and economic factors into the
multi-objective placement strategy, the algorithm achieved
up to 18% energy savings and a 48% reduction in live
migrations compared to baseline heuristics and
metaheuristics.  This  approach  demonstrates that
incorporating sustainability-aware factors can significantly
enhance placement decisions in large-scale cloud
environments, addressing a critical gap often neglected in
earlier VM placement studies.

Metaheuristics offer excellent pathways to near-optimal
placement of VMs in multi-objective environment. They
are capable of compromising among energy efficiency,
SLA, and resource consolidation while covering a large
solution space.

However, their performance heavily depends on proper
parameter tuning, and poor configurations lead to
suboptimal convergence. Moreover, most metaheuristics
neglect traffic patterns or topology, and therefore require
additional improvements for traffic- and communication-
aware optimizations. Enhanced variants can improve
network efficiency but require additional computational
overhead.

Since these algorithms are iterative and population-based
searches over multiple generations (denoted as t), they
exhibit higher O complexity —O(n?*xt), where n is the
problem size and t is the number of iterations. This reflects
a quadratic growth in computational cost with problem size,
meaning convergence time increases significantly as the
number of VMs scales. Nevertheless, these approaches
remain effective for medium to large problem sizes.

These approaches are best suited for offline or semi-
dynamic VM placement scenarios where computation time
is not a concern. They excel in multi-objective optimization
—balancing energy efficiency, performance, and cost—and
are effective in sustainable cloud environments that require
periodic reallocation. However, they are less ideal for low-
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latency edge computing due to slower convergence rates,
and they tend to underperform in highly dynamic or
unpredictable workloads where rapid re-optimization is
essential. For small-scale deployments, simpler heuristic
methods are often more practical.

D- Machine Learning

Emerging Al-driven VM placement frameworks leverage
predictive and adaptive techniques to anticipate demand,
group workloads, and continuously learn optimal
allocations. Workload Forecasting Models employ
learning-based algorithms to predict future load patterns
and proactively select hosts that balance energy
consumption and SLA adherence.

Classification & Clustering approaches identify high-traffic
VM pairs or hosts at risk of overload and refine placement
heuristics; Finally, Reinforcement Learning optimizes VM
placement by learning from interactions with the
environment (servers, network, and workloads).
Workload Forecasting Models: The work [40] introduces
a dynamic, learning-based scheme that continuously
predicts per-VM resource-usage thresholds to drive
proactive allocation and live migration decisions. The
approach adapts to fluctuating loads by generating runtime
data and training a hybrid model (combining swarm-
inspired search with an ML classifier), thus improving SLA
compliance, reducing migrations, and cutting energy
compared to standalone bio-inspired or ML methods.
Classification & Clustering: Random Forests or K-means
identify which VM pairs generate the most traffic, or which
hosts are likely to become overloaded, refining heuristic
weightings. LECC [41] — a multi-objective VM (and data)
placement framework for geo-distributed clouds that jointly
minimizes carbon emission cost, energy consumption, and
WAN communication cost— embeds an intelligent ML
module that is trained on historical energy, latency, and
carbon-cost data to dynamically adjust its multi-objective
weightings (carbon emission, energy, WAN cost) at
runtime. Extensive simulations on synthetic and real
(PlanetLab and EC2) traces demonstrate LECC’s ability to
reduce server energy and cut response latency compared to
baseline methods.

Reinforcement Learning (RL): The work [42] proposes a
fuzzy-based State-Action-Reward-State-Action (SARSA)
reinforcement learning algorithm for optimal VM
placement in CDCs, effectively reallocating VMs to
minimize energy consumption and resource wastage while
ensuring compliance with SLA and QoS demands during
fluctuating workloads.

ML-based VM placement algorithms adapt better than
static heuristics under workload variation and fast-changing
user demands.

Yet, there do exist serious disadvantages. These algorithms
need huge amounts of training data of almost perfect

quality, and their predictive power degrades if they are not
promptly retrained or adapted. Many approaches in ML
tend to disregard network traffic behavior or the underlying
topology, limiting their applicability in optimizing network
energy consumption or communication latency. These
models add a further computational overhead and
convergence delays: For instance, clustering methods scale
at O(n®), while deep-learning techniques demand
tremendous GPU/CPU resources [43].

Lastly, scalability becomes an issue: whereas the bigger
data can continue to scale the ML model, on the other side,
training and inference times increase with the size of the
problem. Some solutions —distributed or federated
learning— can help but introduce synchronization and
convergence delays.

Network- and energy-aware suitability, and also
optimization, are still primary concerns of most of these
ML-based solutions. Advanced architectures like GNNs
can integrate network topology into their learning
workflow, but these models are computationally costly and
thus seldom used. Without explicitly modeling bandwidth
consumption or link-layer power states, ML-based
placements may underperform when communication and
geo-distribution dominate the environment [44].

ML-based VM placement algorithms are more suited to
dynamic and large-scale cloud environments with regular
patterns of workload and good availability of historical data
[45]. However, their applicability is limited in real time or
latency-sensitive deployments, where response has to be
immediate. They also fail in environments where the
workloads are unpredictable or rapidly changing.

E- Graph Approaches

Graph-theoretic VM placement models represent PMs/
VMs as graph nodes, with edges encoding constraints like
inter-VM traffic or power costs. By applying community-
detection or graph-partitioning algorithms, they co-locate
highly communicative VMs —minimizing network hops and
energy consumption.

The algorithm in [46] uses a graph-coloring algorithm that
models VMs as graph vertices and inter-VM traffic volumes
as weighted edges, then iteratively “colors” (assigns) and
merges vertices to minimize both network overhead and
server power use. Their method batches VM migrations to
keep high-traffic groups co-located and decommission
underutilized hosts. Extensive simulations across
hierarchical datacenter topologies demonstrate that GCA
halves link saturation and outperforms single-migration
schemes by up to 65% in network-overhead reduction.
Authors in [47] propose a two-phase, graph-theoretic VM
placement strategy tailored for data-intensive cloud
applications. They first model the datacenter as a complete
weighted graph —vertices are hosts, edges carry a
networking-cost metric combining link saturation and hop
count. In Phase 1, a fuzzy inference system ranks racks by
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free resources and intra-rack traffic, and a linear program
selects the smallest set of “close” racks with low uplink
load. In Phase 2, the Traffic-Distance-Balanced (TDB)
greedy algorithm uses the graph’s weighted adjacency
matrix to iteratively pick hosts minimizing total inter-host
networking cost. This approach unifies capacity and
communication in a single graph framework, ensuring high
host utilization while keeping over 80% of traffic rack-local
and halving link saturation compared to flat heuristics.
Despite clear advantages in topology-aware grouping,
graph methods incur O(n®) complexity and often require
full-network snapshots, impractical for frequent re-
optimizations.

Despite their strength in encoding traffic and topology
awareness, these methods come with high computational
costs. Algorithms for community detection, graph
partitioning, and coloring frequently exhibit O(n®)
complexity, which becomes a bottleneck in large or fast-
evolving systems [46].

Another limitation lies in their reliance on static or
snapshot-based views of the network state. To remain
effective, graph-based models require up-to-date global
topology and traffic matrices —information that is difficult
to capture or maintain in real time without imposing
significant monitoring and re-computation overhead.
Additionally, integrating these specialized algorithms into
existing cloud controllers or schedulers remains a challenge
due to their architectural differences.

From an energy and network efficiency perspective, graph-
theoretic strategies outperform heuristic or ML-based
approaches in minimizing communication overhead and
active link utilization. However, this often comes at the
expense of higher host-level energy consumption when
traffic-based clustering leads to VM consolidation on less
3-3- Infrastructure Considerations
place?)

(where to

Cloud architecture plays a pivotal role in VM placement
decisions. It encompasses the set of interconnected
components and deployment models that define how
compute, storage, and network services are delivered. A
network-aware placement algorithm must adapt to the
physical and logical characteristics of the underlying
architecture.

A- Cloud Infrastructure type

Centralized Cloud: infrastructure consolidates all resources
in a single data center, offering uniform latency and
centralized cooling, power, and network control. Here,
placement strategies emphasize intra-rack traffic
minimization, server consolidation, and ALR to reduce
switch and server energy. Because of the homogeneous
environment, algorithms benefit from predictable latencies

energy-efficient machines. While the network energy
savings are clear, careful balance is required to avoid
increasing overall compute energy due to suboptimal host
selection. These algorithms are suitable for communication-
intensive workloads with predictable traffic patterns (e.g.,
Hadoop), and hierarchical (or structured) data centers where
intra-rack traffic locality is critical. However they perform
poor with: real-time architectures with rapidly shifting
traffic flows, edge and fog computing scenarios with strict
latency constraints, and hyperscale public clouds (>10,000
VMs) where O(n*) complexity is unjustified [48].

Summary and Comparative Insights

While each VM placement strategy category—
mathematical optimization, heuristics, metaheuristics,
machine learning, and graph theory—has distinct merits,
they also exhibit significant trade-offs in terms of
computational complexity, scalability, and suitability for
energy- and network-aware objectives. Mathematical
optimization-based methods provide provable optimality
for small-scale problems but are intractable for real-time or
large deployments. Heuristic methods are fast and scalable
but fail to consider complex objectives or traffic metrics.
Metaheuristics deliver near-optimal results and support
multi-objective  optimization, yet often suffer from
parameter sensitivity and long runtimes. ML approaches
bring adaptability and prediction to dynamic environments
but are data-hungry and rarely embed network topology or
energy metrics explicitly. Graph-theoretic models excel at
topology-aware co-location but incur high computational
costs and require complete snapshot data. As summarized
in Table 5, selecting an appropriate placement strategy
requires balancing complexity, performance goals, and
environmental context, especially when aiming to reduce
both host and network energy consumption.

and uniform PUE values, supporting static or light dynamic
heuristics [49]. However, placement strategies risk creating
network congestion at the rack level if VM affinities are
misestimated and lack resilience against localized failures
or flash crowd events. Centralized placements suit
applications with consistent workload distributions but
should be augmented with fault-tolerance and burst-
handling extensions for production deployments.

Distributed Cloud: infrastructures span  multiple,
geographically dispersed sites or edge facilities. Placement
algorithms in this context must account for WAN latency,
variable carbon intensity, renewable energy availability,
and differing PUE scores across locations. For instance,
placement might favor a solar-powered region despite
slightly higher latency. Network-aware algorithms in
distributed contexts must balance performance against
operational costs and inter-site bandwidth constraints [27].
While distributed placement can optimize global cost and
sustainability, it introduces complexity in synchronizing
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state across sites, handling network failures, and meeting
latency-sensitive SLAS.

B- Cloud Proximity Models

Cloud Proximity Models distinguish between edge and core
clouds based on their user-nearness and resource richness.

Edge Clouds: Deployed close to users for latency-sensitive
workloads like gaming or AR/VR; placement here must
prioritize minimal hop counts and rapid elasticity but
suffers from limited capacity and heterogeneous
infrastructure. TRACTOR [50], Traffic-aware and Power-
efficient Placement in Edge-Cloud Data Centers (ECDCs),
an Artificial Bee Colony-based multi-objective VM
placement scheme that minimizes network traffic and
power consumption in ECDCs. Evaluations on VL2 and
three-tier topologies demonstrate a 3.5% reduction in server
energy and up to 30% cut in network power usage without
degrading QoS. However, TRACTOR presumes accurate
pre- and post-placement traffic matrices and requires
simulation-based calibration, limiting its adaptability to
heterogeneous, real-world edge deployments.

Core Clouds: located in centralized, resource-rich facilities,
are suited for compute-heavy, batch-oriented tasks that do
not have stringent latency demands. Placement algorithms
in these environments optimize resource density and power
utilization while managing rack-level heat and congestion.
In a centralized high-density core clouds, [51] framework
employs a Greedy Randomized VMP (GRVMP) algorithm
that fuses heuristic sorting with stochastic perturbations to
escape local optima, achieving up to 12% energy reduction
and 8% resource utilization gains compared to deterministic
baselines. GRVMP addresses dynamic VM arrivals;
however, its randomized nature can lead to variability in
outcomes and overlooks network topology unless network-
aware metrics are integrated.

C- Hardware-Based Energy Mechanisms

Datacenter hardware often embeds energy-saving features
at component and network levels. Placement algorithms
that are aware of these mechanisms can reduce overall
power draw by tailoring VM assignments to exploit them.

We categorize three primary hardware-based strategies
below:

. ALR:

ALR dynamically scales the data-link speed of network
interfaces (e.g., from 1 Gbps to 100 Mbps) based on
instantaneous utilization. When traffic is low, links down-
shift to a lower rate—saving up to 40 % of PHY-layer
power—then ramp up again under load. Some VM
placement schemes explicitly cluster bursty or low-
throughput VMs under the same Top-of-Rack switch to
maximize low-speed intervals and link-power savings [52].

° DVEFS:

Modern CPUs and NICs support DVFS, which lowers
voltage and clock frequency when workload demands
permit. Experimental studies report up to 30 % server-level
energy reduction with minimal performance loss under
controlled load variations [53]. Energy-aware schedulers
simulate or predict CPU utilization to trigger DVFS states—
placing latency-insensitive VMs on hosts where cores can be
down-clocked, while reserving full-speed nodes for critical
workloads [54].

. Switch and Rack Power-Down:
Many top-of-rack (ToR) switches and rack PDUs can enter
sleep modes or shut down unused ports when idle. Research
prototypes have shown up to 50 % energy savings in
underutilized racks by consolidating traffic and powering
down dormant switches [55]. Topology-aware schemes fold
traffic into active racks during off-peak periods, allowing
idle switches or PDUs to sleep or power off; the migration
cost is balanced against the long-term energy gains [56].

Placement algorithms treat ALR, DVFS, and switch/rack
power-down not as standalone placement steps but as
hardware-aware objectives or constraints that guide where
and when to place or migrate VMs. In other words, these
features aren’t separate “phases” of VM placement; rather,
placement algorithms incorporate knowledge of link-rate
scaling, voltage/frequency capabilities, or switch on/off
thresholds to shape consolidation decisions.

Integrating these hardware-based mechanisms into
placement and migration heuristics unlocks significant
energy savings that complement software techniques.

D- Thermal-Aware Placement Strategies

Integrating thermal dynamics into VM placement helps
prevent hotspots and reduces cooling energy consumption
by considering rack- and node-level temperature
distributions during allocation and migration decisions [57].
Multi-objective formulations jointly optimize computing
energy and cooling load, enabling VM placement
algorithms to trade off consolidation benefits against the
risk of creating thermal hotspots [58].

3-4- Workload Characteristics (What Is Being
Placed)

A- Arrival rate

Static: Static workloads such as batch jobs in scientific
computing, benefit from heavy-weight optimizations like
ILP, yielding near-optimal resource packing when demands
are known in advance [59][60]. The term "static allocation"
usually refers to the initial VM placement which is the
allocation of VMs to PMs is done during deployment and
remains fixed throughout the VMs' lifecycle. The goal is to
optimize allocation based on resource requirements and
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constraints. However, the assumption of stable load profiles
renders it brittle when workloads fluctuate unpredictably.

Dynamic: Dynamic scenarios characterized by real-time
VM arrivals in auto-scaling web services or event-driven
microservices. Dynamic VM placement includes placing
new VMs and migrating existing ones, considering future
live migrations, and needs more resources than static
solutions.

In this context, reactive placement adapts the initial
allocation of resources based on the current state of the
system, while proactive placement predicts future
conditions and adjusts allocations before problems occur.

. Reactive Placement: Migration or reallocation is
triggered by observed thresholds, such as CPU/memory
utilization exceeding a limit, network congestion detected on
a link, or thermal hot spots. Reactive methods respond to
current system state ([61][62]) but often react too late to
avoid SLA violations or suboptimal energy states.

. Proactive Placement: Predictive models anticipate
future workloads or traffic spikes and migrate VMs
preemptively. While more complex, requiring accurate
demand prediction, proactive approaches can better prevent
overloads and exploit low-utilization windows for
consolidation [20], [21]).

B- Workload Type (Application-Centric)

We present the main application categories in the literature
used to guide placement heuristics.

Bag of Tasks: Independent parallel tasks requiring minimal
inter-communication. Placement focuses on maximizing
throughput and minimizing makespan by grouping tasks
(VMs) on minimal PMs [41].

CPU-Intensive Workloads: Require sustained processor
capacity and thermal stability. Placement must dedicate
cores to each VM and move workloads off busy hosts to
prevent contention and overheating [64].

Data-Intensive Workloads: Require high I/O and low-
latency access to shared storage. Placement must reduce
traffic to storage nodes (SNs) and minimize bottlenecks
[65].

Latency-Sensitive Applications: Include gaming, financial
systems, or telemedicine, where delays severely degrade
user experience. These demand edge-aware, low-hop-count
VM placement [66].

