• Home
  • Cloud Computing
  • OpenAccess
    • List of Articles Cloud Computing

      • Open Access Article

        1 - Internet Banking, Cloud Computing: Opportunities, Threats
        Monireh Hosseini Elias Fathi Kiadehi
        With the extension of Internet and its applications, internet banking is introduced as an efficient and cost effective way to provide services to customers. Towards the end of previous decade, cloud computing has been offered as a revolution in Internet application as a More
        With the extension of Internet and its applications, internet banking is introduced as an efficient and cost effective way to provide services to customers. Towards the end of previous decade, cloud computing has been offered as a revolution in Internet application as a service which effect on the way that service is provided. Regarding the service improvement based on customer’s needs, cloud computing is a quick move in informational services. This study tried to consider each aspect of internet banking and cloud computing strengths, weaknesses, opportunities and threats and provide SWOT analysis for Internet banking using cloud computing. In the following, the study tried to provide a practical solution for financial agencies and banks to provide better Internet banking services using cloud computing technology. Finally a SWOT analysis of internet banking using cloud computing technology is discussed and approved with expert opinions using fuzzy Delphi method. Manuscript profile
      • Open Access Article

        2 - Hybrid Task Scheduling Method for Cloud Computing by Genetic and PSO Algorithms
        Amin Kamalinia Ali Ghaffari
        Cloud computing makes it possible for users to use different applications through the internet without having to install them. Cloud computing is considered to be a novel technology which is aimed at handling and providing online services. For enhancing efficiency in cl More
        Cloud computing makes it possible for users to use different applications through the internet without having to install them. Cloud computing is considered to be a novel technology which is aimed at handling and providing online services. For enhancing efficiency in cloud computing, appropriate task scheduling techniques are needed. Due to the limitations and heterogeneity of resources, the issue of scheduling is highly complicated. Hence, it is believed that an appropriate scheduling method can have a significant impact on reducing makespans and enhancing resource efficiency. Inasmuch as task scheduling in cloud computing is regarded as an NP complete problem; traditional heuristic algorithms used in task scheduling do not have the required efficiency in this context. With regard to the shortcomings of the traditional heuristic algorithms used in job scheduling, recently, the majority of researchers have focused on hybrid meta-heuristic methods for task scheduling. With regard to this cutting edge research domain, we used HEFT (Heterogeneous Earliest Finish Time) algorithm to propose a hybrid meta-heuristic method in this paper where genetic algorithm (GA) and particle swarm optimization (PSO) algorithms were combined with each other. The results of simulation and statistical analysis of proposed scheme indicate that the proposed algorithm, when compared with three other heuristic and a memetic algorithms, has optimized the makespan required for executing tasks. Manuscript profile
      • Open Access Article

        3 - Toward an Enhanced Dynamic VM Consolidation Approach for Cloud Datacenters Using Continuous Time Markov Chain
        Monireh Hosseini Sayadnavard Abolfazl Toroghi Haghighat
        Dynamic Virtual Machine (VM) consolidation is an effective manner to reduce energy consumption and balance the resource load of physical machines (PMs) in cloud data centers that guarantees efficient power consumption while maintaining the quality of service requirement More
        Dynamic Virtual Machine (VM) consolidation is an effective manner to reduce energy consumption and balance the resource load of physical machines (PMs) in cloud data centers that guarantees efficient power consumption while maintaining the quality of service requirements. Reducing the number of active PMs using VM live migration leads to prevent inefficient usage of resources. However, high frequency of VM consolidation has a negative effect on the system reliability and we need to deal with the trade-off between energy consumption and system reliability. In recent years many research work has been done to optimize energy management using power management techniques. Although these methods are very efficient from the point of view of energy management, but they ignore the negative impact on the system reliability. In this paper, a novel approach is proposed to achieve a reliable VM consolidation method. In this way, a Markov chain model is designed to determine the reliability of PMs and then it has been prioritized PMs based on their CPU utilization level and reliability status. Two algorithms are presented to determining source and destination servers. The efficiency of our proposed approach is validated by conducting extensive simulations. The results of the evaluation clearly show that the proposed approach significantly improve energy consumption while avoiding the inefficient VM migrations. Manuscript profile
      • Open Access Article