C- Workload Data Sources for Algorithm Evaluation

The following are the ways researchers evaluate their work
against other algorithms. However, researchers may
combine two or more types of workload data.

. Benchmark Datasets: Standardized collections of
VM workload traces detailing CPU, memory, I/O and

network usage, collected via monitoring tools, application
profilers or user logs. They enable controlled, repeatable
comparisons of placement algorithms by quantifying
impacts on network utilization, availability and cost.

. Synthetic data: Synthetic data is generated using
mathematical models and statistical techniques that simulate
the behavior of real-world applications and infrastructure
components. It allows researchers to control the workload
and resource utilization characteristics of the cloud
infrastructure and to compare different algorithms under the
same conditions. Researchers evaluated their work using
synthetic scenarios with several performance metrics [67].

. Real Traces: Real traces are collected from real cloud
computing environments (Amazon EC2, PlanetLab, and
Google Cluster) to evaluate VM placement algorithms
under realistic conditions. In [51], Amazon EC2 data was
used to optimize power consumption. In [68], PlanetLab
network traces were utilized to assess algorithm
performance. Both methods provide insights into workload
behaviors and resource utilization for algorithm evaluation.

These classifications create a multidimensional lens to
evaluate VM placement strategies and pave the way for
our specialized network-aware taxonomy in Section 4.

4- Taxonomy of Network-Aware VM
Placement Approaches

This section synthesizes the contextual shifts and motivates
the need for a new taxonomy—one that maps VM
placement methods not only to their algorithmic families
(heuristic, ML-based) but also to the underlying network
dynamics they aim to optimize. As shown in Fig.2, our
taxonomy therefore introduces a cross-layer perspective
that bridges DCN topology, traffic characteristics,
communication patterns, and energy reduction strategies,
reflecting how emerging solutions should be evaluated in
modern cloud environments. Additionally, a sub-taxonomy
at the bottom of Fig.2 classifies network-aware VMP
algorithms according to their energy consumption
strategies.

In a typical cloud computing environment, VMs are
interconnected with physical hosts through a network,
generating substantial network traffic from the applications
they run. Consequently, the placement of VMs on physical
hosts significantly impacts network performance, which in
turn affects overall application performance. Given that the
network is a major consumer of energy, minimizing
network traffic and optimizing topology can lead to
substantial energy savings.

Therefore, it is critical to consider network-related factors
throughout placing and migrating VMs. This means that the
VMP algorithm should not only consider the usual metrics
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and resource requirements of VMs and PMs but also
incorporate network considerations. The algorithm can
make more informed decisions regarding VM placement
and consolidation by incorporating network conditions,
topology, and traffic patterns.

Customers utilize VMs to conduct specific jobs that are
frequently parts of larger applications, such as tiers of multi-
tier applications. As these VMs start communicating with
each other, it can involve the transfer of significant amounts
of data, which might increase latency or response times to
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Fig.2 Network-aware VM placement taxonomy.

intolerable levels. In addition, the power consumption of the
hardware components involved, such as PMs, routers,
switches, and other networking equipment, can also be
affected by such communication patterns.

For the reasons listed above, it is ideal to have VMs that
communicate frequently placed on the same server, or at the
very least within the same DC. Additionally, VMs
belonging to the same application may have load
correlation, making it more likely that they may peak at the
same time; this must also be carefully considered when
allocating VM resources.

Network bandwidth can often become a bottleneck,
particularly in scenarios involving data mapping on SNs.
High network traffic between VMs and SNs can arise when
workloads require extensive data mapping. To prevent too

many high network loads, it is necessary to consider both
the placement of VMs on PMs and application data on SNs.
To facilitate this, we categorize network-aware VMP
algorithms into four groups based on their focus on network
considerations:

4-1- DCN Topology

DC topology involves organizing physical and logical
components in a network, including servers, network
devices, and SNs. It enables efficient connections with
multiple PMs, enhancing energy efficiency and reducing
reliability concerns. Various network topologies tackle
scalability and energy consumption differently and offer
insights for future VM placement research. Researchers can
examine the advantages, drawbacks, and enhancements of
these topologies to improve current VM placement
methods, as discussed in Section V.

A- Hierarchical Three-Tier

This architecture manages traffic using a structured
approach. The access layer connects servers to edge
switches, which then relay information to interconnected
aggregate switches. The core layer serves as the spine,
linking all aggregate switches and handling external
connections, providing a scalable and efficient solution for
internal data center communication.

. Fat-tree: A three-tier architecture utilizing bipartite
graphs with pods as the basic unit, where each pod contains
access and aggregation switches. This topology offers
efficient routing paths for reducing congestion and power
consumption [69].

. VL2: Like fat-tree, this three-tier topology connects
core and aggregation switches in a bipartite graph. Valiant
load balancing routes traffic by randomly selecting a core
switch, reducing congestion and power consumption. A
customized VMP technique further optimizes network
traffic. [67].

. Portland: This architecture comprises pods with
access and aggregation switches forming bipartite graphs,
connecting to all core switches. VM placement algorithms
prioritize proximity to enhance quality of service (QoS)[70].

B- Recursive

These topologies are constructed recursively, combining
smaller building blocks into larger network structures,
allowing for scalable and modular designs.

. DCell: a server-centric data center network design
with a hierarchical structure. Servers connect directly with
multiple NICs, organized into cells like cellO, celll, and cell2
[71].

. BCube: BCube is a multi-level data center network
architecture focused on servers, integrating them into the
network infrastructure. It is derived from hypercube
architecture, connecting hosts via switches based on port
availability for efficient packet forwarding [72].
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C- Rack to Rack

Rack-to-rack networks prioritize communication between
server racks. Their design focuses on efficient data transfer
within and across racks.

. Scafida: a method inspired by scale-free networks to
create asymmetric data center topologies with high fault
tolerance and small diameters. It allows for flexible scaling
but faces challenges with link correlation as the network
grows [73].

. Jellyfish: Jellyfish network with random graph
topology offers cost-efficiency, 25% more server support,
scalability, and flexibility for high-capacity
interconnectivity [74].

4-2- Traffic Type

Traffic type categorization in cloud DCs (considered in
VMP) optimizes network performance and energy usage by
placing VMs with similar traffic types together, reducing
data transfers across the network and minimizing energy
consumption.

A- Cross-Traffic

Cross-traffic is the data flow between VMs or applications
that may be located on different servers within the same
rack or across different racks. This type of traffic can impact
network performance and energy usage. Allocating VMs
and data on physically closer PMs can improve efficiency,
as explored in [75].

B- Inter-VM Communication

North-south traffic involves data flow between virtual
machines (VMs) and the Internet, while inter-VM
communication refers to data exchange within the same
data center. The latter is often high-bandwidth and low-
latency, with different application requirements.

Studies are focusing on reducing network energy usage by
optimizing VM placement to minimize inter-rack traffic
and reduce delays, consequently cutting down on power
consumption and costs [76].

C- Traffic between VM and Data

This traffic occurs when VMs access data stored on storage
devices. VMs send requests to these devices via the
network, and the data is transmitted back to the requesting
VM. Factors influencing traffic volume include data size,
access frequency, and the type of storage device used. In
distributed object storage systems, each storage node
manages a group of servers. When a server and its
corresponding storage node are within the same group, data
transfer is optimized, thereby reducing overall traffic flow
[77].

4-3- Traffic Patterns

Understanding traffic patterns in cloud networks is crucial
for optimizing performance by placing virtual machines in

strategic locations to improve network performance and
reduce energy consumption. Research indicates that
network status changes over time due to unpredictable
traffic characteristics, regardless of data center size or type.
Authors advocate for traffic-aware VM placement to
enhance network scalability by aligning traffic patterns with
communication distances. Empirical studies reveal
imbalanced communication patterns, link losses, and ON-
OFF traffic patterns with varying distributions,
emphasizing the need for optimized VM allocation and
routing in cloud networks [3] [78].

4-4- Communication Patterns

Communication patterns in VM placement refer to how
VMs interact with each other and with external networks. It
is a useful resource for perceiving the parallel application
communication behavior and is extracted from
communication trace, where machines form multiple
groups or tiers each of which serves a specific part needed
for the accomplishment of the overall task. Energy
consumption heavily depends on the communication
pattern [79].

A- Fixed

Fixed communication patterns between virtual machines
(VMs) exhibit predictable and consistent interactions that
remain unchanged during runtime. VM placement
strategies often aim to co-locate VMs with frequent

communication to minimize network latency and overhead
[76].

B- Dynamic

Dynamic communication patterns between VMs change
during runtime, in contrast to fixed patterns. This requires
adaptable VM placement solutions that monitor and adjust
VM locations based on evolving communication needs. The
technique introduced in [80] uses a decentralized migration
approach considering VM affinity. It dynamically adjusts
VM placement through a distributed bartering algorithm to
minimize communication overhead and adapt to changing
patterns, while maintaining low overhead.

4-5- Energy Reduction Achievement

The energy reduction classification in our taxonomy in
Fig.2 is centered around strategies and methodologies in
reducing energy consumption in network-aware VM
placement. This section highlights how researchers have
leveraged network awareness to achieve considerable
energy savings in CDCs. In this section, we review different
approaches  for  network  traffic =~ minimization,
communication cost minimization, data transfer time
reduction, and network performance improvement.
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A- Minimizing Network Traffic

One of the effective strategies is to optimize VM placement
with the co-location of VMs that communicate with each
other with high volume on the same physical hosts. In this
way, the distance that data needs to travel is minimal and
reduces traffic in the network. For example, the work in [50]
suggested a multi-objective VM placement algorithm using
a bee colony method, achieving 3.5% power reduction, 15%
less network traffic, and 30% lower network power.
Similarly, the work in [22] proposed an ant colony
optimization algorithm considering both energy usage and
network bandwidth, which effectively reduced traffic and
outperformed other heuristics.

B- Minimize Communication Cost

Network communication costs refer to expenses in terms of
bandwidth utilization, latency, and rate of data transfer. For
VM placement, reducing such costs minimizes resource
consumption and overall expenses. The work in [59]
introduced a "network consumption" metric to identify
optimal VM placements within a fat-tree architecture to
minimize network traffic. This approach led to a significant
reduction in overall network usage and power consumption,
decreasing resource wastage by up to 20%. Similarly, the
approach in [81] focused on enhancing VM-to-VM
communication using dynamic clustering of VMs based on
the network. An adaptive algorithm consolidated VMs to
minimize communication costs, leading to reduced high-
latency jobs and improved traffic patterns across the
network. The goal of these techniques is to strategically
place and manage VMs to lower the overall communication
costs in the data center network [36].

C- Minimizing Data Transfer Time

Data transfer time is the duration for data to be transmitted
between VMs over the network. It affects energy usage and
application performance. Placing VMs closer and grouping
them based on traffic patterns can minimize data transfer
time. [82] proposed a novel VMP technique that
simultaneously improves both VM locations and data rates.
They developed heuristics that allocate VMs to PMs with
better network bandwidth to reduce the latencies associated
with data access. Through simulation experiments, they
demonstrated how the proposed approach may lower VMs'
data transmission delays.

D- Improving Network Performance

Improving network performance is the act of optimizing a
computer network to enhance its speed, reliability, and
efficiency. This involves improving the various
components of the network, including switches, routers,
cables, servers, and applications, to ensure that data is
transmitted quickly, accurately, and consistently. The
previously mentioned work in [59] was categorized under

minimizing communication cost, but it focused also on
minimizing resource wastage, which led to the optimization
of the overall network performance.

E- Emerging Trends

With the rise of such technologies as network virtualization
and Software-Defined Networking (SDN), the way VM
placement for energy efficiency will be significantly
impacted. Network virtualization increases the flexibility of
network resource allocation and management, such that
even real-time adjustments according to changing traffic
patterns become possible. On the other hand, SDN brings
central control to a network, which makes routing much
more efficient and leads to lower energy consumption.
These technologies are still evolving, we can expect further
improvements in energy efficiency and overall network
performance in the placement of VMs [83].

5- Discussion

This section discusses the important relationship between
network topology, traffic patterns, and energy efficiency in
network-aware VMP. We provide a novel perspective on
how these aspects interact and affect the total energy
consumption within the datacenter.

5-1- Traffic Type

Different traffic types have varying requirements regarding
reliability, latency, and network bandwidth. For example,
real-time communication applications, including video
conferencing and VolP, require low latency and high
reliability; in contrast, batch processing applications such as
data analytics can tolerate high latency and low reliability.
Those network traffic patterns found in datacenters can
significantly affect energy consumption, SLAs, cloud
provider revenue, as well as the overall cloud
infrastructure's efficiency.

In response to such challenges, there has been a
development of network-aware VM placement algorithms
to optimize network traffic and minimize resource
utilization in CDCs. These algorithms distribute the
network traffic evenly across the infrastructure to prevent
congestion, resulting in energy savings. VMs often rely on
the network for data-intensive applications and interactions
with other VMs. These algorithms can prioritize high-
bandwidth VMs and place them nearby by optimizing the
placement of VMs based on their communication patterns,
reducing the overall network traffic between and within the
data centers. This, in turn, minimizes the number of
physical networking components required and leads to
reduced power consumption.
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5-2- Network Topology

Network topology is a principal issue in virtual machine
placement, which affects resource utilization and energy
efficiency. Placing VMs wisely reduces the distance of data
transfers, switches, and links involved in communication
and leads to saving energy as well as increasing
performance. Fat-tree topology manages the high-
bandwidth, low-latency traffic well within a pod or data
center, while VL2 is good for traffic generated by VMs in
cloud environments, including storage, migration, and
inter-DC. BCube is suitable for data-intensive applications
that demand high bandwidth and efficient data
transmission.

In this subsection, network topology influence on VM
placement is discussed based on existing research that
examines the impact on energy efficiency as well as overall
system performance [84]. The placement of VMs close to
each other is quite essential for resource utilization and
energy efficiency. Strategic placement reduces the distance
of data transfer, therefore reducing the number of switches
and links, which means less energy consumption and
improved performance in data centers. The three-tier
architecture typically includes expensive and power-
intensive network devices at the corporate level, whereas
DCell and BCube architecture consume similar energy for
small-sized data centers. However, BCube consumes more
energy for larger data centers. The Fat-Tree topology has
reasonable power usage, while BCube is power-intensive
due to its extensive use of switches. DCell utilizes
commodity switches that consume less power. BCube's
design with intermediate servers for routing can pose
challenges to energy efficiency.

According to experimental findings, the tree topology
experiences congestion issues with similar VM traffic,
while the Fat-Tree topology distributes traffic more evenly
due to its multi-path connections. VL2 suffers from uneven
traffic distribution due to a large gap in link utilization. The
Tree topology has lower energy efficiency compared to
VL2 and Fat-Tree, although topology awareness can
optimize energy usage in the network. However, these
conclusions are specific to each author's work, and more
research is needed to establish correlations between data
center size, server count, switches, and user demands.
Cloud service providers should ensure appropriately sized
environments to minimize costs. A hybrid or dynamic
topology approach using SDN can optimize resource
utilization, energy efficiency, and overall performance by
adapting the network topology based on workload demands,
such as favoring a fat-tree topology for high east-west
traffic.

5-3- Traffic and Communication Patterns

To minimize energy consumption in DCs, network-aware
VM placement algorithms play a crucial role. These
algorithms aim to allocate VMs with similar traffic patterns
to the same physical servers or switches. This will reduce
inter-server or inter-switch communication, therefore
saving energy not only in the network infrastructure but also
in the servers. Secondly, VMP optimization based on
bandwidth and latency demands will prevent network
congestion, thus assuring satisfactory performance and
energy efficiency during communications.

Energy consumption and network traffic in virtualized
environments were analyzed in studies [58,59]. It was
noticed that energy consumption might have a wide
variation for different traffic allocation strategies and that
the type of traffic may strongly influence the possible
energy savings. Such results are important to consider in
traffic-aware optimizations, but all such optimizations
require detailed information from clients about the
application network and communication requirements. This
allows network-aware techniques for minimizing
communication delays and/or improving overall application
performance.

The distribution of the components over various PMs
provides a good opportunity for parallel processing in
applications such as MapReduce. In case migration needs
to be done, the ideal order of the intercommunicating virtual
machines will help avoid core network traffic and energy
consumption. Considering intercommunication between
replicated virtual machines is also important to prevent
bottlenecks and excessive energy usage.

Recognition of the traffic pattern is especially important in
dynamic  cloud  environments. = Workload and
communication requirements are dynamic; hence, the
adaptability of VMP algorithms is required to achieve
resource and energy efficiency. Such dynamical traffic
management approaches like load balancing and traffic
shaping would prevent congestion and optimize power
consumption.

The application-specific information will also reduce
latency, inter-VM traffic, and improve application
performance in placement algorithms. On the other hand,
machine learning algorithms will use historical traffic data
and predictive models to foresee traffic patterns, thus
making proactive placement decisions that reduce energy
consumption. Machine learning can also help in identifying
and classifying traffic hotspots, which helps in applying
targeted optimizations to mitigate power imbalances.

6- Conclusion And Future Directions
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This paper presents a new classification for VM placement
techniques in CDCs that are both network-aware and
energy-efficient. It examines various network factors,
including network equipment, workload type, performance,
scalability, efficiency, reliability, and availability, to
understand how VM placement affects network
performance. The research indicates that network-aware
VM placement algorithms can boost performance by
reducing latency between VMs and improving security
through co-location. However, the initial deployment of
these algorithms might incur higher costs, necessitating a
careful evaluation of the trade-off between energy
consumption and migration costs.

This work also reviews research that identifies the most
effective metrics for evaluating the performance of
network-aware VM placement algorithms, focusing on
energy efficiency, network performance, and resource
utilization. Additionally, the study examines how network
topology affects energy consumption in data centers and the
trade-off between energy use and migration costs, providing
valuable insights. These insights can help researchers
develop and implement more effective network-aware VM
placement algorithms that optimize energy consumption,
improve network performance, and minimize migration
costs. Based on the findings, future research directions for
network-aware VM placement in CDCs can be suggested,
including:

. Developing energy-efficient algorithms that consider
the network metrics identified in this study. This would
involve creating strategies to optimize energy use while
improving network performance, factoring in elements like
datacenter layout and communication patterns.

. Testing VM placement techniques on realistic
testbeds. While simulations help assess the proposed VM
placement methods, it is essential to validate these
techniques on actual cloud testbeds with real-world network
topologies.

. Researching VM placement algorithms that enhance
security and privacy in cloud environments. This could
involve devising methods to group related VMs on the same
server or rack while preventing the co-location of unrelated
VMs. Such strategies would help mitigate the risk of security
breaches and protect sensitive data in cloud settings.

. Continuing to explore novel solutions for optimizing
VM placement and migration that can boost energy
efficiency and network performance in CDCs. This would
include investigating innovative techniques and approaches
that leverage emerging technologies like machine learning
and artificial intelligence to improve network-aware VM
placement.

Future research in this area could investigate how elements
like energy storage systems, renewable energy sources, and
workload balancing impact network-aware VM placement.
These potential directions provide a solid foundation for

further exploration of energy-efficient network-aware VM
placement, intending to create more effective strategies for
optimizing energy consumption, improving network
performance, enhancing security and privacy, and
integrating artificial intelligence throughout the cloud
computing environment.
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Abstract

Cardiovascular diseases present significant challenges to public health in developing countries. The high costs of traditional
treatments and the limited availability of specialized medical equipment contribute to these challenges. Current diagnostic
methods often rely on specific electrocardiogram (ECG) parameters, which may not capture the nuanced complexities
necessary for accurate diagnosis. To address these issues, our study proposes an innovative solution: an accessible and cost-
effective ECG monitoring system. This system not only captures electrical signals from the heart but also translates them into
numerical values using advanced modulation techniques. A trained deep learning model then analyzes this data to accurately
identify any potential complications or confirm a healthy cardiac state. Our approach also allows for remote diagnosis and
treatment. By utilizing an MQTT server, ECG data can be efficiently transmitted to experts for evaluation and intervention
when necessary. Our meticulously fine-tuned Artificial Neural Network (ANN) architecture has achieved an impressive
accuracy of 95.64%, surpassing existing methodologies in this field. Designed with resource-strapped regions in mind, our
system offers a lifeline to rural areas lacking access to medical professionals and advanced equipment. Its affordability
ensures that even individuals with limited financial means can benefit from timely and accurate cardiac monitoring,
potentially saving lives and reducing the burden of cardiovascular diseases in underprivileged communities.

Keywords: Artificial Neural Network (ANN); Cardiovascular D isease; Electrocardiogram; Heart Disease; Modulation
Techniques; MQTT Server.
these signals [6,7]. However, there are ongoing concerns
among researchers regarding the analysis of the data
1- Introduction

Cardiovascular diseases (CVDs) are a global health concern
that poses a persistent threat to millions of people [1]. The
heart and blood vessels are particularly vulnerable to CVDs,

with coronary artery disease being a major contributing
factor to the high death rates associated with these diseases
[2]. In fact, it is estimated that CVDs account for 36% of
deaths worldwide in the European Union alone [3]. Early
detection of heart ailments is crucial for effectively
addressing cardiovascular diseases. Continuous monitoring
and measurement of heartbeats play a key role in this
process. Electrocardiogram (ECQG) signals, which provide
comprehensive insights into heart-related issues through the
analysis of physiological data, are a crucial tool [4,5].
Thanks to technological advancements, ECG monitoring
devices now offer reliable measurement and observation of

gathered from ECG monitoring devices. Critics argue that
previously suggested devices are inadequate in keeping up
with emerging technologies and lack comprehensiveness
[8-10]. While some ECG monitoring devices boast
specialized technology, others rely on context and server-
based functionality [11,13]. Itt has been obesity has a major
role in cardiovascular diseases that denotes heavily in the
increment of heart rate. This highlights the pressing need
for universal ECG monitoring equipment that can better
assess and understand cardiac issues. By facilitating early
detection and prevention of CVDs, these tools have the
potential to save numerous lives [14]. The primary objective
of this ANN architecture is to uncover patterns in ECG data
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that may be difficult to detect by the human eye, thereby
enhancing diagnostic capabilities. This advancement
enables the early identification of cardiac issues, which is
crucial for prompt treatment. In Bangladesh, a developing
nation where 73% of individuals are reported to suffer from
one or more cardiovascular diseases (CVDs), rural
communities face significant healthcare challenges,
including a lack of medical professionals and inadequate
supplies. The motivation of this research is to address the
health care challenges, especially in the domain of
cardiovascular where most developing countries are
suffering. Furthermore, an IoT-based device for detecting
cardiovascular disease is proposed with less cost as
economically these types of devices are not easy to buy. A
proper communication medium between the device and
doctors over the channel. Furthermore, the credibility of the
data is being examined using multiple Machine Learning
and Deep Learning architectures.  Furthermore, the
question arises what the proper model to will be to work
with ToT devices. In [12], it has been discussed that DL
architectures might not work properly with spatila and
sequential data but can be effective if modified properly.
Taking this into account authors have explored the
opportunity to apply ANN in the gathered dataset. Finally,
the primary focus is to proposing a IoT device that will be
affordable for the people from underdeveloped countries.

This research paper addresses the following questions:

RQ1: How can cheaper IoT devices be bought for people
from underdeveloped or developing countries?

RQ2: Can ANN be modified enough to communicate with
IoT based devices properly?

The major contributions of this paper can be summarized
as:

I) Implementing and validating real time gathered
dataset that will be sent through [oT servers so that
diseases can be detected earlier.

IT) Proposing a shallow neural network that will
instantly detect heart diseases from real-time data.
Necessary suggestions will be provided instantly.

1) Building a low-cost device that will assist people
from underdeveloped countries in order to detect
heart diseases. The device is lightweight and
portable.

The recent research from the literature has been discussed
in section 2. The methodology and methods have been
proposed in the section 3. Experimental results are shown

in section 4 and finally, the future work and conclusion have
been discussed in section 5.

2- Literature Review

The Internet of Things (IoT) is a fast-moving field in
computer science that focuses on effectively sharing data
between devices via cloud servers. The effectiveness of the
cloud server being used determines how smoothly data is
transferred. The authors of [14] offer a unique approach to
signal capture in addition to signal preprocessing;
nevertheless, an adequate encryption model is not
implemented in this study. In [15], a crucial suggestion for
Internet of Things (IoT)-based monitoring systems with
sophisticated data visualization is made. But there is a
significant difference in how deep learning (DL) structures
and machine learning (ML) algorithms are integrated in this
idea [16], which calls for more investigation. The state of
IoT-based ECG monitoring systems [17-20] has given
important new information on this field.

Predominantly, research has focused on signal collection,
with a pivotal concern being data preparation. [21]
addresses this by employing time-based feature integration
for data purification. The microcontroller board utilized,
namely the Arduino Uno, centers around the ATmega328T.
Earlier studies have extensively utilized the Arduino Uno
for cardiac signal acquisition [22—24], emphasizing its cost-
effectiveness and ease of integration in such contexts.

The literature review explores various developments in the
realm of Electrocardiogram (ECG) monitoring systems and
associated technologies. In reference, an Internet of Things
(IoT)-based ECG and vitals monitoring system is detailed,
incorporating parameters such as QRS complex, heart rate,
blood oxygen levels, and body temperature [25]. The
iterative design approach is emphasized to reduce the
device's overall cost. However, the three-lead end-to-end
ECG acquisition system constructed proves inadequate for
capturing all regular and augmented parameters of ECG
signals. Moving on to fetal Electrocardiogram (FECG)
monitoring, a system has been developed [26],
concentrating on FECG and fetal heart rate (FHR) with an
emphasis on an Android application. Nevertheless,
improvement is deemed necessary, urging the incorporation
of more miniaturized patches and real-time analytics via
cloud computing.  Addressing  concerns  about
cardiovascular disease (CVDs) severity and the lack of
precautionary monitoring systems, a low-cost solution is
presented [27], aiming to reduce harmonic distortions and
input inferred noise in ECG signal frequencies. This system
highlights the need for an efficient cloud server for
instantaneous data transfer. In another study [28], authors
introduce a wearable Tele-ECG and heart rate monitoring
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system, integrating a Singlet and Holter-based ECG system
with a mobile application. Despite focusing on parameters
such as P, Q, R, S, T peaks, the system requires additional
sensors for a more comprehensive measurement of heart
disease-related parameters. The proposed loT-assisted ECG
monitoring framework in [29] emphasizes secure data
transmission for continuous cardiovascular health
monitoring through automatic classification and real-time
implementation. However, there's a call for advanced
machine learning algorithms to enhance prediction
accuracy. A smartphone-based ECG monitoring device is
proposed in to evaluate post-ablation patients with atrial
fibrillation. The focus lies on the ECG check monitoring
protocol, considering sinus rhythm and sinus tachycardia.
However, concerns are raised about the lack of a proper
detection mechanism for ECG parameters, and the reported
accuracy stands at around 93%. Some of the major research
gaps are stated in Table 1.

Table 1: Identified Research Gap from the Literature

Reference Contributions Research Gap

Serhani et al. Precise collection | No applications of
of data sending | DL methods to
through the IoT | capture the proper

network. semantics.

Ghosh et al. Integration of ML | Device is costly
methods for | and difficult to
detection afford for under
purposes.  Many | developed people.
algorithms are
explored.

Faruk et al. Enhanced The model is not
accuracy than the | lightweight and
state-of-the-art takes time to
architectures. propagate real

time data.

Rahman et al. Methodology is | No proper system

described is available.
properly.

Based on the research gap available in the literature, it is
important to identify a novel approach that will be available
for the underdeveloped countries. This research focuses on
proposing an approach that will integrate the DL approach
detect cardiovascular diseases precisely along with the cost
of the device is lower that can be affordable for rural people.

The lightweight nature allows to detect cardiovascular
diseases easily. The spatial information is also captured
properly by the proposed model.

The below section comprehensively addresses the
architectures, method of converting ECG signal, overall
methodologies, and procedures employed in conducting the
research. Initially, data collection was facilitated through
the utilization of an ECG monitoring system, which is
interconnected with 12 leads and necessary Internet of
Things (IoT) devices. The proposed method of converting
ECG signal is illustrated in section 3.

3- Materials and Methodology

Algorithm 1: ECG Data Classification using ANN

1. Input: ECG dataset with multiple columns
2. Output: Model performance evaluated using
Precision, Recall, F1-score,

and trainable parameters
3. Step 1: Load the Dataset
4. Load the ECG dataset.
5. Split the dataset into features (X) and labels (Y).
6. Step 2: Parameter Tuning
7. Identify hyperparameters to tune, such as learning
rate, batch size,

number of layers, and neurons.
8. Use grid search or random search to find the optimal
hyperparameters.
9. Step 3: Data Preprocessing
10. Handle missing values using
techniques.
11. Normalize or standardize the data.
12. Apply noise reduction techniques if required (e.g.,
bandpass filtering).
13. Split the dataset into training, validation, and test
sets.
14. Step 4: Model Design
15. Design an Artificial Neural Network (ANN) with
an appropriate

architecture.
16. Define the input layer based on the number of
features.
17. Add hidden layers with appropriate activation
functions (e.g., ReLU).
18. Define the output layer with a softmax activation
function.
19. Step 5: Model Training
20. Compile the model with an appropriate optimizer
(e.g., Adam) and loss
function (e.g., categorical crossentropy).

21. Train the model on the training set.
22. Validate the model on the validation set during
training.

imputation
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23. Step 6: Model Evaluation
24. Evaluate the model's performance on the test set.

25. Calculate Precision, Recall, and F1-score for each
class.
26. Analyze the trainable parameters in the model.
27. Step 7: Performance Analysis
28. Compare the model's performance based on the
metrics.
29. Adjust hyperparameters or model architecture if
necessary to improve

performance.
30. Fine-tune the model using additional rounds of
training and validation

if required.
31. Step 8: Final Model
32. Save the final model and its parameters.
33. Document the model's performance metrics.
34. Step 9: Reporting
35. Prepare a report summarizing the methodology,
results, and performance of the model.
36. Include plots of loss, accuracy, and confusion
matrix if applicable.

Algorithm 1: Proposed Workflow

Algorithm 1 discusses the potential workflow of this
research. Here, it is seen that, the dataset is loaded at first,
then necessary parameter tuning has been performed in
Table 2. For the preprocessing purpose, normalization,
handling missing data and noise reduction is performed.
Furthermore, authors are focused on designing the model
with ANN that has been trained with the added hidden
layers of ReLU. The performance of the model is analyzed
and fine-tuned that has been reported with multiple
performance metrics.

A threshold (7) value condition on the amplitude of the
signal will be calculated by the following proposed formula
1.
T=(0.6)xXm

Where m is the ISO electric line value. According to the
characteristics of the ECG signal, it is possible to find out
the different range of the amplitude for P, Q, R, S, and T
parameters by applying the threshold value. An analog-to-
digital converter needs to be configured to get the numerical
value. This numerical value can be divided by the total
number of parameters in a window of ECG signal to get the
base numerical values as row data. This row data can be
multiplied by different ratios of each parameter of the ECG
signal to get the individual numerical value of P, Q, R, S,
and T parameters. The formulation of converted numerical
values is shown in Table 2. The parameters P, Q,R, S, T, U
are tuned by the authors based on mathematical statistics
[24].

In the second stage, augmented parameters (RR, PR, QT,
QTec interval, and QRS complex) of the ECG signal can be
considered to make better decisions about heart conditions
provided in consultation with experts in cardiovascular
diseases.

The proposed algorithm for formulation of RR interval can
be established from the following steps

Table 2. The formulation of the parameters

ECG Basic | Formulation of the Remarks
Parameter parameter
P P =rowdata x 1.1 | Always less than
R peak
Q Q =row data x 0.8 | Always less than
P,T peak
R R =row data X 2.0 | Maximum peak
of ECG signal
S S =rowdata X 0.7 | Always less than
P,T peak
T T =row data X 1.0 | Always less than
R peak
U U =rowdata x 0.4 | Always less than
P,T peak

Step 1: Determine the overall sampling frequency (f;) by
giving a sample rate from the total ECG signal which is
generated from the proposed device.

Step 2: Determine the sampling frequency (f,) by
partitioning the overall sampling frequency (f;) according
to the number of R peaks from each f;.

Step 3: Individual window base average RR interval can be

derived from the formula 2, which is denoted as IWt,.avg.

Trr; __ Riocii+)—Rioc(i 2)

IWt,.avg = =Trn = T

number of R peak -

The other parameters PR, QT, QTc interval, and QRS
complex can be calculated from the conventional methods
[4], which is shozsﬁ as following:

IWtrravg (i+1)—-IWtpravg (i)

OWt iy = .
"o 2 3)
e (i) = Ploc®=Proc) )
pr(l) = 3 @
toui)= oc*(lrmox Z-w)—mlac@—x) s
)= —atd ~ — Gioc+*)=(Proc(iy=x)
tqt(corr) (l)i stLElr)r(L) tqrs(l) — ~Ttocll - oc(i (6)

The proposed algorithm for the formulation of ST-Segment
can be established from the following:
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tst(i) — (Tloc(i);ssloc(i)) (7)
Where Sy,.(;) is called | — point or S Depolarization, and
Tipc(iy is called K — point or Beginning of the T wave.
The numerical values of these augmented parameters can be
found by a computational programming application and the
generated numerical values will be stored in cloud using
MQTT technology.