        4 - Reliable resource allocation and fault tolerance in mobile cloud computing
        Zahra Najafabadi Samani Mohammad Reza  Khayyam Bashi
        By switching the computational load from mobile devices to the cloud, Mobile Cloud Computing (MCC) allows mobile devices to offer a wider range of functionalities. There are several issues in using mobile devices as resource providers, including unstable wireless connec More
        By switching the computational load from mobile devices to the cloud, Mobile Cloud Computing (MCC) allows mobile devices to offer a wider range of functionalities. There are several issues in using mobile devices as resource providers, including unstable wireless connections, limited energy capacity, and frequent location changes. Fault tolerance and reliable resource allocation are among the challenges encountered by mobile service providers in MCC. In this paper, a new reliable resource allocation and fault tolerance mechanism is proposed in order to apply a fully distributed resource allocation algorithm without exploiting any central component. The objective is to improve the reliability of mobile resources. The proposed approach involves two steps: (1) Predicting device status by gathering contextual information and applying TOPSIS to prevent faults caused by volatility of mobile devices, and (2) Adapting replication and checkpointing methods to fault tolerance. A context-aware reliable offloading middleware is developed to collect contextual information and manage the offloading process. To evaluate the proposed method, several experiments are run in a real environment. The results indicate improvements in success rates, completion time, and energy consumption for tasks with high computational load Manuscript profile
      • Open Access Article

        5 - BSFS: A Bidirectional Search Algorithm for Flow Scheduling in Cloud Data Centers
        Hasibeh Naseri Sadoon Azizi Alireza Abdollahpouri
        To support high bisection bandwidth for communication intensive applications in the cloud computing environment, data center networks usually offer a wide variety of paths. However, optimal utilization of this facility has always been a critical challenge in a data cent More
        To support high bisection bandwidth for communication intensive applications in the cloud computing environment, data center networks usually offer a wide variety of paths. However, optimal utilization of this facility has always been a critical challenge in a data center design. Flow-based mechanisms usually suffer from collision between elephant flows; while, packet-based mechanisms encounter packet re-ordering phenomenon. Both of these challenges lead to severe performance degradation in a data center network. To address these problems, in this paper, we propose an efficient mechanism for the flow scheduling problem in cloud data center networks. The proposed mechanism, on one hand, makes decisions per flow, thus preventing the necessity for rearrangement of packets. On the other hand, thanks do SDN technology and utilizing bidirectional search algorithm, our proposed method is able to distribute elephant flows across the entire network smoothly and with a high speed. Simulation results confirm the outperformance of our proposed method with the comparison of state-of-the-art algorithms under different traffic patterns. In particular, compared to the second-best result, the proposed mechanism provides about 20% higher throughput for random traffic pattern. In addition, with regard to flow completion time, the percentage of improvement is 12% for random traffic pattern Manuscript profile
      • Open Access Article

        6 - Embedding Virtual Machines in Cloud Computing Based on Big Bang–Big Crunch Algorithm
        Ali Ghaffari Afshin Mahdavi
        Cloud computing is becoming an important and adoptable technology for many of the organization which requires a large amount of physical tools. In this technology, services are provided and presented according to users’ requests. Due to the presence of a large number of More
        Cloud computing is becoming an important and adoptable technology for many of the organization which requires a large amount of physical tools. In this technology, services are provided and presented according to users’ requests. Due to the presence of a large number of data centers in cloud computing, power consumption has recently become an important issue. However, data centers hosting Cloud applications consume huge amounts of electrical energy and contributing to high operational costs to the environment. Therefore, we need Green Cloud computing solutions that can not only minimize operational costs but also reduce the environmental impact. Live migration of virtual machines and their scheduling and embedding lead to enhanced efficiency of dynamic resources. The guarantee of service quality and service reliability is an indispensable and irrevocable requirement with respect to service level agreement. Hence, providing a method for reducing costs of power consumption, data transmission, bandwidth and, also, for enhancing quality of service (QoS) in cloud computing is critical. In this paper, a Big Bang–Big Crunch (BB-BC) based algorithm for embedding virtual machines in cloud computing was proposed. We have validated our approach by conducting a performance evaluation study using the CloudSim toolkit. Simulation results indicate that the proposed method not only enhances service quality, thanks to the reduction of agreement violation, but also reduces power consumption. Manuscript profile
      • Open Access Article