Subsequently, meticulous preparation was undertaken to
ensure a thorough understanding of the acquired data.
Following this, an Artificial Neural Network (ANN) was
employed to process the refined data. Fine-tuning of the
model's hyperparameters ensued to attain the most optimal
outcomes. Lastly, a diverse range of evaluation metrics
were employed to gauge the performance of the model.
Figure 1 illustrates the chronological sequence of actions
undertaken throughout the entirety of the research work.
The process encompasses six primary phases prior to
evaluating the outcomes. Initially, the designated
equipment is employed to sense the data as suggested.
Subsequently, the time intervals are converted into floating-
point values upon retrieval. The initial presentation of the
readings is in a waveform format, from which numerical
values are derived based on the waveform intervals.
Subsequent to this, the data undergoes preprocessing,
entailing dimensionality reduction and null value
elimination. Following preprocessing, the input is
channeled into the proposed architecture of the artificial
neural network. Various metrics are then employed to gauge
the performance. Figure 1 -elucidates the sequential
execution of the entire investigative procedure.

Data Sensing

¥

Extracting Features & Segmentation

¥

| Sending Over The Internet |

Applying Proposed ANN
! |
| Precision | Recall | I F1-Score |

Fig 1: Methodology of the research

3-1- Requirements for Setting up the Device

The authors have focused primarily on establishing optimal
conditions for successful implementation. The primary
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mechanism employed for collecting physiological data
from patients' bodies is the ECG sensor network. To
facilitate seamless data transmission, wireless channels are
maintained using cloud-based IoT platforms. Within this
framework, the AD8232 chip, utilized for electrical activity
calculation, is integrated to record data from the device.
Embedded within the chip is an integrated circuit (IC)
responsible for signal amplification and extraction of
requisite qualities. Electrocardiography serves as a pivotal
diagnostic tool for numerous heart conditions, with several
procedural steps involved in the data collection process. The
initial step involves the implantation of multiple electrode
pads—preferably three—into the patient's body for data
collection. These pads play a crucial role in capturing data
from the patient's body, which is subsequently transmitted
to the ADS8232 chip for analysis. Subsequently, the
procedure entails the setup of a screen, commonly referred
to as the Arduino COM port screen, through which medical
specialists receive the data. Additionally, a Wi-Fi module is
configured to facilitate data transmission from the device to
experts. The detailed ECG curve displayed on the screen
aids medical professionals in interpreting the data more
effectively. The final stage entails deploying an Android
app equipped with features that provide relevant
suggestions. This app displays the ECG curve, aiding
patients in comprehending the condition of their hearts
better. Data transmission to the app is facilitated by the ECG
sensors' ability to connect to integrated Wi-Fi. Moreover,
ensuring the correct operation of the device, the Arduino
Mega 2560 and earlier processors are configured to function
between -3.3 and 3.3 volts, with pins appropriately
connected from ground to ground.

ECG Heart Signal
Patient ID: 1001, Name: Md Shafiqul Islam, Age: 45
R
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Fig 2: Visual Representation for Acquired ECG Data
3-2- Equipment Cost

The device's detailed cost is given in Table 3. It is clear that
the gadget can be constructed for as little as 4231 BDT, or,
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at the present exchange rate, 38.41 USD. This is the primary
system's cost. There will be additional expenses, which
cover cloud support and the monitor.

Table 3. Cost calculation of constructing the device

Name of the Cost in Bangladeshi Taka

Components (BDT)
Sensors 1142
Cables 174
Wi-Fi module 375
Serial converter 194
Breadboard 175
Arduino mega 934
Pins and others 294

Total 4231 BDT

Most of the devices that were proposed for detecting
cardiovascular disease, most device cost around 1200 USD
to 1800 USD [13,16,17]. On the other hand, the cost of the
proposed device is only 39.5 USD. That is why this device
is more affordable for people with low income.

3-3- Details of the Platform

The integration of technology within the medical industry
has revolutionized the diagnosis and treatment of a myriad
of medical conditions. Among the most profound
technological advancements lies the development of ECG
devices, designed to monitor the heart's electrical activity.
These devices play a crucial role in identifying and treating
various cardiac issues such as arrhythmias, ischemia, and
heart attacks.

The MQTT [30] server is an ideal choice for transmitting
ECG data due to its seamless handling of both analog and
digital data. However, before data transmission can begin,
certain prerequisites must be met. A minimum of 50 data
points is required, and an ERROR alert is triggered if the
ECG displays fewer than 70 data points. Furthermore, data
transmission will not initiate if there are fewer than 50 data
points available. This ensures that doctors receive only
accurate and reliable data, which is crucial for precise
diagnosis and treatment. To enable data transmission, the
analog signal undergoes conversion into a digital format
using a digital data converter inconsistency.

3-4- Dataset Building

To procure the necessary data, the authors conducted
information gathering from a pool of 8,000 volunteers,
spanning ages 18 to 75. Specifically, they recorded the
durations between ECG waves, focusing on the P, Q, R, S,
and T waves, along with the PR, RR, QRS complex, QT,
and QTC intervals. Additionally, essential personal
information was incorporated into the dataset.

Comprising 14 columns, each housing distinct data based
on various criteria, the dataset primarily draws from ECG
data to populate 10 of the 13 columns. Furthermore, it
includes details such as an individual's ID, age, and BMI.
The inclusion of age and BMI attributes enhances
comprehension of an individual's health and well-being.
The final column of the dataset provides information on the
patient's heart condition, annotated by five Bangladeshi
cardiac doctors. After thorough examination of each
observation, they determined whether it suggests a healthy
or at-risk heart. Table 4 displays attributes and their
corresponding data types, offering healthcare professionals
a comprehensive overview of the dataset contents. By
examining the table, they can gain a better understanding of
the dataset, facilitating more informed primary care
decisions based on the patient’s health status provided
within. Data was gathered from volunteers where both
patients with cardiovascular disease and healthy persons
were available. During data collection, the protocols that
were prescribed by a renowned hospital in Bangladesh is
followed. All kinds of data biases are removed using
statistical measures. Furthermore, wrongly collected data
were eradicated during the preprocessing phase. The dataset
does not poses that bias except demographic bias where the
age difference is not properly balanced. The reason is that
cardiovascular disease is mainly common in elderly people

Preprocessing plays a pivotal role in enhancing the
outcomes of Machine Learning (ML) and Deep Learning
(DL) architectures. Fundamentally, the ECG signal
furnishes  all  requisite  information.  Therefore,
preprocessing steps are executed as necessary prior to
feeding the data into the suggested optimized architecture.

Table 4. Attributes and their corresponding data types

Attribute Name Data Type
P Wave float32
Q Wave float32
R Wave float32
S Wave float32
T Wave float32
PR interval float32
RR interval float32
QRS complex float32
QT-interval float32
QTC-interval float32
Age Int64
BMI float32
ID Int64
Risk Int64

Any empty rows or columns are meticulously addressed by
the authors. Moreover, all data types are standardized to
Int64 and Float32 formats. Subsequently, the dataset
undergoes partitioning into training and testing subsets.
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3-5- Data Cleaning and Preparation

During the preparation stages, categorical data is also
encoded appropriately. Specifically, labels indicating
healthy hearts are assigned values of 0, while those
representing hearts at risk are assigned a value of 1. For
clarity, a partial view of the dataset is presented in Table 5,
providing insight into the encoded categories and their
corresponding values.

The authors assess the data quality through the application
of diverse statistical methods. Within this research, the
evaluation entails measuring both covariance and
correlation between the data. Covariance serves as a metric
to gauge the relationship between variables, while
correlation further elucidates the nature of this relationship,
indicating whether the data exhibit linear separability or not.
One sample of real-life data for 3 cycles has been given
below. For each patient 3 cycles have been considered.

Table 5. Data annotation concerning the heart condition
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Fig 3. Architectural details of the ANN model

Additionally, Pandas facilitated the conversion of data into
a dataframe, while numpy was instrumental in translating
all calculations into vector space. Matplotlib.pyplot was
utilized for plotting various graphs to aid in data
visualization. ~ Furthermore,  Sklearn.train_test  was
employed to partition the data into separate test and train
sets.

Table 6. Hyperparametric details of the architecture

Cele | P | O | R S T | RR | PR | QRS | QT | QTc Hyperparameters Details
1 49 38 96 33 48 .64 .16 .05 3 .75 -
2 49 | 38 | 96 | 33 | 48 | 64 | 16 | .05 | 3 75 Learning rate 0.001
3 1 [l [ e ] 36 | 52 | A1 110 | 7] 78 Loss function Categorical cross-entropy
. . Epoch 40
The authors assess the data quality through the application D
. e ol . Dropout 0.21
of diverse statistical methods. Within this research, the
. . . . Number of dense layers 3
evaluation entails measuring both covariance and -
. . . Trainable parameters 1,24,868
correlation between the data. Covariance serves as a metric — -
Activation functions ReLU, softmax

to gauge the relationship between variables, while
correlation further elucidates the nature of this relationship,
indicating whether the data exhibit linear separability or not.

3-6- Artificial Neural Network

Artificial Neural Networks (ANNs) are sophisticated
machine learning models designed to emulate the structure
and functionality of the human brain. These networks
consist of layers of interconnected neurons that process and
transmit data. Among the most commonly utilized types of
ANNSs is the feedforward neural network, which channels
data from the input layer to the output layer in a
unidirectional manner, devoid of looping back. To optimize
performance for specific tasks, various training techniques
are employed, allowing for the adjustment of connection
strengths between neurons. ANNs excel in tasks
necessitating pattern recognition, such as speech
recognition, natural language processing, and image
classification. Figure 3 illustrates the architecture of the
ANN employed in the study. The authors conducted this
study utilizing an 11th generation Core i7 PC equipped with
a 1 TB HDD and 32 GB of RAM. The study leveraged the
Python programming language, with Tensorflow and Keras
serving as integrated libraries for constructing the
architecture.

4- Simulation of the Research

The authors aimed to integrate wireless technology and the
Internet of Things (IoT) for efficient remote patient
monitoring. The main technical objective is to develop an
ECG sensor module that can accurately capture the heart's
electrical signals, including the P, Q, R, S, and T waves
[31], in real-time with high precision. These signals are
thoroughly analyzed and extracted from the continuous
ECG data stream.

ECG signals are wirelessly transmitted using robust
communication protocols such as Bluetooth Low Energy
(BLE) or Wi-Fi Direct, ensuring secure and rapid data
transfer to a central server.

Data Sensing =P — —

ECG Signal Segmentation Simulution Over  Proposed ANN
Internel

Fig. 4. Some significant stages of data processing
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The system's architecture is carefully designed to accurately
capture and transmit subtle variations in the amplitude and
morphology of the PQRST complex. Figure 4 illustrates
key stages from data sensing to processing through an
artificial neural network.

Additionally, considerable emphasis is placed on
optimizing power efficiency and scalability to support an
expanding nework of interconnected devices. This focus
aims to ensure prolonged battery life and seamless
integration into healthcare infrastructure. Figure 5 provides
a functional overview of the entire system.

ECG Sensing Network | Internet-of-Things Cloud
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Fig. 5. Working of the whole system

5- Experimental Result Analysis

Initially, the dataset is employed to train the model,
imparting knowledge on how attribute values differ
between a healthy heart and one experiencing issues. Once
trained and tested, the model can effectively evaluate
readings obtained from the device, distinguishing between
normal readings and those requiring further attention. The
authors have meticulously tracked several performance
measures to evaluate the model's efficacy. Key metrics
assessed include accuracy, precision, recall, and F1-score,
as detailed in equations (11) through (14). From the
literature it has found that, in [32] the proposed AlexNet
method performs much better than traditional machine
learning models and other deep learning techniques. It
achieved very high results in all major evaluation areas:
98.96% accuracy, 98.53% precision, 95.26% recall, 94.56%
F1-score, and a correlation score of 0.988. These results are
clearly better than other models, like the Support Vector
Machine, which only reached 89% accuracy, and many
others that stayed below 90%. This shows that the method
is very good at correctly identifying different types of heart
signals in electrocardiogram data. One of the key reasons
behind this strong performance is the use of deep learning
for feature extraction and a fuzzy bi-clustering approach,

which together help the model pick up even small
differences in heart patterns. However, one weakness is that
the model still sometimes makes mistakes by wrongly
classifying healthy or unrelated signals as heart conditions.
For example, it wrongly identifies some signals as Atrial
Fibrillation, Congestive Heart Failure, or Normal Sinus
Rhythm, leading to small false positive rates of 2.5%, 3.0%,
and 2.0% respectively. The study notes that while the model
is highly effective, there is still room to reduce these
incorrect predictions.

The outcome that the suggested ANN model produced is
depicted in Table 7. Four measures are included in the
performance analysis: Fl-score, accuracy, recall, and
precision. Overall, the Model's performance is
extraordinary [32].

Table 7. Performance analysis of the system

Metrics Performance
Accuracy 95.44%
Precision 94.35%

Recall 95.47%
F1-Score 95.64%

After completing the analysis, the authors focused on
comparing the outcomes with state-of-the-art ML and DL
architectures.

Initially, they compared the proposed model against the
most advanced machine learning models, followed by
comparisons with deep learning architectures.

According to their assessment, the suggested ANN model
outperforms all existing highly effective ML and DL
models, boasting an average F1 score of 98.87%. The
comparison analysis is depicted in Figure 6.

1o 95.64%

92.47%
90

87.43%
80 78.64%

70

60

ANN LSTM Proposed CNNI1D
ANN

Fig. 6. Performance comparison of the proposed model
with other state-of-the-art models

The results illustrated in Figure 6 highlight a notable
enhancement in performance when compared to other
models, with the deep neural network (DNN) emerging as
the closest competitor. Furthermore, the authors juxtaposed
the suggested model with the best deep learning
architectures, considering the quantity of trainable



240

parameters in each model. Notably, the suggested model
surpassed others by a considerable margin.

ANN 2,80,027

LSTM | , | 423123
CNN1D | | ] 3,25,374

Proposed 2,713,121

ANN

1,00,000 2,00,000 3,00,000 4,00,000 §,00,000

Fig. 7. Performance comparison given the number of
trainable parameters

Figure 7 illustrates the count of trainable parameters for
each of the DL architectures with which our model
competed. Comparative analysis between the suggested
ANN architecture and other DL architectures reveals that
fewer trainable parameters are required, as evidenced by
experimental results. From this result, it is evident, that the
proposed model and device integrate properly to detect
cardiovascular disease in a proper and economically
friendly way. Furthermore, the device has a quick response
time that will help doctors and patients to get benefits.
Moreover, as the research is focused for the under
developing countries that is why this device will help the
whole medical sector of the world. The primary problem
with LSTM is that it requires extensive data for
understanding the sequencing. LSTM is very good in text
data but not always in numerical values. Furthermore, CNN
1D can not perform proper with sequential data. That is why
ANN is performing better and less trainable parameters
because of optimization.

Fig. 8. The physical system corroborating this study
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Figure 8 depicts the physical system supporting this study.
This device is responsible for collecting personal data from
users, which is then analyzed to provide them with the
emergency medical attention they may require.

6- Conclusion

Leading the way in modern wellness, this study presents an
IoT-based healthcare network that seamlessly integrates
advanced sensors attached to the human body. A key
innovation is the provision of continuous patient monitoring
through multiple channels, including phone messaging
services, live monitoring, websites, and apps. By blending
state-of-the-art medical devices and applications with
traditional medical practices, this approach aims to
maximize effectiveness and make high-quality healthcare
more accessible and affordable. Taking this into
consideration, authors has focused on developing a IoT
based device where it can used for medical purposes easily.
The methodology suggest that with proper tuning and
integration of ANN results in good result in classifying
cardiovascular diseases. This work will aid the
underprivileged countries to improve their medical sector.
With the knowledge transferring from ANN, it is easier to
determine the role of DL is immense. Furthermore, the
proposed model is lightweight in nature. This research has
resulted in the development of a cost-effective loT-based
ECG monitoring device, priced at only 38.41 USD.
Experimental results show that using Artificial Neural
Network (ANN) procedures, the system achieves 95.64
percent accuracy, outperforming alternative methods. The
integration of IoT technologies with smartphones offers
significant development. The broader implication is to
integrate with real-life hospitals where this device and
proposed model can be utilized to detect cardio-vascular
disease at an earlier stage. The mortality rate can be reduced
significantly in such cases. The research shows, this device
has the ability to provide future direction in the health
informatics field.
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Abstract

The use of mobile devices with limited processing power has surged in recent years, alongside the expansion of cloud and
fog computing across various sectors. These devices can handle small to medium computing tasks, but they fall short when
it comes to large-scale processes, making computational offloading a crucial solution. Cloud computing and fog computing
provide an effective platform for offloading tasks from mobile devices. However, critical real-time applications necessitate a
near-edge approach to managing the computational load. Significant challenges exist in optimizing response times for
effective offloading in cloud computing. This research introduces a framework for predicting response times using Deep
Belief Network (DBN) learning to enhance offloading performance. Implementing a DBN aims to minimize response times
and resource consumption, thereby improving the overall efficiency of offloading processes. The framework is designed to
predict response times accurately, ensuring timely completion of tasks and efficient use of resources. Simulation results using
multiple models show that the use of DBN significantly reduces processing, response, and offloading times compared to other
algorithms. Consequently, the DBN algorithm proves to be more efficient in predicting response times and enhancing
offloading performance. By leveraging the capabilities of DBN, this framework provides a promising solution for optimizing
computational offloading in cloud computing environments. This enhances the performance of mobile devices and ensures
the reliability and efficiency of real-time applications, direct the way for more advanced and responsive computing
technologies.

Keywords: Computational Offloading; Cloud Computing; Deep Belief Network; Response Time; Resource Management;
Sustainable Smart Cities; Real-time Management.

Nevertheless, mobile cloud computing encounters
challenges such as limited network bandwidth and

1- Introduction

The proliferation of mobile devices has substantially
increased computing demands, introducing new challenges
in communication networks and resource provisioning. Due
to their limited resources, mobile devices struggle with
large-scale image processing and real-time conversion
services [1]. Cloud computing technology helps mitigate
these limitations; however, it is not applicable for real-time
applications considering latency issues. Consequently,
offloading computational tasks to independent platforms
becomes a practical solution. For instance, the mobile cloud
can provide maximum advantage for mobile video gaming
and streaming [2].

DX Kaebeh Yaeghoobi
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offloading latency. Transmitting data from mobile devices
to distant clouds consumes significant bandwidth, leading
to traffic congestion and increased latency. Latency-
sensitive applications require offloading to nearby
locations, such as the nearest edge or mobile fog, to address
these issues [3].

Cisco Systems introduced fog computing as an extension of
cloud computing, bringing its capabilities to the network’s
edge. This extension benefits [oT services by supporting
latency-intolerant mobile services. Numerous studies have
focused on standardizing the computational offloading
process at the edge or mobile fog, particularly in selecting
mobile application units. Challenges related to offloading at
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the mobile edge or fog include mobility, heterogeneity, and
geographic distribution of devices.

As the digital world expands and network technologies
evolve, complex services are emerging [4]. The generation
of  online applications featuring computing,
communication, and intelligent capabilities continues to
grow. Despite the growing power of current devices, they
still struggle with tasks required for smart healthcare,
augmented reality, intelligent car communication, and
many smart city services. These applications often require
another individual to execute tasks as a representative of the
user's device, a technique known as process offloading [5].
Task disburdening is especially advantageous for Internet
of Things and cloud computing requisition, facilitating
interactions between edge devices or fog nodes and sensors
and IoT nodes. Load shedding can be established on
computational requirements, load balancing, energy
management, and latency management [6].

In a data-rich world, mobile devices with limited resources
can handle small-to-medium computations but struggle
with high-level computations. Processing offloading is an
effective solution to overcome this limitation. Recently,
cloud computing has been recognized as a suitable platform
for offloading tasks from mobile devices. However, the
distance of cloud data centers from mobile devices
increases network latency and affects the performance of
real-time loT applications.

For essential real-time applications, employing a near-edge
network approach for computing offload is vital.
Additionally, the primary controls for distributed mobile
devices are heterogeneous in the offloading process of
mobile computing. To overwhelm these contests, a deep
learning-based response time prediction framework has
been implemented to optimize offloading decisions near
fog/edge or cloud nodes.

The objectives of this research are:

e Enhance Offloading Performance: Develop a deep
learning-based framework to improve
computational offloading efficiency.

e Minimize Prediction Error: Achieve the lowest
discrepancy between actual and predicted
response times using deep learning techniques.

e  Boost Prediction Accuracy: Enhance the accuracy
of response time predictions with the proposed
deep learning method.

The paper is structured as follows: Section 2 covers related
concepts and foundational research. Section 3 outlines the
technical methodology, including the proposed method and
framework. Section 4 analyses the proposed framework,
presents results, and evaluates their theoretical implications.
The final section discusses the results' implications and
concludes with future trends and perspectives.

2- Background

This section explores concepts and metrics used in
computational offloading, IoT middleware technologies,
technologies that enhance fog computing tasks, and
offloading methods in fog and cloud computing. The
interplay between cloud, fog, and mobile computing
models, concerning large computing resources, is analyzed.
The literature review also covers computing resource
allocation methods and achievements in cloud computing
offloading.

Cloud computing resources are managed using
virtualization technology. For example,[7] explains optimal
virtual machine placement, examining distribution methods
in cloud data centers. Most resource allocation mechanisms
are designed for green computing. The DPRA allocation
mechanism, discussed in [8], considers energy consumption
of virtual and physical machines and data center air
conditioning. A comparison of three schemes with DPRA
shows energy savings, PM shutdowns, and reduced VM
migrations.

In [9], a multi-objective optimization algorithm balances
availability, costs, and performance for running big data
applications in the cloud, outperforming conventional
methods by reducing costs and achieving higher
performance. However, the study focuses on big data
applications.

In critical real-time applications, for example, patient
control systems and intelligent transportation, mobile cloud
computing offloads large tasks while maintaining quality
standards [10]. A mobility-aware resource allocation
architecture, Mobihat, provides efficient scheduling but
does not study the impact of mobility on delay and response
times for real-time mobile services.

Offloading mobile edge computing with multiple users,
based on TDMA and OFDMA, is introduced in [11]. The
TDMA-based method reduces mobile energy consumption,
while the OFDMA hybrid model transforms into TDMA,
defining a discharge priority function for optimal resource
allocation.

The optimal computational offloading framework for
DNN:s is presented in [12], considering mobile batteries and
cloud resources. This method evaluates energy
consumption and execution time.

In [13], battery life of nearby mobile devices is used to select
discharge positions. A non-interactive game model,
maximizing player payoffs, reduces response times. The
Nash equilibrium is obtained through the game model and
indirect induction method, evaluated for response time, end-
user benefit, and memory usage. Yang et al. [14] address high
implementation delays among mobile devices and fog nodes
using queuing theory. Data rate and power consumption are
selected as decision parameters, formulating a multi-
objective optimization problem to decrease transmission
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energy consumption, power, and cost, determining the
probability of discharge for all mobile devices.

A survey on stochastic-based offloading methods in
different computing environments, including mobile cloud,
edge, and fog computing, is proposed in [15]. The
classification is divided into Markov chain, Markov
process, and hidden Markov models, discussing open issues
and future challenges.

In [16], a multi-objective optimization model addresses
time and energy consumption of mobile users and edge
server resource utilization. An edge-cloud joint offloading
method, based on the evolved Strength Pareto algorithm, is
effective and efficient for scenarios with multiple mobile
users and heterogeneous edge servers.

An offloading architecture, combining intelligent
computing with Al, is presented in [17]. Considering
mobile task data size and edge node performance, a load
shedding and task transfer algorithm optimize edge
computing offloading. Experiments show reduced task
delay by increasing data and subtask execution.

Du et al. [18] address offloading in a cloud-cloud
environment, supporting a heterogeneous model to consider
task communication cost asymmetry. They prove the NP-
hard nature of the problem and design an efficient algorithm
for an optimal solution, evaluated through a PageRank-
based program in a controlled cloud edge setting.

An adaptive wireless resource allocation strategy for
computational offloading, under a three-layer edge cloud
framework, is studied in [19]. Modeling the offloading
process at the minimum block level of allocable wireless
resources adapts to vehicular scenarios and evolves in the
5G network. The proposed value density function measures
cost-effectiveness and energy saving. Numerical results
show the designed algorithm achieves significant running
time and energy savings, with superior performance
compared to benchmark solutions.

An autonomous computational offloading framework is
presented in [20] for time-consuming programs, addressing
control model challenges for managing computing load.
Various simulations, including deep neural networks and
hidden Markov models, are performed. Results show the
hybrid model fits the problem with near-optimal accuracy
for discharge decisions, delay, and energy consumption
predictions. MAPE 1is used for discharge, collection, and
processing for decision making. The proposed method
outperforms local computing and offloading in latency,
energy consumption, network utilization, and execution
cost.

In [21], minimizing average task execution time in edge
systems, considering job request heterogeneity, application
data pre-storage, and base station cooperation, is addressed.
A mixed integer nonlinear programming (MINLP) problem
is formulated and addressed using decomposition theory.
The GenCOSCO algorithm improves service quality and
computational complexity. For fixed service cache

configurations, the FixSC algorithm derives evacuation
strategies, with simulations showing significant task
execution time reductions.

Peng et al. [22] propose three multi-objective evolutionary
algorithms to tackle the computing offloading challenges in
IoT for edge and cloud networks. They developed a
constrained multi-objective load calculation model that
accounts for time and energy consumption in mobile
environments. Drawing inspiration from the push and pull
search (PPS) framework, they introduced three algorithms
(PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE) that
integrate population-based search with flexible constraint
control. These algorithms were tested using multi-task,
multi-user scenarios across various [oT devices. The results
demonstrated their effectiveness and superiority.

Other research presents a user-centered joint optimization
offloading scheme designed to minimize the weighted costs
of time delay and energy consumption. The mixed-integer
nonlinear programming problem is addressed using a
particle swarm optimization algorithm that incorporates 0-
1 and weight improvement techniques. Simulation results
indicate higher performance in delay, energy consumption,
and cost [23].

In [24], a computation offloading scheme via mobile
vehicles in a cloud-IoT network is proposed. Sensing
devices generate tasks and transmit them to vehicles, which
then decide whether to compute the tasks locally, on a MEC
server, or at a cloud hub. The offloading decision is based
on a utility function that considers energy consumption and
transmission delay, using a learning-based approach.
Experimental results show that this solution maximizes
rewards and reduces delay.

Based on the research discussed, various techniques can be
adopted for cloud computing offloading, depending on
priorities. This research proposes using a response time
prediction model based on deep learning to determine the
optimal offloading position. The impact on delay and
energy efficiency will be evaluated to improve offloading
performance by minimizing the error between actual and
predicted response times.

3- Methodology

A mobile fog node expands the capabilities of fog and
mobile cloud computing models by offering a localized
system to minimize potential delays and execution times
while maintaining continuous and direct communication in
conjunction with the cloud data center. The proposed
model, depicted in Figure 1, encompasses three offloading
positions: the cloud data center, adjacent mobile station, and
mobile fog. This setup is supported by the LTE hierarchical
architecture and the Wi-Fi intra-network reference model,
situating the mobile fog at the network's edge. Access points
and access point controllers operate as mobile fog nodes.
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Within this architecture, the mobile edge/fog is represented
by the fog-1 node, the mobile fog by the fog-2 node, and the
public cloud serves as the third offloading position, referred
to as the cloud node. Communication within the fog is
enabled by the Evolved Packet Core, which provides the
Evolved Packet Data Gateway.

Access points not only facilitate communication between
mobile stations but also offer cloud services such as,
Network as a Service (NaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). IEEE Ethernet
interfaces connect access points to access point controllers,
while IEEE 802.11 WLAN interfaces link mobile stations
to access points. The access point controller manages block
code migration, overseeing memory, processing, 1/0, and
networking capabilities to sustain mobile cloud services.
Hence, the access point controller similarly serves as a fog
network controller. In Figure 1, fog-enabled access points
are labeled as "fog-access points," and access point
controllers are designated as "fog-access point controllers."
Mobile station authentication is conducted by the 3GPP
AAA via EAP-AKA over IKEv2, with the verification and
validation vector derive through the shared home server unit
in the LTE network. The data network gateway, which
handles access to user equipment or mobile stations and
virtual machines (VMs), has evolved into a packet data
gateway. The top module, the public cloud, functions as a
traditional delivery network, providing pervasive and
scalable services accessible via the web using both mobile
and static devices.

3-1- Unloading Node Process

This section details the offloading process based on the
previously described model, with a focus on the fog/mobile
edge. In critical real-time applications, nodes such as public
cloud and mobile fog and mobile edge are physically
dispersed to deliver services to mobile cloudlets, which are
resource-limited mobile stations. Due to the dynamic nature
of these applications, request times are unknown and
random, with variable response times, making it
challenging to identify the optimal offloading node.

To tackle this issue, a deep learning-based approach is
recommended. This approach learns from the request
history and response times of nodes to predict future
response times. The node with the lowest predicted
response time is then selected for offloading. The
relationship between the computing requirements of cloud
or fog nodes and the response time of virtual machines is
complex.

Predicting workload data patterns is challenging due to their
non-consecutive nature. Therefore, aggregated workload
data characteristics of VMs are used instead of single VM
data for prediction purposes. A deep learning model can
better determine workload data dispersions based on
inherent data characteristics, outperforming simpler
models. This preference is due to the deep model's ability to
learn complex relationships between workload data
features. Although structurally similar to a Multi-Layer
Perceptron (MLP), a Deep Belief Network (DBN) has a
diverse training method, allowing it to address gradient
fading effectively.
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Fig. 2 Flowchart of the DBN-based offloading decision process,
integrating predictive modelling, fallback selection via p-model, and
feedback-driven model updates for sustainable smart city applications.
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Figure 2 illustrates the complete workflow of the proposed
DBN-based computational offloading system for smart city
environments. The process begins with data collection from
mobile devices and virtual machines, including historical
request patterns and aggregated workload characteristics.
After preprocessing and feature extraction, the data be used
for DBN step, which performs multi-layer encoding and
pattern recognition to predict future response times of
candidate nodes. Based on these predictions, the system
attempts to select the node with the lowest latency for
offloading. If due to unpredictable workload patterns or
insufficient confidence no suitable node is identified, the
system activates a fallback mechanism using the p-model,
which randomly selects a server based on predefined
probability. The final stage involves task execution and
feedback logging, which continuously refines the DBN
model for future decisions.

3-2- Deep Belief Network (DBN)

A Restricted Boltzmann Machine (RBM) can extract
features and recreate data entry, in spite of that, it struggles
with gradient blurring. To address this, multiple RBMs can
be combined with a classifier to form a Deep Belief
Network (DBN). This method, known as greedy layer-by-
layer unsupervised pretraining, involves training the DBN
two layers at a time, treating each pair of layers as an RBM.
In this architecture, the hidden layer of one RBM acts as the
input layer for the subsequent RBM. The training process
starts with the initial RBM, whose outputs are fed into the
next RBM, and this sequence continues until the output
layer is reached. Through this process, the DBN identifies
inherent data patterns, functioning as an advanced multi-
layer feature extractor. A unique aspect of this network is
its ability to learn the complete structure of the input at each
layer, similar to a camera gradually focusing an image.
Finally, labels are applied to the resulting patterns in the
DBN. The DBN is subsequently fine-tuned through
supervised learning using a small set of labeled samples,
with minor changes to weights and biases leading to a
marginal increase in accuracy.

The proposed approach includes a deep belief network with
one-layer neural network. This method employs an
unsupervised approach to extract more robust and helpful
features from VM workload data. By increasing the hidden
layers in the DBN, the error gradient is significantly
amplified before being minimized. Training is conducted
using an unsupervised greedy layer-wise method. To further
optimize, the DBN's top layer utilizes a standard sigmoid
regression. Future request predictions are generated by
analyzing response times in terms of bandwidth (B),
memory (M), and processing capability (P).

As presented in Figure 3, inputs to the DBN model include
the bandwidth, memory and processing capability of entire
requests, along with the recent workload of all VMs. These

data cover actual response times discovered over various
time spans. For each node, the trained DBN models predict
response times, with input values normalized between 0 and
1. The core layer's units equal the sum of the VMs in the
cloud and the time slots.

Number of Units=VM XTI )
Where:
VM represents the number of virtual machines.
T1 represents the number of time intervals.
This simple yet effective formula helps determine the total
number of units required based on the given parameters.
Alternatively, a supervised approach with a precisely
configured logistic regression layer can be employed to
label the data and predict the workload of a VM.

Input Value Output Value
O+
O
O r
~

" hin-1)

Fig. 3 Stacks before RBM Training

Initially, the standard binary RBM is modified to a

Gaussian-Bernoulli RBM. The visible unit biases in the

RBM energy function are adjusted to include quadratic bias

terms [3]. An example of a load shedding decision session

is shown in Table 1. The Energy function and Conditional

Probability Distribution are conveyed in following way:

—a)? .

E(x,h|0) = f:l% - Y b - YK, Z?ﬂz—:hjwij
2

P(hilx; 0) = 6(iy wiyx, + by) 3)

P(x;|x; 0) = N(o; XiC, wijx; + aj,07) 4)

Table 1: Description of symbols

Symbol Description
U mean
a? variance
o standard deviation
P probability
E expectancy
X observable variables
H common hidden space of variables
w linear mapping coefficient
B bias

In this context, the Gaussian distribution's probability
distribution function is represented by N(u,c?), where p is
the mean, and o? is the variance vector. Hinton’s training
method outlines the prediction process as follows:
Unsupervised Training: The RBN visible and hidden
layer are trained. The RBM input comprises a request
section and a response time dataset. 8 is the only non-
continuous parameter in the RBM.
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Layer Inheritance: Each visible layer in RBM inherits and
utilizes the extracted features of the preceding RBM as its
input. This process is repeated for subsequent RBMs, with
the parameter 0 retained for the next and initial RBM.
Input to Logistic Regression: The regression layer is
trained using labelled data in a supervised manner; and
input of that is the output of the final RBM.