        7 - Reallocation of Virtual Machines to Cloud Data Centers to Reduce Service Level Agreement Violation and Energy Consumption Using the FMT Method
        Hojjat Farrahi Farimani Davoud  Bahrepour Seyed Reza Kamel Tabbakh reza Ghaemi
        Due to the increased use of cloud computing services, cloud data centers are in search of solutions in order to better provide the services demanded by their users. Virtual machine consolidation is an appropriate solution to the trade-off between power consumption and s More
        Due to the increased use of cloud computing services, cloud data centers are in search of solutions in order to better provide the services demanded by their users. Virtual machine consolidation is an appropriate solution to the trade-off between power consumption and service level agreement violation. The present study aimed to identify low, medium, and high load identification techniques, as well as the energy consumption and SLAv to minimize. In addition to the reduced costs of cloud providers, these techniques enhance the quality of the services demanded by the users. To this end, reallocation of resources to physical hosts was performed at the medium load level using a centralized method to classify the physical hosts. In addition, quartile was applied in each medium to reduce the energy consumption parameters and violation level. The three introduced SMT - NMT and FMT methods for reallocation of resources were tested and the best results were compared with previous methods.The proposed method was evaluated using the Cloudsim software with real Planet Lab data and five times run, the simulation results confirmed the efficiency of the proposed algorithm, which tradeoff between decreased the energy consumption and service level of agreement violation (SLAv) properly. Manuscript profile
      • Open Access Article

        8 - Providing a New Smart Camera Architecture for Intrusion Detection in Wireless Visual Sensor Network
        Meisam Sharifi Sani Amid Khatibi
        The wireless Visual sensor network is a highly functional domain of high-potential network generations in unpredictable and dynamic environments that have been deployed from a large number of uniform or non-uniform groups within the desired area, cause the realization o More
        The wireless Visual sensor network is a highly functional domain of high-potential network generations in unpredictable and dynamic environments that have been deployed from a large number of uniform or non-uniform groups within the desired area, cause the realization of large regulatory applications from the military and industrial domain to hospital and environment. Therefore, security is one of the most important challenges in these networks. In this research, a new method of routing smart cameras with the help of cloud computing technology has been provided. The framework in the cloud computing management layer increases security, routing, inter interaction, and other features required by wireless sensor networks. Systematic attacks are simulated by a series of standard data collected at the CTU University related to the Czech Republic with RapidMiner software. Finally, the accuracy of detection of attacks and error rates with the suggested NN-SVM algorithm, which is a combination of vector machines and neural networks, is provided in the smart cameras based on the visual wireless sensor networks in MATLAB software. The results show that different components of the proposed architecture meet the quality characteristics of visual wireless sensor networks. Detection of attacks in this method is in the range of 99.24% and 99.35% in the worst and best conditions, respectively. Manuscript profile
      • Open Access Article

        9 - TPALA: Two Phase Adaptive Algorithm based on Learning Automata for job scheduling in cloud Environment
        Abolfazl Esfandi Javad Akbari Torkestani Abbas Karimi Faraneh Zarafshan
        Due to the completely random and dynamic nature of the cloud environment, as well as the high volume of jobs, one of the significant challenges in this environment is proper online job scheduling. Most of the algorithms are presented based on heuristic and meta-heuristi More
        Due to the completely random and dynamic nature of the cloud environment, as well as the high volume of jobs, one of the significant challenges in this environment is proper online job scheduling. Most of the algorithms are presented based on heuristic and meta-heuristic approaches, which result in their inability to adapt to the dynamic nature of resources and cloud conditions. In this paper, we present a distributed online algorithm with the use of two different learning automata for each scheduler to schedule the jobs optimally. In this algorithm, the placed workload on every virtual machine is proportional to its computational capacity and changes with time based on the cloud and submitted job conditions. In proposed algorithm, two separate phases and two different LA are used to schedule jobs and allocate each job to the appropriate VM, so that a two phase adaptive algorithm based on LA is presented called TPALA. To demonstrate the effectiveness of our method, several scenarios have been simulated by CloudSim, in which several main metrics such as makespan, success rate, average waiting time, and degree of imbalance will be checked plus their comparison with other existing algorithms. The results show that TPALA performs at least 4.5% better than the closest measured algorithm. Manuscript profile