Supervised Training: The 0 parameters are trained and
adjusted using the backpropagation (BP) algorithm.

The deep belief network-based response time prediction
method leverages edge/cloud computing to accurately
determine whether to offload computations to a
neighbouring node, an edge/fog node, or a cloud node. To
handle the unpredictability of resource availability in
edge/fog and cloud nodes, the proposed offloading
procedure leverages the technique of RBM learning.

To begin the substantial data volumes and the demand for
real-time applications, particularly in the e-health sector, a
near-edge network approach for offloading computations is
recommended. This strategy addresses the primary controls
for distributed mobile devices, easing the offloading
process in mobile and heterogeneous computing
environments. A deep learning-based response time
prediction framework has been developed to enhance
computational offloading performance, determining the
optimal offloading target, whether it's a nearby fog/edge
node, an adjacent fog/edge node, or a cloud node.
Additionally, the Restricted Boltzmann Machine (RBM)
learning technique is utilized to handle the variability of
resource availability.

In this study, the DBN model was trained using aggregated
workload data collected from simulated virtual machines
operating under diverse conditions. The training process
involved unsupervised pre-training of Restricted
Boltzmann Machines (RBMs) followed by supervised fine-
tuning using labeled response time data. Training was
conducted on a standard CPU-based computing
environment, which, was sufficient for the scale and
complexity of the dataset used. The total training time
varied depending on the configuration, typically ranging
from 30 minutes to 2 hours. Once trained, the model was
deployed for inference on edge servers, where its
lightweight architecture enabled real-time prediction
without significant computational overhead. This setup
demonstrates that even without specialized hardware, the
DBN-based offloading strategy remains practical and
effective for mobile and fog-based environments.

4- Result and Analysis

This section examines the performance of the proposed
models. The simulation results integrate real mobility
tracking, server datasets, and model implementation on
actual machines. Subsequent sections will explore the

performance benefits of DBN-based models using three
probability distributions (uniform, normal, and exponential)
to achieve accurate results.

4-1- Data Collection

To simulate mobile node movements, a dataset of vehicle
movements in Rome was utilized, as referenced in [25].
This dataset comprises coordinates of 320 taxis collected
over 30 days, including their coordinates, date, time, and
GPS location. Mobility tracking treats any movement as a
point in time to check server or dump time, rather than
studying user mobility. Each movement is modeled as an
interaction with a mobile edge computing server.
Processing times are obtained from real servers (CPU
usage), involving around 150 data servers (over 1 billion
rows). With e very movement, a server is selected from the
dataset, its utilization is checked, and an unloading decision
is made based on the model's recommendation.

The evaluation spans more than five days (5000 rows of
movements). An evacuation decision is made every minute,
resulting in over 1000 evacuation decisions, ensuring the
proposed models' behavior is observed over an extended
period. The DBN-based response time prediction method
leverages edge/cloud computing to determine whether to
offload computations to a neighboring node, an edge/fog
node, or a cloud node.

Given the challenges posed by large data volumes and real-
time applications, particularly in the e-health sector, a near-
edge network approach was recommended for offloading
computations. The proposed RBM learning technique
addresses the randomness of resource availability.

Figure 4 distribution of server usage probabilities across all
servers in the dataset. The data generally follows a normal
distribution, illustrating typical CPU utilization patterns
observed during simulation.
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Fig. 4. CPU usage distribution of servers (CPU unit is percentage and
Density is J)
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Table 2 sample load shedding decision session, showing
CPU consumption values for selected mobile edge
computing servers at specific geographic positions and time
intervals.

Table 2: Dataset Sample Used in the Experiment. (ID: xx6, Motion Time
Interval: 10 Seconds

Position Machine CPU Consumption
e [ e | s
T Viivages | Mo a7
Camt e |
)éjlii%99201 M_xxdl 37

4-2- Evaluation

This section focuses on simulating and evaluating the
proposed evacuation rules across various variables. The
primary aim is to observe the models' behavior under
different conditions, allowing generalization to parameters
such as quality of service and response time concerning
computational load.

MATLAB software is chosen for the simulation, which can
perform process-based discrete event simulation. The
“Advance Mode” is selected for the probability distribution
of the random variable X, including time (processing). In
the simulation, a resource actually is a mobile edge
computing server k that is modelled and can advertises its
processing time Xk. A process is a mobile node that
modelled to traverses the mobile edge computing servers
and checks latency of each server based on the processing
time. Initially, we consider n=5, means having five mobile
edge computing servers. The processing time X follows a
normal distribution (50 ms to 10 ms), a uniform distribution
in the interval [0-1], and a binominal distribution of 50
J/mol. MATLAB has generated incidental variables
following the determined apportionment.

At every initiation, a node begins polling the mobile edge
computing servers consecutively, starts with server one. At
this step, the proposed approaches are utilized to choose a
mobile edge computing server. The important parameters in
processing time are waiting time, delay and total delay.
Additionally, based on the program types, the range of
processing time differs from 100 milliseconds to 800
seconds, and in intervals of 10 milliseconds to 30
milliseconds. Therefore, various ranges for parameter X can
be considered derived from the proposed models, which
producing similar outcomes as observed in the experiment
dataset. Table 3 shows the values and range of parameters
in the simulation test.

The main approach used in the simulation involves
comparing values obtained from other studies, random
values, the nearest server (immediate loading), and a

method from the same family of algorithms proposed in this
work. This evaluation is limited to comparisons between
different models, including the random and probabilistic
model (p). These approaches are compared to the superior
option, where the server or time with the minimum value is
chosen.

Table 3: Simulation Parameters Values for all Methods

Parameters Value / Range of Values
X N0, 50) & U(0, 1)
No. of mobile nodes 1000
N {3,5, 10}
P for p-model 0.8
R {0,0.25,0.5, 1}
{30, 40, 50, 60}
0 {0.3,0.4,0.5,0.6}
{20, 30, 40, 50, 60}
{1,2,3,4,5,20,30}
C {0.1,0.2,0.3, 0.4}
{1, 10, 15, 20, 30, 40}

The reasons for adopting this approach are as follows:
Primarily, this research emphasizes data decision-making
and task offloading. Additionally, deep learning algorithms
inherently differ from traditional algorithms, especially
when the decision maker lacks complete information. Thus,
the approach to optimality is the main analysis for
evaluating these algorithms. Optimization is suitable when
all server information is available to the decision maker,
facilitating the mobile node in determining the ideal
offloading location. Ultimately, these algorithms are
implemented in sequence, complicating direct comparisons
with other algorithms.

In this setting, in the absence of offloading rules, the mobile
node will likely choose the first available mobile edge
computing server. For edge computing load, such an
offloading method is optimal for task offloading. So, the p-
model method is utilized as a fallback technique. In the p-
model, each server is assigned a loading probability, set to
p=0.8. During each user move, each server has a probability
p=0.8 of being selected to load the job. In this experiment,
increasing p intensively the probability of selecting the first
server for loading. Consequently, the p-model replicates the
scenario where the mobile node chooses the nearest servers
that is closest edge servers due to the higher probability
p=0.8.

When evaluating the actual dataset, if a server is preferred
(server is chosen for loading) the process stops; if no server
is preferred, the last server is chosen. A server is randomly
preferred for each user to offload the work in the random
selection model.

The results of all models are compared with values obtained
from the proposed model, where the server with the shortest
processing time is chosen for each unloading session.
Models that are closer to the optimal value demonstrate
superior performance in offloading decisions. The optimal
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model is achieved by choosing the server with the shortest
processing time for each load sequence.

4-3- Results

The simulation results evaluate the performance of the
proposed DBN-based offloading model across multiple
dimensions, including execution time, server usage, energy
efficiency, and successful offloads. The evaluation spans
three distinct probability distributions for the processing
time variable X: normal, uniform, and exponential. Each
distribution reflects different real-world workload scenarios
in mobile edge computing environments.

Across all simulations, the DBN-based model consistently
demonstrates  superior performance compared to
benchmark algorithms such as Delay Tolerant Offloading
(DTO), Best Choice Problem (BCP), Cost-based Optimal
Task (COT), Quality-Aware Odds, Random selection, and
the p-model. The proposed method achieves lower average
execution times, reduced CPU usage, and higher rates of
successful offloads under varying resource constraints.
Figures 5 through 13 present comparative results for each
distribution scenario. These include average processing
times, server utilization, and the number of effective
offloads under different CPU thresholds. The DBN model
shows strong alignment with the optimal model,
particularly in scenarios where resource availability is
dynamic and unpredictable. This confirms the model’s
ability to make accurate offloading decisions and maintain
system efficiency under diverse conditions.

Performance Analysis with Normal Distribution

As illustrated in Figure 5, when the processing time X
follows a normal distribution, the proposed DBN-based
algorithm achieves the shortest execution time among all
evaluated methods. The average execution time for
computational discharge is approximately 40 milliseconds,
outperforming DTO, BCP, COT, and the p-model
algorithms.
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Fig. 5 Simulation Results for All Models in Case of X Normal
Distribution.

The figure also reveals a significant overlap between the
DBN model and the optimal model, indicating that the
DBN’s predictions closely approximate ideal offloading
decisions. In contrast, models such as the p-model and
random selection exhibit higher variance and longer
processing times. The BCP model achieves a processing
time of 46 milliseconds, which is lower than the p-model
and random approaches but still less efficient than the DBN.
These results validate the effectiveness of the DBN-based
offloading strategy in minimizing latency and optimizing
resource allocation in mobile edge computing. The model’s
ability to learn from historical workload patterns and predict
response times contributes to its superior performance
across varying conditions.

The results in Figure 6 reveal that the variation between the
optimal model and DBN model is significantly smaller than
the variation detected with other models. Notably, for
models other than the DBN, the optimal threshold for each
experiment k is generally close to the average processing
time of 50 milliseconds. For example, in the DTO model
and COT model, the thresholds generated for n=5 are {40,
42,43, 46, 50}, all near the average processing time.
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Fig. 6 Average Processing Time for Different Models with X Normal
Distribution.

Using these optimal thresholds as a reference, the initial
threshold value for the Odds method is set to 50, with
performance evaluated for various values. The results,
indicate the effective performance of the Odds method. This
performance can be credited to the high likelihood of
choosing a server with a processing time under 50
milliseconds. Thus, by setting a threshold value close to the
average processing time, a shorter processing time is
achieved for unloading the computational load.
Furthermore, the results demonstrate better performance for
the BCP method compared to the p-models and Random
method. The BCP evacuation policy is more likely to
achieve the shortest processing time, leading to a lower
average processing time than other models. This increased
likelihood results in a lower expected processing time
compared to the random and p models

Significantly, while the probability of selecting the best
server is assumed to be similar in the BCP and Odds
models, the defined threshold in the Odds model enhances
performance by ensuring quality-aware decisions when
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examining mobile edge computing servers. The main
conclusion from these results is that the proposed method,
referred to as the optimal model, achieves a shorter
processing time than other methods, thereby reducing
response time and improving the performance of
computational offloading in cloud computing.

Performance Analysis with Uniform Distribution

In the initial results, the random variable X followed a
normal distribution. To achieve more accurate findings, we
conducted an additional simulation with X uniformly
distributed within the interval [0-1] (Figure 7). This range
represents server usage, such as CPU utilization, where a
value of 0.5 indicates 50% CPU usage. We applied similar
steps to all models, as in previous experiments.

In the DTO model, the delay coefficient initially began at
r=0, with results for other » values presented subsequently.
For the cost-based optimal task model, an ideal threshold
was identified for each cost value in the second set.
Specifically, for c = 0.2, evaluations determined the optimal
threshold to be 0.3. The cost interpretation is similar to the
normal distribution scenario: a higher cost (smaller
threshold V) signifies a greater need for shorter processing
times.
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Fig. 7 Simulation Results for All Models in Case of X Uniformly
Distribution.

In the quality-aware Odds model, the threshold was set to
0.5, yielding a 42% probability of selecting a server with
X=0.5. Though the BCP model shares this probability,
setting the threshold notably improved the Odds model's
performance. Figures 7 and 8 show that model performance
aligns closely with results from the normal distribution
scenario. DTO and COT models remain top performers,
with deep belief network-based models coming closer to
optimality compared to random and p models.

As illustrated in Figure 8, the average execution time for
various algorithms, including the proposed method based
on the deep belief network, has been evaluated. The results
demonstrate that the proposed method achieves a shorter

execution time compared to other methods, indicating a
more efficient response to computational offloading in
mobile edge computing.
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Fig. 8 Average Processing Time for Different Models with Uniform X
Distribution.

Performance Analysis with Exponential Distribution

Figure 8 demonstrates that the proposed algorithm achieves
an execution time of approximately 0.15 milliseconds,
which is shorter compared to other methods. On the other
hand, the p-model algorithm exhibits the longest execution
time due to the consideration of a threshold value for
selecting servers. These results suggest that the deep belief
network (DBN) method provides superior response times
for computational offloading in mobile edge computing,
attributed to its layered approach.

Besides normal and uniform distributions, this experiment
also included an exponential distribution with a mean of 50.
The same procedural steps were followed as in the previous
distributions. Initially, the delay coefficient in the DTO
method was set to »=0, with results for other » values
subsequently presented. The results under these conditions
are shown in Figures 9.

In the Cost-based Optimal Task model, the figures depict
the optimal threshold values V' corresponding to each cost
value. For this simulation, the cost was initially set to 20,
with the optimal threshold determined to be 45.81, resulting
in the lowest simulated expectation of X among other
values. Performance across various cost values is also
demonstrated. The cost interpretation aligns with scenarios
where X follows normal and uniform distributions: a higher
cost (smaller threshold V) indicates an increased demand for
shorter processing times.

In the quality-aware Odds method, the threshold was set to
50, resulting in a 44% probability of selecting a server with
X=50. The results in Figures 9 and 10 indicate that the
proposed model's performance is consistent with the results
obtained when X follows normal and uniform distributions.
The DBN-based method consistently outperforms other
algorithms, demonstrating the best performance and closest
proximity to optimality compared to the random and p-
models.
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Figure 9 demonstrates that the proposed method with
exponential distribution achieves a lower execution time
compared to other methods. This distribution effectively
guides server selection for mobile edge calculations,
showing that the deep belief network-based method
provides a faster response for computational offloading in
mobile edge computing than other algorithms.
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Fig. 9 Simulation Results for All Models in Case of X Exponential
Distribution.

Figure 10 illustrates the average response time for different
methods with exponential distribution. The proposed
method has a significantly lower response time,
approximately 10 milliseconds, compared to other
algorithms. This demonstrates that the proposed method
surpasses other approaches in reducing response time for
computational offloading in mobile edge computing.
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Fig. 10 Average Processing Time for Different Models With X
Exponential Distribution.

Server Usage and Energy Efficiency

Figure 11 illustrates the average server usage recommended
by each model. The DTO and COT models show results
closest to the proposed method, with DTO performing
better than the others by an absolute difference of 23 units
compared to the proposed method. The findings indicate
that the proposed method has a lower average server

consumption than the other methods, meaning it consumes
less energy for mobile edge calculations.

Additionally, the proposed method, based on the deep belief
network, demonstrates a shorter average unloading time
compared to other algorithms. Consequently, this suggests
that the response time for computational offloading in
mobile edge computing is more efficient with the proposed
method than with others.
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Fig. 11 Average CPU Usage and Average Computational Drain Time by
each Model

Server Consumption and Successful Offloads

Figure 12 illustrates the average server consumption for the
proposed method compared to other solutions. The
proposed deep belief network method demonstrates a lower
average server consumption, indicating that it not only
reduces the response time for computational offloading but
also optimizes server usage. This results in lower overall
server consumption compared to other algorithms.
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Fig. 12 Average Usage of Servers for Different Algorithms.

Result presented the average server consumption for the
proposed method compared to other solutions. The
proposed deep belief network method demonstrates lower
average server consumption, indicating that it not only
reduces response time for computational offloading but also
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optimizes server usage, resulting in lower overall server
consumption compared to other algorithms.
Beyond average server utilization, we compare
performance based on the number of effective offloads for
each model. An effective offload refers to unloading
decisions that meet specific requirements set by each
model. To assess this, we assume three different mobile
edge computing programs (X, y, and z) each with distinct
needs. For example:
e  Program x requires less than 10% CPU utilization.
e  Program y requires less than 20% CPU utilization.
e Program z requires a server with less than 30%
CPU utilization.
If an offload occurs for a server with usage less than 10%,
it is considered a successful offload for program x.
Figure 13 illustrates the effective offloads for various
resource demands across entire methods. The proposed
deep belief network-based method achieves the highest
number of successful offloads in these three cases, with
values of 102, 463, and 1887 successful offloads,
respectively.
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Fig. 13 Number of Effective Discharges for each Model Based on
Various Threshold Values.

4-4- Discussion

The simulation results for various methods indicate that the
presented models generally exhibit a time complexity of
O(n) at worst, both in terms of time and space. If each
model's condition is met on server number n, the mobile
node will visit server n. For the DTO, COT, and Quality-
aware Odds models, a pre-observation step involves
generating thresholds. This step is presumed to be executed
a single time by the service provider, external to the mobile
node, although it can be implemented within the mobile
node if necessary. For example, computing the threshold at

the mobile node in the Odds and DTO methods requires
O(n) time complexity. The COT method requires more time
to calculate the threshold, depending on the likelihood
distribution. Merely a sole operation is essential for a
(uniform) distribution, while a normal distribution requires
integration estimation with a time complexity no greater
than O(n?).

Regarding space complexity, the BCP model does not
require additional space for data storage, resulting in a space
complexity of O(n). This also applies to other models,
provided the training step is performed outside the mobile
node. If the training step is conducted locally at the mobile
node, only the probability distribution parameters need to
be stored. For a uniformly distributed X, the maximum and
minimum values are stored, while for exponentially
distributed X, the u mean and o?standard deviation are
required. Previous results showed that the time complexity
of the proposed method based on a deep belief network
(DBN) is O(1), the lowest complexity for predicting time
and improving computational offloading performance in
mobile edge computing.

Analyzing the execution time and server consumption
across different algorithms reveals that the proposed
method is more efficient in performing the computational
offloading process. The results indicate that the proposed
model is completely independent and lightweight for
implementation in the mobile node, outperforming other
compared solutions. The DBN-based method requires less
processing time for computational offloading and task
execution, with lower CPU consumption than other
solutions. This makes it suitable for managing
computational offloading of resources, compressing, or
delaying limited tasks.

A practical scenario that highlights the effectiveness of the
proposed DBN-based offloading mechanism involves a
mobile user engaged in augmented reality (AR) navigation
within a smart city. AR applications are latency-sensitive
and require rapid processing of environmental data, user
location, and graphical overlays. In such a context, the DBN
model predicts the response times of available fog and cloud
nodes based on historical workload patterns and real-time
system conditions. By selecting the node with the lowest
predicted latency, the system ensures that AR content is
rendered and delivered with minimal delay, thereby
preserving user experience and application responsiveness.
In cases where no optimal node is identified, the fallback
mechanism ensures continuity by probabilistically selecting
a viable server. This dynamic and adaptive offloading
strategy demonstrates the model’s potential to support real-
time, resource-intensive mobile applications in complex
urban environments.
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5- Conclusion

The principal aim of this research is to enhance
computational offloading performance in mobile edge
computing. To achieve this, we have employed a
computational analysis method based on the deep belief
network (DBN), incorporating various deep learning
features to improve the evacuation process. By adding
specific steps to the computational evacuation process, we
aim to reduce server consumption, increase process speed,
and decrease response time to computational requests.

In this study, the deep belief network algorithm has been
utilized to further optimize computational offloading,
making it suitable for various cloud computing applications,
including mobile edge computing. The proposed algorithm
focuses on reducing execution time for requests and
increasing the number of successful offloads within the
mobile edge computing system. By combining different
distribution functions and the core features of the DBN
algorithm, our method seeks to enhance efficiency and the
volume of computational offloading.

Our approach to computational offloading on the server side
is designed to provide a solution with low response time,
ultimately reducing time complexity and energy
consumption. It is crucial to employ the appropriate method
to perform this process efficiently. Incorrect algorithms for
computational offloading in cloud computing can lead to
increased energy consumption and decreased successful
offloads. Timely offloading reduces server-side energy
consumption and increases efficiency, highlighting the
importance of an accurate response time prediction solution
to improve computational offloading performance in
mobile edge computing.

A detailed examination of our results indicates that the
proposed algorithm effectively improves computational
offloading in mobile edge computing. This algorithm
requires less time to execute offloading processes and
respond to requests from mobile nodes. The number of
requests handled by the servers does not increase response
time, thereby reducing the duration of computational
offloading. Compared to Delay Tolerant Offloading (DTO),
Best Choice Problem (BCP), Cost-based Optimal Task
(COT), and p-model algorithms, our method demonstrates
shorter average processing times for computational
offloading and request responses, achieving optimal results
for the evaluated dataset. The proposed method outperforms
other methods in terms of time complexity, energy
consumption, processing time, CPU usage, average offload
time, and the number of successful offloads.

While the proposed algorithm sometimes exhibits longer
processing times for specific requests, overall performance
in processing time, resource utilization, average server
usage, successful offloads, and computational offload time
is superior in improving computational offloading in mobile
edge computing. By balancing accuracy and speed, our

method effectively reduces response time and increases the
number of successful offloads.

Future research should evaluate the proposed method across
various cloud computing systems, applications, and datasets
to fully explore its efficiency and applicability.
Additionally, further studies can investigate other neural
network algorithms, such as long short-term memory and
convolutional neural networks, to enhance offloading
performance in mobile edge computing. Meta-heuristic
algorithms may also be considered to address the NP-hard
nature of computational offloading problems, aiming to
reduce complexity and increase successful offloads.
Finally, developing solutions that require minimal
processing and computing resources, while considering
available resource consumption, will lead to more efficient
computational offloading and increased successful offloads.
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Abstract

This paper proposes a power allocation method based on particle swarm optimization (PSO) to enhance spectrum sensing
performance in downlink Non Orthogonal Multiple Access (NOMA) systems employing high-order Quadrature Amplitude
modulation (QAM) modulation for beyond 5G networks. By intelligently adjusting user power levels, the proposed approach
significantly improves detection reliability while maintaining stringent false alarm constraints, even under challenging low-
SNR conditions. The goal is to enhance spectrum sensing performance by maximizing the probability of detection (P4) while
maintaining a constrained probability of false alarm (Pr). Cyclostationary Feature Detection (CFD) and Matched Filter
Detection (MFD) techniques are applied to evaluate detection performance under varying Signal to noise ratio (SNR)
conditions. Simulation results demonstrate that the optimized framework not only strengthens detection performance
particularly for high order QAM but also enhances overall system responsiveness. Also CFD surpasses MFD in higher SNR
scenarios due to its ability to exploit cyclic features of modulated signals, which are preserved even in moderately noisy
environments. The integration of PSO further enhances system performance, offering a practical and scalable solution for
next-generation Internet of Things (IoT)-enabled spectrum sharing environments.

Keywords: Non Orthogonal Multiple Access (NOMA); Matched Filter Detection (MFD); CFD, PSO; Cognitive Radio
Networks (CRN); Next Generation Networks (NGN).

spectrum to be wasted. Assigning spectrum to unlicensed
users, frequently referred to as secondary users or SU, is

1- Introduction

The increase in the number of connected devices and the
rapid expansion of wireless services are creating an
unprecedented need for spectral resources, pushing
networks toward the capabilities envisioned for beyond
5G and 6G systems [1]. Because cognitive radio (CR)
technology allows for dynamic spectrum access and
opportunistic usage of unused frequency bands, it has
become a key paradigm to solve spectrum shortages [2].
NOMA has simultaneously become well-known as a
crucial method for enhancing spectral efficiency and
facilitating huge connections [3-4]. CR employs three
primary sensing methods to detect available spectrum:
Energy Detection (ED), Matched Filter Detection (MFD),
and Cyclostationary Feature Detection (CFD). It has been
found in recent surveys that over 75% of spectrum is
wasteful [4]. Therefore, it is crucial to make use of
unutilized spectrum. Primary users (PUs) possessing
license do not always use the allocated spectrum, causing
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one method of increasing spectrum utilization when PUs
are discovered to be inactive [5]. Simultaneously, the
spectrum ought to be redistributed to the PUs whenever
they choose to utilize it, without affecting the SU’s
performance [6]. This implies that SUs should use the
spectrum whether or not PUs are present. There is great
potential for attaining high data rates and effective
spectrum usage when CR and NOMA are combined,
especially when using high order modulation techniques
like 64-QAM and 256-QAM [7-8]. These benefits,
however, come at the expense of more complicated
spectrum sensing and a greater susceptibility to fading and
noise, particularly in the low signal-to-noise ratio (SNR)
conditions typical of CR situations [9]. For secondary
users to operate dependably in shared spectrum scenarios
and to prevent detrimental interference with primary
users, accurate spectrum sensing is necessary [10]. This
study addresses the central question of whether an
intelligent power allocation strategy can enhance
spectrum sensing performance in CR-enabled NOMA
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systems while maintaining strict constraints on false alarm
rates. We hypothesize that a Particle Swarm Optimization
(PSO)-based approach can dynamically allocate user
power in a manner that maximizes detection probability,
reduces sensing time, and maintains efficient spectrum
utilization even under challenging conditions.
Conventional sensing techniques, including CFD and
MFD, often exhibit degraded performance in low SNR
conditions, particularly when dealing with high-order
modulations [11-12]. Moreover, many existing studies
focus solely on detection algorithms without considering
adaptive resource allocation as part of the sensing
framework. Our work bridges this gap by integrating
PSO-based power optimization into the CR-NOMA
sensing process, offering a holistic solution that jointly
considers sensing accuracy and power efficiency. This
represents a substantial contribution toward enabling
practical, robust CR-NOMA implementations. The
motivation for this research lies in the growing demand
for agile and energy-efficient spectrum sharing techniques
capable of supporting high-throughput applications,
Internet of Things (IoT) deployments, and massive
machine-type communications. By optimizing power
allocation, we aim to achieve reliable detection
performance without excessive sensing overhead, paving
the way for practical deployment of cognitive radio
systems in next-generation networks. Motivated by the
need for improved detection in noisy NOMA-QAM
environments, this work proposes a PSO-based power
allocation framework to enhance spectrum sensing
performance. Key contributions include:

(1) Development of a PSO-optimized power allocation
scheme for NOMA systems with high-order QAM to
boost detection accuracy.

(i1) Comparative analysis of CFD and MFD for QAM-64
and QAM-256 modulation schemes.

(iii) Simulation results showing up to 47.91%
improvement in detection probability (Pd) over
conventional MFD, validating the approach in challenging
noise conditions.

This is how the rest of the paper is structured. Relevant
literature related to NOMA, QAM, MFD, CFD and PSO
is given in Section 2. The system model and the suggested
PSO-based optimization methodology are covered in
depth in Section 3. Simulation data, performance
comparisons, and information on the efficacy of the
suggested strategy are presented in Section 4. The paper's
conclusion and some future study directions are covered
in Section 5 and 6.

2- Literature Review

Lately, a number of research on spectrum

sensing techniques using NOMA have
demonstrated potential in fulfilling the spectrum needs of
several 5G applications. 5G mobile communications are
about to become worldwide. For an OFDM system, cyclic
prefix detection was proposed by Arun et al. [13]. The
recommended method's demand for previous knowledge
from the principal user is one of its key drawbacks. The
energy detection method of SS for OFDM system was
implemented by the authors [14]. The simulation results
show that while OFDM without CP performs better
towards Py, OFDM system consisting of CP shows
improved throughput performance. Recent studies further
extended the applicability of NOMA-based cognitive
systems [21-22]. Recent advancements in spectrum
sharing and NOMA integration have focused on
intelligent resource allocation and IRS-assisted systems to
enhance performance in Beyond 5G networks [25-26].
Additionally, Bala Kumar and Nanda Kumar [28]
explored block chain-enabled cooperative spectrum
sensing in MIMO-NOMA CRNs for improved security
and sensing accuracy. For instance, Salameh et al. [29]
feature-based spectrum sensing to adaptively detect
primary user signals in fading channels without requiring
a fixed detection threshold while Zhai et al. [30] proposed
a joint optimization scheme combining active IRS and
multicluster NOMA to improve spectral efficiency. These
works underscore a growing trend toward intelligent,
adaptive spectrum management strategies. However, most
of these approaches either focus on physical-layer
improvements or overlook sensing complexity under
high-order modulation and low-SNR conditions. In
contrast, this study addresses the need for efficient
spectrum sensing by integrating PSO-based power
allocation with advanced detection techniques in high-
QAM NOMA-CR systems. Detailed literature specifically
for NOMA-QAM systems is given in Table 1.
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Table 1 :- Literature Review relevant to proposed Work

. Implementation and analysis done
1 [15] 2010 Implement and examine a MIMO-OFDM system using MATLAB simulations
3 dB gain with optimized NOMA
3 [4] 2019 Enhance sensor performance at low SNR over O-NOMA
Explore advanced spectral efficiency techniques in CRNs NOMA-CRN Ou.tperforms
4 [1] 2019 . . conventional CR in spectrum
using NOMA and 5G signals. -
efficiency
To Integrate NOMA into CR networks to enhance spectrum High SE and large user support
5 [3] 2020 . . B
efficiency and accommodate large number of users shown in CR scenarios
Allows SU to use several PU
6 [22] 2021 Use NOMA to efficiently utilize the spectrum types with and without
interference
To Assess the effectiveness of NOMA in uplink Weak user power bO(.)St 1mproves
7 [24] 2021 s . - performance, especially at low
communications using fixed power coefficients. SNRs
8 [27] 2021 Apply Swarm Intelligence to address future network issues ST types clas51ﬁed;.c.h alle.nges and
research opportunities discussed
Cyclostationary methods show 2
9 [26] 2022 Detailed review of 5G waveforms using sensing methods dB advantage over traditional
techniques
Demonstrated enhanced security
Introduce block chain-enabled cooperative and reliability in spectrum sensing
10 [28] 2024 spectrum sensing for 5G/B5G CR using using decentralized block chain
massive MIMO-NOMA mechanisms in MIMO-NOMA
CRNS.
Method Employs feature-based
Machine learning-driven, feature-based spectrum sensing spectrum sensing to adaptively
11 [29] 2025 approach to improve NOMA signal detection in dynamic IoT detect primary user signals in
networks operating under fading channels. fading channels without requiring
a fixed detection threshold.

2-1- Research Gap and Motivation

Despite the extensive efforts to enhance spectrum
efficiency using CR and NOMA techniques, several
challenges remain unaddressed. Most of the prior works
focus on static or suboptimal power allocation strategies,
often overlooking the impact of dynamic power tuning
under high-order modulation schemes. Furthermore, few
studies have explored the integration of advanced
optimization algorithms such as swarm intelligence for
real-time adaptation in CR-NOMA environments under
low-SNR conditions. Additionally, limited work has been
done to jointly optimize sensing accuracy and power
distribution while accounting for false alarm constraints in
high-QAM signal environments. As a result, a critical gap
persists in developing unified frameworks that can
adaptively optimize both detection performance and

spectral efficiency in practical CR scenarios. Motivated
by this gap, the present study proposes a novel power
allocation framework based on Particle Swarm
Optimization (PSO), tailored for CR-enabled NOMA
systems operating under high-order QAM. The approach
aims to achieve enhanced sensing accuracy, reduced false
alarm rates, and optimized throughput, all while
maintaining practical feasibility for next-generation
wireless systems.

3- Proposed System Model

This work investigates a downlink NOMA-based
communication system utilizing QAM modulation for
Beyond 5G scenarios. Multiple users are multiplexed in
the power domain and served concurrently over a shared
channel. Power levels for each user are dynamically
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allocated using Particle Swarm Optimization (PSO) to
enhance overall detection performance while maintaining
user fairness. At the receiver, spectrum sensing is carried

Pr < 0.5. These methods help the CR identify when the
spectrum is idle based on two hypotheses: H1(primary
user presence) and HO(absence of a primary user).

out using both CFD and MFD, with performance
evaluated across different SNR values for QAM-64 and
QAM-256 schemes. The PSO algorithm optimizes power
allocation by maximizing the P4 under a constraint on the

Table 2.Comparison between traditional and proposed sensing technique

S. No. Spectrum Sensing Remarks
Technique
1 Conventional Energy Simple to implement with low computational complexity.
Detection Poor performance at low SNR (P4= 0 at SNR < -12 dB).

Susceptible to interference be- tween PUs and SUs.

Robust detection at low SNR (Requires prior knowledge of signal periodicity).
Moderate computational complexity due to autocorrelation.

Effective at low SNR (Pa4=0.19 at SNR = 4 dB for QAM-256).

IRequires prior knowledge of PU signal.

SUs can only use spectrum in absence of PUs.

4 Proposed Optimized MFD | High Pa (0.83 at Pr = 0.5 for QAM-256, 47.91% improvement over MFD).
& CFD Robust at low SNR (Pa=0.79 at SNR = -5 dB).

Increased computational complexity due to PSO optimization.

2 Conventional CFD

3 Conventional MFD

{ HO : Xj(®) = Nj(®) } 0

H1: Xj(t) = hjS(t) + Nj(©), j= 1,.........Nu 3-1- Matched Filter Detection

The fitness function is defined as:

F(P) = Pq(P) — A max (0, P (P) — 0.5) ) The MFD technique evaluates whether primary users are

where P is the power allocation vector, lambda is a
penalty factor, and P4(P) and P«(P) are computed based on
the NOMA-QAM system model. Although PSO is a
widely  established optimization technique, its
characteristics make it particularly suitable for power
allocation in dynamic CR-NOMA environments. PSO
efficiently  handles  multi-objective,  non-convex
optimization problems without requiring gradient
information, which is especially important under real-
time, non-linear, and noisy conditions typical of cognitive
radio systems. Moreover, PSO’s low computational cost
and adaptability enable quick convergence in
environments where SNR and user demands fluctuate.
This makes PSO a practical and effective choice for
simultaneously optimizing detection probability and
power distribution in high-QAM scenarios. The novelty
of this work lies in embedding PSO within a joint
spectrum sensing and power allocation framework, where
the optimization process is directly influenced by
detection metrics (P4 and Py). This unique application is
further distinguished by its evaluation under high-QAM
and CFD/MFD trade-offs. Comparison of proposed model
with benchmarking techniques is given in Table 2.

present by comparing the detected signal with a reference
signal. The next step involves comparing the output with
a dynamic threshold. It is extremely effective in low SNR
since it optimizes SNR in presence of AWGN. The
formula for the test statistic is TMF = Yy (n)*x (n). The
PU signal in this case is represented by (x), the SU signal
by (n), and the test parameter for MFD is TMF. It then
compares a threshold with the test statistics (TMF) to
ascertain availability of spectrum. The signal received
from Secondary and Primary user are roughly modeled as
random Gaussian variables as depicted in fig. (1).

Random Data SP IFFT Filters and SC PIS
Generator Converter Converter

Rayleigh
Channel

SP Filters and SC FIT PIS Refei\'ed
Converter Converter Signal

Detection (if R1
>= Threshold) Threshold

Figure 1. Block diagram for NOMA MFD
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3-2- Cyclostationary Feature Detection

CFD is amongst the most significant technique for
advanced as it is able to identify the spectrum at low SNR
without the impact of noise. It uses signal's periodicity
features as it calculates mean and autocorrelation of the
signal. The spectrum correlation density functions and
cyclic autocorrelation are useful in order to estimate the
CS signals. The initial stage in CS is to use a number of
procedures, including filtering, encoding, and sampling,
to convert the signal into second-order CS.
()} =y (t+to)} 3)

The (r) is represented as cyclic auto-correlation

function at:

By = {M/To} “)

Random =i P {1 SC et PSS

Signals

Received FFT === SIC e Filters Channel
Signal

Cyclostationary
Feature
detection

Figure 2. Block diagram for NOMA CFD

In a NOMA system, each subcarrier's power spectrum
density (PSD) can be characterized. For n-th subcarrier,
PSD can be represented as:

on(f) = PnTs (Sl;:; STS)Z %)

where, T; stands for the symbol duration, ¢ is the PSD of
the next subcarrier, and P, is transmit power that is

released by preceding subcarrier. A possible technique to
represent CFD using NOMA is as

on(f) = [Hn(f)I? (6)

The prototype filter's frequency spectrum with coefficient
h[n] and n = 0, 1... W-1 is represented as Hy(f) [6]. An
example of a frequency response's source is:

|Hn(H)|=h[Y] +2Z7llh[(¥) eos2M) ()

The following formula determines the phase angle:

Ph(u) = [so%,s1%,s2" ... ... sl — 1Y] (8)
foru=1, 2...U
Si = exp (jog ) ©)

j=0, 1, L-1, and where jegu) denotes random phase angle.
So the representation of NOMA symbol can be shown as:
Yi = [Yior Yiex wor voe vve eve wee vee vee e iy 1] (10)

The phase angle is applied to the NOMA symbols as
follows:

Y, ® = p® «y, (11)
. TP u
Y O=2Eb Bl Xy h(t- e T oK T+ B difht
KT, 2.
e T KT (12)

Lastly, the following represents the received NOMA
signal:

Y (O=Xfzd xImidelokt p(t — kRo)  (13)

We can infer from Eq. (13) that the NOMA - CR system
is capacious than traditional OFDM system. The block
diagram of the recommended technique is displayed in
Fig. 2. A sequential generation process generates a
random parallel symbol. IFFT is used to examine the
signal in the time domain, and once it has been transmitted
across a Rayleigh channel, SC permits many users to use
the sub-channel. The receiver uses SIC to decode the time
domain signal and FFT to translate it to the frequency
domain. In the end, a threshold is determined and if
received symbol's energy exceeds the threshold value,
identification will occur; otherwise, no detection will be
taken into account.
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Create a population of Particles

I

Each particle represents a power allocation vector
across NOMA users under sensing constraints

%

Initialize positions & velocity randomly

!

Calculate fitness for each particle ( Fitness is based
on optimization of Ps Prand threshold for each
power allocation under M-QAM CFD and MFD)

Is current fitness better
than perzonal best?

Update global best (Best among all particles)

¥

Adjust power levels & sensing thresholds for
the next iteration

)

Check stopping condition

¥

Max iteration reached or convergence in
Py Py threshold

Figure 3. Flowchart of MFD and CFD Technique using PSO

4- Simulation Parameters and Performance
Analysis.

In an effort to implement the suggested algorithm shown in
Fig. 3 MATLAB 2022 is used. Table 3. depicts the
simulation parameters for optimizing and analyzing NOMA
QAM CFD and MFD using PSO. Simulation results of
matched  filter  spectrum  sensing method and
Cyclostationary feature detection based on NOMA are used
to comprehensively examine the results. This study
determines the threshold value at the NOMA system's
receiver end.

Table 3. Simulation Parameters

Parameters Description Values
f frequency 16 MHz
M QAM order 64,256
BW Bandwidth 30 MHz
N Number of users 50
n Population size 100
SNR Signal to noise ratio -20dBto 5 dB
k FFT Size 1024

It is based on the idea that only detection will be presumed
if the signal received equals or exceeds the threshold value;
otherwise, no detection will be inferred. When assessing the
effectiveness of MFD and CFD, a constant threshold value
is taken into account because a changing threshold can
deteriorate the efficiency of spectrum sensing methods. To

261
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investigate the role of thresholds in MFD and CFD
identification, QAM-64 and QAM-256 transmission
systems with 64 and 256 sub-carries were used. Table 4 and
Figure 4 display the Pq4 for various Prvalues. Prindicates the
false representation of noise as a desired signal. SNR =10
dB was fixed in the current simulation to analyze the
effectiveness of MFD & CFD strategy for NOMA. It is seen
from fig.4 and table 4 that NOMA M-256 Py is higher than
M-64. So it is inferred that NOMA-QAM-MFD 256 Pd is
better than QAM-64 as shown in fig (4).

" ROC for Different QAM Orders
—&—M =64
09 —o—M =256 ‘,"
08
0.7 {
06 /
Q.O 05 & ¢
04
03
2
0.2
0.1 . : :'_‘:/
. > S
otesceSE e oo o—o—a—" . . . . .
0 01t 02 03 04 05 06 07 08 09 1
Pe
Figure 4: P4 Vs Pt for M-QAM MFD
Table 4: NOMA-QAM MFD Py vs P result
Pi/Pq 01 | 02 | 03 | 04 | 06 | 07 | 08 | 09 1
(MFD)
NOMA | 0 0 0 | 007 | 014 | 027 | 047 | 076 | 1
M-256
NOMA | 0 0 0 | 005 | 009 | 0.18 | 033 | 036 | 1
M-64

Cyclostationary Feature Detection (CFD): F‘d vs Pf for NOMA QAM Schemes
1

09

0.8

07r

06

0.5

04

0.3

Probability of Detection (Pd)

02r

0.1 1" —6— NOMA QAM-256
—E— NOMA QAM-64

0
0 005 01 015 02 025 03 035 04 045 05

Probability of False Alarm (Pf)
Figure.5. P4 Vs Pt for CFD for M-QAM.

Table 5: P4 vs Pr for NOMA-QAM using CFD

Pr /Pq | 0.01 0.11 | 022 | 028 | 033 | 039 | 0.44 | 050
(CFD)
NOMA | 022 046 | 059 | 061 | 0.66 | 0.69 | 0.73 | 0.76
QAM-
256
NOMA | 0.12 032 | 045 | 051 | 056 | 0.60 | 0.65 | 0.68
QAM-
64

Table 5 and Figure 5 shows the Pd vs Pf values for M-QAM
CFD. A comparative analysis demonstrates the clear
advantage of the proposed NOMA-CFD approach over
MFD. At Pf= 0.5 and SNR = 10 dB, CFD with QAM-256
achieves a Pd of 0.76, outperforming both QAM-64 (Pd =
0.68) and MFD, with an observed 44.28% improvement in
detection probability. Across the full range of Pf values,
CFD consistently maintains higher Pd, indicating superior
sensing reliability and robustness to false alarms compared
to conventional techniques.

Matched Filter Detection (MFD): Pd vs SNR for NOMA M-QAM scheme

0.9 [

0.8 -

0.7 |-

0.6

0.5

0.4

0.3

Probability of Detection (Pd)

0.2

01k —6—NOMA M-256 | |
—E— NOMA M-64
‘

o . . !
-20 -15 -10 -5 0 5 10 15

SNR (dB)
Figure 6. Plot for MFD Pq4 against SNR.

Table 6. P4 against SNR for MFD in NOMA-QAM
SNR/Pd | - - -12 -8 -4 0 4 (8 |12 ] 16
(MFD) | 20 | 16
NOMA 0 0 0 0 0.19 | 0965 | 1 1 1 1
M-256
NOMA 0 0 0.004 | 0.02 | 0.14 | 0.66 1 1 1 1
M-64

The Pd is displayed as a function of SNR in Table 6 and
Fig.6. We do analysis and simulations across a variety of
SNR values (10 dB to 20 dB) for MFD. For QAM-64 &
256, 100% Probability of detection (Pd) is achieved at 4 dB
and 6 dB, respectively. Therefore, QAM-Pd can be
considered better than QAM-256. For instance, at SNR = —
10 dB, MFD yields a Pd of 0.56 (QAM-256), while CFD
fails to detect (Pd = 0). However, at SNR = 4 dB, CFD
rapidly improves to Pd = 1.0, outperforming MFD’s Pd of
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0.97. This demonstrates CFD’s steeper gain in detection
performance once the SNR threshold is crossed.

Table 6 and Figure 6 shows the Pd for various Pf values.
SNR = 10 dB was fixed in the current simulation to measure
the effectiveness of the CFD strategy for NOMA. It is seen
that for NOMA QAM CFD Pd value is 0.76 for Pf of 0.50
as compared to 0.68 Pd value for NOMA QAM-64. Also

Table7.P4 vs SNR for NOMA-QAM with CFD.

SNR(AB)YP | 25 | -20 | -15 | -10 5 |o +5
d

NOMA 01 |01 |03 |05 07 |09 |1
QAM-256 1 6 3 6 9 7

NOMA 01 |01 [03 |05 07 |09 |09
QAM-64 0 5 0 0 4 1 8

Table 8. BER vs SNR of NOMA-QAM MFD & CFD
P; /Py 00 (00 01 [0O1 [02 |02 03 ]04]05
1 6 5 5 0
Optimiz | 03 | 03 | 03 [ 04 | 04 | 04 [ 04 | 04 | 04
ed Pgof | 3 7 9 0 2 3 5 7 9
MFD
Optimiz | 0.5 [ 05 [ 06 | 0.7 | 0.7 | 0.7 | 0.7 | 0.8 | 0.8
ed Pgof | 1 9 3 0 3 5 9 1 3
CFD

results improve by 44.28% when compared with MFD
technique. The figure illustrates that NOMA-QAM-256 Py
is better than QAM-64. Also it is clear from results that
NOMA-CFD outperforms the results of MFD.

Pd vs SNR for NOMA QAM-256 and QAM-64

09r

081

071

06

05

04r

Probability of Detection (Pd)

03r

02r

0.1 —8— NOMA QAM-256
—&— NOMA QAM-64

-25 -20 -15 -10 -5 0 5
SNR (dB)

Figure.7. Pa Vs SNR for CFD.

The table 7 and Fig. 7 depicts results of Pq vs SNR of
NOMA-QAM CFD. We examine and model P4 throughout
a spectrum of SNR ranging from -25 to 5dB. From obtained
results it is evident that at 0 dB and 5dB in the case of QAM-
64 and QAM-256, P4 reaches an ideal value of 100%.Thus,
it may be said that QAM- 64 Pd is superior to QAM-
256's.The superior low-SNR performance of MFD is due to
its reliance on known signal templates. In contrast, CFD
requires stronger signals to detect Cyclostationary features
but eventually surpasses MFD in higher-SNR regions,

making it better suited for mid-to-high-SNR cognitive
environments.

BER vs SNR for CFD and MFD

O.Sc’

o
s

o
w

Bit Error Rate (BER)
o
n

0.1

0

0 ‘2 J-':L f; Eli 1‘0 12
SNR (dB)
Figure 8. BER vs SNR of NOMA-QAM MFD & CFD

As SNR increases, the BER lowers, as Fig. 8 and Table 8
demonstrate. For M-256, a BER of 0.309 is obtained at 6
dB using the MFD technique and 0.212 at 12 dB using the
CFD technique. Matched Filter Detection MFD
consistently achieves lower BER compared to CFD across
all SNR levels due to its reliance on known signal patterns.
CFD shows limited improvement at low SNR but performs
better as SNR increases beyond 10 dB. Overall, MFD is
more reliable for low-SNR environments, while CFD
requires stronger signals to reduce errors.

Figure 8 reinforces these findings, showing that MFD
achieves a BER of 0.309 at 6 dB, while CFD only achieves
0.212 at 12 dB. This indicates that while MFD offers lower
BER in noisy environments, CFD benefits more from clean
conditions. As observed in Tables 5 and 7, P4 increases with
SNR for both MFD and CFD. Notably, MFD achieves a Pq4
of 0.97 at 0 dB for QAM-256, while CFD reaches similar
performance only at higher SNR levels (>4 dB). This
indicates that MFD is more suitable for low-SNR
environments due to its coherent detection mechanism.
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Optimized MFD vs CFD: P‘:I vs Pf
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Figure 9. Optimized P4 using MFD and CFD using PSO

Table 9. P;against optimized P4 using PSO for CFD in NOMA-QAM
BER
of
CFD | 0484 | 0491 | 0493 | 0.495 | 0.496 | 0.312 | 0.212
BER
of
MFD | 0.39 0.37 0.339 | 0.309 | 0.272 | 0.237 | 0.199
SNR | 0 2 4 6 8 10 12

Table 9 and Fig. 9 shows PSO-optimized Pd vs Pf plot using
PSO in MFD and CFD technique. Results improved and
high value of P4 was achieved for lesser Pr values showing
improved detection performance (Pd of 0.75) at reduced
false alarm rates (Pr of 0.33). At Py = 0.3, PSO-optimized
CFD achieves P4 = 0.79, which translates to a 35% increase
in successful PU detection compared to MFD. This is
critical in CR-IoT applications where minimizing missed
detection reduces interference and improves network
reliability. CFD surpasses MFD in higher SNR scenarios
due to its ability to exploit cyclic features of modulated
signals, which are preserved even in moderately noisy
environments. The integration of PSO further enhances
detection performance by adaptively selecting parameters
that maximize Py under false alarm constraints. Despite its
superior performance, CFD exhibits higher computational
complexity compared to MFD, making it less suitable for
real-time or resource-constrained IoT nodes. Additionally,
PSO requires tuning and incurs optimization overhead,
which may limit deployment in ultra-low-latency scenarios.

5- Conclusion

This study introduces a PSO-optimized power allocation
framework for NOMA-QAM systems in cognitive radio
environments, targeting enhanced detection using CFD and
MFD techniques. The proposed model significantly

improves detection performance, particularly for high-order
modulation schemes like QAM-256, achieving up to
47.91% gain in Py over traditional MFD approaches. CFD
demonstrates superior robustness at low SNR and reduced
sensing time when optimized via PSO. These improvements
contribute to more reliable and energy-efficient spectrum
access, addressing the demands of IoT-enabled Beyond 5G
networks. Future work will explore integration with IRS-
assisted channels and deep learning-based sensing
optimization for dynamic environments.

6- Future Research Directions

Future research can extend the proposed PSO-based power
allocation framework to support advanced modulation
schemes like OFDM and OTFS. Incorporating adaptive
sensing techniques, such as machine learning-based
threshold selection or reinforcement learning, may further
enhance detection in dynamic environments. Additionally,
integrating Intelligent Reflecting Surfaces (IRS) to improve
signal quality and spectral efficiency, especially in
obstructed scenarios, is a promising direction. Finally,
validating the system's scalability in large-scale IoT
deployments and testing it on real-world platforms would
strengthen its practical relevance.
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